Promoting Immune Regulation in Type 1 Diabetes Using Low-Dose Interleukin-2

  • Connor J. Dwyer
  • Natasha C. Ward
  • Alberto Pugliese
  • Thomas R. MalekEmail author
Immunology and Transplantation (L Piemonti and V Sordi, Section Editors)
Part of the following topical collections:
  1. Topical Collection on Immunology and Transplantation


Dysregulation of the immune system contributes to the breakdown of immune regulation, leading to autoimmune diseases, such as type 1 diabetes (T1D). Current therapies for T1D include daily insulin, due to pancreatic β-cell destruction to maintain blood glucose levels, suppressive immunotherapy to decrease the symptoms associated with autoimmunity, and islet transplantation. Genetic risks for T1D have been linked to IL-2 and IL-2R signaling pathways that lead to the breakdown of self-tolerance mechanisms, primarily through altered regulatory T cell (Treg) function and homeostasis. In attempt to correct such deficits, therapeutic administration of IL-2 at low doses has gained attention due to the capacity to boost Tregs without the unwanted stimulation of effector T cells. Preclinical and clinical studies utilizing low-dose IL-2 have shown promising results to expand Tregs due to their high selective sensitivity to respond to IL-2. These results suggest that low-dose IL-2 therapy represents a new class of immunotherapy for T1D by promoting immune regulation rather than broadly suppressing unwanted and beneficial immune responses.


Type 1 diabetes IL-2 Tregs Low-dose IL-2 therapy IL-2 receptor Tolerance 



Our work was supported by the National Institutes of Health (R01 DK093866, R01 AI055815), the American Diabetes Association (1-15-BS-125), Wallace H. Coulter Center for Translational Research, and Diabetes Research Institute Foundation, Hollywood, FL, the Peacock Foundation, Inc., Miami, FL.

Compliance with Ethical Standards

Conflict of Interest

Connor J. Dwyer, Natasha C. Ward, Alberto Pugliese, and Thomas R. Malek declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.


Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Anderson MS, Bluestone JA. The NOD mouse: a model of immune dysregulation. Annu Rev Immunol. 2005;23:447–85.PubMedCrossRefGoogle Scholar
  2. 2.
    Bach JF, Chatenoud L. Tolerance to islet autoantigens in type 1 diabetes. Annu Rev Immunol. 2001;19:131–61.PubMedCrossRefGoogle Scholar
  3. 3.
    Pugliese A. Advances in the etiology and mechanisms of type 1 diabetes. Discov Med. 2014;18:141–50.PubMedGoogle Scholar
  4. 4.
    Lowe CE, Cooper JD, Brusko T, et al. Large-scale genetic fine mapping and genotype-phenotype associations implicate polymorphism in the IL2RA region in type 1 diabetes. Nat Genet. 2007;39:1074–82.PubMedCrossRefGoogle Scholar
  5. 5.••
    Hartemann A, Bensimon G, Payan CA, et al. Low-dose interleukin 2 in patients with type 1 diabetes: a phase 1/2 randomised, double-blind, placebo-controlled trial. Lancet Diabetes Endocrinol. 2013;1:295–305. This study is the first clinical trial in which low-dose IL-2 therapy was used in participants with T1D.PubMedCrossRefGoogle Scholar
  6. 6.
    Fehervari Z, Sakaguchi S. CD4+ Tregs and immune control. J Clin Invest. 2004;114:1209–17.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Gavin M, Rudensky A. Control of immune homeostasis by naturally arising regulatory CD4+ T cells. Curr Opin Immunol. 2003;15:690–6.PubMedCrossRefGoogle Scholar
  8. 8.
    Malek TR, Bayer AL. Tolerance, not immunity, crucially depends on IL-2. Nat Rev Immunol. 2004;4:665–74.PubMedCrossRefGoogle Scholar
  9. 9.
    Sadlack B, Lohler J, Schorle H, et al. Generalized autoimmune disease in interleukin-2-deficient mice is triggered by an uncontrolled activation and proliferation of CD4+ T cells. Eur J Immunol. 1995;25:3053–9.PubMedCrossRefGoogle Scholar
  10. 10.
    Suzuki H, Kundig TM, Furlonger C, et al. Deregulated T cell activation and autoimmunity in mice lacking interleukin-2 receptor β. Science. 1995;268:1472–6.PubMedCrossRefGoogle Scholar
  11. 11.
    Willerford DM, Chen J, Ferry JA, Davidson L, Ma A, Alt FW. Interleukin-2 receptor α chain regulates the size and content of the peripheral lymphoid compartment. Immunity. 1995;3:521–30.PubMedCrossRefGoogle Scholar
  12. 12.
    Malek TR, Yu A, Vincek V, Scibelli P, Kong L. CD4 regulatory T cells prevent lethal autoimmunity in IL-2Rβ-deficient mice. Implications for the nonredundant function of IL-2. Immunity. 2002;17:167–78.PubMedCrossRefGoogle Scholar
  13. 13.
    Almeida AR, Legrand N, Papiernik M, Freitas AA. Homeostasis of peripheral CD4+ T cells: IL-2R alpha and IL-2 shape a population of regulatory cells that controls CD4+ T cell numbers. J Immunol. 2002;169:4850–60.PubMedCrossRefGoogle Scholar
  14. 14.
    Furtado GC, de Lafaille MA C, Kutchukhidze N, Lafaille JJ. Interleukin 2 signaling is required for CD4+ regulatory T cell function. J Exp Med. 2002;196:851–7.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Bayer AL, Lee JY, de la Barrera A, Surh CD, Malek TR. A function for IL-7R for CD4+CD25+Foxp3+ T regulatory cells. J Immunol. 2008;181:225–34.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Burchill MA, Yang J, Vang KB, et al. Linked T cell receptor and cytokine signaling govern the development of the regulatory T cell repertoire. Immunity. 2008;28:112–21.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Burchill MA, Yang J, Vogtenhuber C, Blazar BR, Farrar MA. IL-2 receptor β-dependent STAT5 activation is required for the development of Foxp3+ regulatory T cells. J Immunol. 2007;178:280–90.PubMedCrossRefGoogle Scholar
  18. 18.
    Lio CW, Hsieh CS. A two-step process for thymic regulatory T cell development. Immunity. 2008;28:100–11.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Cheng G, Yu A, Dee MJ, Malek TR. IL-2R signaling is essential for functional maturation of regulatory T cells during thymic development. J Immunol. 2013;190:1567–75.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Chen W, Jin W, Hardegen N, et al. Conversion of peripheral CD4+CD25 naive T cells to CD4+CD25+ regulatory T cells by TGF-β induction of transcription factor Foxp3. J Exp Med. 2003;198:1875–86.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Sun CM, Hall JA, Blank RB, et al. Small intestine lamina propria dendritic cells promote de novo generation of Foxp3 T reg cells via retinoic acid. J Exp Med. 2007;204:1775–85.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Zhou L, Lopes JE, Chong MM, et al. TGF-β-induced Foxp3 inhibits Th17 cell differentiation by antagonizing RORγ function. Nature. 2008;453:236–40.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Bayer AL, Yu A, Adeegbe D, Malek TR. Essential role for interleukin-2 for CD4+CD25+ T regulatory cell development during the neonatal period. J Exp Med. 2005;201:769–77.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Cheng G, Yu A, Malek TR. T-cell tolerance and the multi-functional role of IL-2R signaling in T-regulatory cells. Immunol Rev. 2011;241:63–76.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Setoguchi R, Hori S, Takahashi T, Sakaguchi S. Homeostatic maintenance of natural Foxp3+ CD25+ CD4+ regulatory T cells by interleukin (IL)-2 and induction of autoimmune disease by IL-2 neutralization. J Exp Med. 2005;201:723–35.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Yu A, Zhu L, Altman NH, Malek TR. A low interleukin-2 receptor signaling threshold supports the development and homeostasis of T regulatory cells. Immunity. 2009;30:204–17.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Pierson W, Cauwe B, Policheni A, et al. Antiapoptotic Mcl-1 is critical for the survival and niche-filling capacity of Foxp3+ regulatory T cells. Nat Immunol. 2013;14:959–65.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.•
    Smigiel KS, Richards E, Srivastava S, et al. CCR7 provides localized access to IL-2 and defines homeostatically distinct regulatory T cell subsets. J Exp Med. 2014;211:121–36. This study demonstrates how IL-2 is differentially used by peripheral Treg subpopulations for thier homeostasis.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Levine AG, Arvey A, Jin W, Rudensky AY. Continuous requirement for the TCR in regulatory T cell function. Nat Immunol. 2014;15:1070–8.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Vahl JC, Drees C, Heger K, et al. Continuous T cell receptor signals maintain a functional regulatory T cell pool. Immunity. 2014;41:722–36.PubMedCrossRefGoogle Scholar
  31. 31.•
    Cheng G, Yuan X, Tsai MS, Podack ER, Yu A, Malek TR. IL-2 receptor signaling is essential for the development of Klrg1+ terminally differentiated T regulatory cells. J Immunol. 2012;189:1780–91. This study defines the contribution of IL-2 for peripheral Tregs and shows that IL-2 is required for the development of terminally-differentated effector Tregs.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Fontenot JD, Rasmussen JP, Gavin MA, Rudensky AY. A function for interleukin 2 in Foxp3-expressing regulatory T cells. Nat Immunol. 2005;6:1142–51.PubMedCrossRefGoogle Scholar
  33. 33.
    Feng Y, Arvey A, Chinen T, van der Veeken J, Gasteiger G, Rudensky AY. Control of the inheritance of regulatory T cell identity by a cis element in the Foxp3 locus. Cell. 2014;158:749–63.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Marson A, Kretschmer K, Frampton GM, et al. Foxp3 occupancy and regulation of key target genes during T-cell stimulation. Nature. 2007;445:931–5.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Zheng Y, Josefowicz SZ, Kas A, Chu TT, Gavin MA, Rudensky AY. Genome-wide analysis of Foxp3 target genes in developing and mature regulatory T cells. Nature. 2007;445:936–40.PubMedCrossRefGoogle Scholar
  36. 36.
    Grossman WJ, Verbsky JW, Barchet W, Colonna M, Atkinson JP, Ley TJ. Human T regulatory cells can use the perforin pathway to cause autologous target cell death. Immunity. 2004;21:589–601.PubMedCrossRefGoogle Scholar
  37. 37.
    Janas ML, Groves P, Kienzle N, Kelso A. IL-2 regulates perforin and granzyme gene expression in CD8+ T cells independently of its effects on survival and proliferation. J Immunol. 2005;175:8003–10.PubMedCrossRefGoogle Scholar
  38. 38.
    Zhang J, Scordi I, Smyth MJ, Lichtenheld MG. Interleukin 2 receptor signaling regulates the perforin gene through signal transducer and activator of transcription (Stat)5 activation of two enhancers. J Exp Med. 1999;190:1297–308.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Pandiyan P, Zheng L, Ishihara S, Reed J, Lenardo MJ. CD4+CD25+Foxp3+ regulatory T cells induce cytokine deprivation-mediated apoptosis of effector CD4+ T cells. Nat Immunol. 2007;8:1353–62.PubMedCrossRefGoogle Scholar
  40. 40.
    Sitrin J, Ring A, Garcia KC, Benoist C, Mathis D. Regulatory T cells control NK cells in an insulitic lesion by depriving them of IL-2. J Exp Med. 2013;210:1153–65.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Castro I, Yu A, Dee MJ, Malek TR. The basis of distinctive IL-2- and IL-15-dependent signaling: weak CD122-dependent signaling favors CD8+ T central-memory cell survival but not T effector-memory cell development. J Immunol. 2011;187:5170–82.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Malek TR. The biology of interleukin-2. Annu Rev Immunol. 2008;26:453–79.PubMedCrossRefGoogle Scholar
  43. 43.
    Lenardo MJ. Interleukin-2 programs mouse αβ T lymphocytes for apoptosis. Nature. 1991;353:858–61.PubMedCrossRefGoogle Scholar
  44. 44.
    Liao W, Lin JX, Wang L, Li P, Leonard WJ. Modulation of cytokine receptors by IL-2 broadly regulates differentiation into helper T cell lineages. Nat Immunol. 2011;12:551–9.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Shi M, Lin TH, Appell KC, Berg LJ. Janus-kinase-3-dependent signals induce chromatin remodeling at the Ifng locus during T helper 1 cell differentiation. Immunity. 2008;28:763–73.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Cote-Sierra J, Foucras G, Guo L, et al. Interleukin 2 plays a central role in Th2 differentiation. Proc Natl Acad Sci U S A. 2004;101:3880–5.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Liao W, Schones DE, Oh J, et al. Priming for T helper type 2 differentiation by interleukin 2-mediated induction of interleukin 4 receptor α-chain expression. Nat Immunol. 2008;9:1288–96.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Pipkin ME, Sacks JA, Cruz-Guilloty F, Lichtenheld MG, Bevan MJ, Rao A. Interleukin-2 and inflammation induce distinct transcriptional programs that promote the differentiation of effector cytolytic T cells. Immunity. 2010;32:79–90.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Kalia V, Sarkar S, Subramaniam S, Haining WN, Smith KA, Ahmed R. Prolonged interleukin-2Ralpha expression on virus-specific CD8+ T cells favors terminal-effector differentiation in vivo. Immunity. 2010;32:91–103.PubMedCrossRefGoogle Scholar
  50. 50.
    Mitchell DM, Ravkov EV, Williams MA. Distinct roles for IL-2 and IL-15 in the differentiation and survival of CD8+ effector and memory T cells. J Immunol. 2010;184:6719–30.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Johnston RJ, Choi YS, Diamond JA, Yang JA, Crotty S. STAT5 is a potent negative regulator of TFH cell differentiation. J Exp Med. 2012;209:243–50.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Laurence A, Tato CM, Davidson TS, et al. Interleukin-2 signaling via STAT5 constrains T helper 17 cell generation. Immunity. 2007;26:371–81.PubMedCrossRefGoogle Scholar
  53. 53.
    Yang XP, Ghoreschi K, Steward-Tharp SM, et al. Opposing regulation of the locus encoding IL-17 through direct, reciprocal actions of STAT3 and STAT5. Nat Immunol. 2011;12:247–54.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Williams MA, Tyznik AJ, Bevan MJ. Interleukin-2 signals during priming are required for secondary expansion of CD8+ memory T cells. Nature. 2006;441:890–3.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Dooms H, Kahn E, Knoechel B, Abbas AK. IL-2 induces a competitive survival advantage in T lymphocytes. J Immunol. 2004;172:5973–9.PubMedCrossRefGoogle Scholar
  56. 56.
    Dooms H, Wolslegel K, Lin P, Abbas AK. Interleukin-2 enhances CD4+ T cell memory by promoting the generation of IL-7R α-expressing cells. J Exp Med. 2007;204:547–57.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Denny P, Lord CJ, Hill NJ, et al. Mapping of the IDDM locus Idd3 to a 0.35-cM interval containing the interleukin-2 gene. Diabetes. 1997;46:695–700.PubMedCrossRefGoogle Scholar
  58. 58.
    King C, Ilic A, Koelsch K, Sarvetnick N. Homeostatic expansion of T cells during immune insufficiency generates autoimmunity. Cell. 2004;117:265–77.PubMedCrossRefGoogle Scholar
  59. 59.
    Lyons PA, Armitage N, Argentina F, et al. Congenic mapping of the type 1 diabetes locus, Idd3, to a 780-kb region of mouse chromosome 3: identification of a candidate segment of ancestral DNA by haplotype mapping. Genome Res. 2000;10:446–53.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Wicker LS, Todd JA, Prins JB, Podolin PL, Renjilian RJ, Peterson LB. Resistance alleles at two non-major histocompatibility complex-linked insulin-dependent diabetes loci on chromosome 3, Idd3 and Idd10, protect nonobese diabetic mice from diabetes. J Exp Med. 1994;180:1705–13.PubMedCrossRefGoogle Scholar
  61. 61.
    Yamanouchi J, Rainbow D, Serra P, et al. Interleukin-2 gene variation impairs regulatory T cell function and causes autoimmunity. Nat Genet. 2007;39:329–37.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Kornete M, Sgouroudis E, Piccirillo CA. ICOS-dependent homeostasis and function of Foxp3+ regulatory T cells in islets of nonobese diabetic mice. J Immunol. 2012;188:1064–74.PubMedCrossRefGoogle Scholar
  63. 63.
    Sgouroudis E, Albanese A, Piccirillo CA. Impact of protective IL-2 allelic variants on CD4+ Foxp3+ regulatory T cell function in situ and resistance to autoimmune diabetes in NOD mice. J Immunol. 2008;181:6283–92.PubMedCrossRefGoogle Scholar
  64. 64.
    Redondo MJ, Fain PR, Eisenbarth GS. Genetics of type 1A diabetes. Recent Prog Horm Res. 2001;56:69–89.PubMedCrossRefGoogle Scholar
  65. 65.
    Concannon P, Rich SS, Nepom GT. Genetics of type 1A diabetes. N Engl J Med. 2009;360:1646–54.PubMedCrossRefGoogle Scholar
  66. 66.
    Cooper JD, Smyth DJ, Smiles AM, et al. Meta-analysis of genome-wide association study data identifies additional type 1 diabetes risk loci. Nat Genet. 2008;40:1399–401.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Pociot F, Akolkar B, Concannon P, et al. Genetics of type 1 diabetes: what’s next? Diabetes. 2010;59:1561–71.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Nistico L, Buzzetti R, Pritchard LE, et al. The CTLA-4 gene region of chromosome 2q33 is linked to, and associated with, type 1 diabetes. Belgian Diabetes Registry Hum Mol Genet. 1996;5:1075–80.PubMedCrossRefGoogle Scholar
  69. 69.
    Bell GI, Horita S, Karam JH. A polymorphic locus near the human insulin gene is associated with insulin-dependent diabetes mellitus. Diabetes. 1984;33:176–83.PubMedCrossRefGoogle Scholar
  70. 70.
    Vella A, Cooper JD, Lowe CE, et al. Localization of a type 1 diabetes locus in the IL2RA/CD25 region by use of tag single-nucleotide polymorphisms. Am J Hum Genet. 2005;76:773–9.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Garg G, Tyler JR, Yang JH, et al. Type 1 diabetes-associated IL2RA variation lowers IL-2 signaling and contributes to diminished CD4+CD25+ regulatory T cell function. J Immunol. 2012;188:4644–53.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Long SA, Cerosaletti K, Bollyky PL, et al. Defects in IL-2R signaling contribute to diminished maintenance of FOXP3 expression in CD4+CD25+ regulatory T-cells of type 1 diabetic subjects. Diabetes. 2010;59:407–15.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Herold KC, Gitelman SE, Masharani U, et al. A single course of anti-CD3 monoclonal antibody hOKT3γ1(Ala-Ala) results in improvement in C-peptide responses and clinical parameters for at least 2 years after onset of type 1 diabetes. Diabetes. 2005;54:1763–9.PubMedCrossRefGoogle Scholar
  74. 74.
    Herold KC, Hagopian W, Auger JA, et al. Anti-CD3 monoclonal antibody in new-onset type 1 diabetes mellitus. N Engl J Med. 2002;346:1692–8.PubMedCrossRefGoogle Scholar
  75. 75.
    Keymeulen B, Vandemeulebroucke E, Ziegler AG, et al. Insulin needs after CD3-antibody therapy in new-onset type 1 diabetes. N Engl J Med. 2005;352:2598–608.PubMedCrossRefGoogle Scholar
  76. 76.
    Keymeulen B, Walter M, Mathieu C, et al. Four-year metabolic outcome of a randomised controlled CD3-antibody trial in recent-onset type 1 diabetic patients depends on their age and baseline residual β cell mass. Diabetologia. 2010;53:614–23.PubMedCrossRefGoogle Scholar
  77. 77.
    Harlan DM, Kenyon NS, Korsgren O, Roep BO. Current advances and travails in islet transplantation. Diabetes. 2009;58:2175–84.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Ryan EA, Paty BW, Senior PA, et al. Five-year follow-up after clinical islet transplantation. Diabetes. 2005;54:2060–9.PubMedCrossRefGoogle Scholar
  79. 79.
    Pescovitz MD, Greenbaum CJ, Krause-Steinrauf H, et al. Rituximab, B-lymphocyte depletion, and preservation of β-cell function. N Engl J Med. 2009;361:2143–52.PubMedCrossRefGoogle Scholar
  80. 80.
    Mastrandrea L, Yu J, Behrens T, et al. Etanercept treatment in children with new-onset type 1 diabetes: pilot randomized, placebo-controlled, double-blind study. Diabetes Care. 2009;32:1244–9.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Orban T, Bundy B, Becker DJ, et al. Co-stimulation modulation with abatacept in patients with recent-onset type 1 diabetes: a randomised, double-blind, placebo-controlled trial. Lancet. 2011;378:412–9.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Bluestone JA, Buckner JH, Fitch M, et al. Type 1 diabetes immunotherapy using polyclonal regulatory T cells. Sci Transl Med. 2015;7:315ra189.PubMedCrossRefGoogle Scholar
  83. 83.
    Marek-Trzonkowska N, Mysliwiec M, Dobyszuk A, et al. Administration of CD4+CD25highCD127 regulatory T cells preserves β-cell function in type 1 diabetes in children. Diabetes Care. 2012;35:1817–20.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Wicker LS, Clark J, Fraser HI, et al. Type 1 diabetes genes and pathways shared by humans and NOD mice. J Autoimmun. 2005;25(Suppl):29–33.PubMedCrossRefGoogle Scholar
  85. 85.
    Atkins MB, Lotze MT, Dutcher JP, et al. High-dose recombinant interleukin 2 therapy for patients with metastatic melanoma: analysis of 270 patients treated between 1985 and 1993. J Clin Oncol. 1999;17:2105–16.PubMedGoogle Scholar
  86. 86.
    Rosenberg SA, Lotze MT, Muul LM, et al. Observations on the systemic administration of autologous lymphokine-activated killer cells and recombinant interleukin-2 to patients with metastatic cancer. N Engl J Med. 1985;313:1485–92.PubMedCrossRefGoogle Scholar
  87. 87.
    Rosenberg SA, Yang JC, Topalian SL, et al. Treatment of 283 consecutive patients with metastatic melanoma or renal cell cancer using high-dose bolus interleukin 2. JAMA. 1994;271:907–13.PubMedCrossRefGoogle Scholar
  88. 88.
    Group I-ES, Committee SS, Abrams D, et al. Interleukin-2 therapy in patients with HIV infection. N Engl J Med. 2009;361:1548–59.CrossRefGoogle Scholar
  89. 89.
    Ahmadzadeh M, Rosenberg SA. IL-2 administration increases CD4+ CD25hi Foxp3+ regulatory T cells in cancer patients. Blood. 2006;107:2409–14.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Boyman O, Kovar M, Rubinstein MP, Surh CD, Sprent J. Selective stimulation of T cell subsets with antibody-cytokine immune complexes. Science. 2006;311:1924–7.PubMedCrossRefGoogle Scholar
  91. 91.
    Tang Q, Adams JY, Penaranda C, et al. Central role of defective interleukin-2 production in the triggering of islet autoimmune destruction. Immunity. 2008;28:687–97.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Grinberg-Bleyer Y, Baeyens A, You S, et al. IL-2 reverses established type 1 diabetes in NOD mice by a local effect on pancreatic regulatory T cells. J Exp Med. 2010;207:1871–8.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Goudy KS, Johnson MC, Garland A, et al. Inducible adeno-associated virus-mediated IL-2 gene therapy prevents autoimmune diabetes. J Immunol. 2011;186:3779–86.PubMedCrossRefGoogle Scholar
  94. 94.
    Rouse M, Nagarkatti M, Nagarkatti PS. The role of IL-2 in the activation and expansion of regulatory T-cells and the development of experimental autoimmune encephalomyelitis. Immunobiology. 2013;218:674–82.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Webster KE, Walters S, Kohler RE, et al. In vivo expansion of T reg cells with IL-2-mAb complexes: induction of resistance to EAE and long-term acceptance of islet allografts without immunosuppression. J Exp Med. 2009;206:751–60.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Mizui M, Koga T, Lieberman LA, et al. IL-2 protects lupus-prone mice from multiple end-organ damage by limiting CD4-CD8- IL-17-producing T cells. J Immunol. 2014;193:2168–77.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Villalta SA, Rosenthal W, Martinez L, et al. Regulatory T cells suppress muscle inflammation and injury in muscular dystrophy. Sci Transl Med. 2014;6:258ra142.PubMedCrossRefGoogle Scholar
  98. 98.••
    Koreth J, Matsuoka K, Kim HT, et al. Interleukin-2 and regulatory T cells in graft-versus-host disease. N Engl J Med. 2011;365:2055–66. This study shows the efficacy of using low-dose IL-2 therapy to selectively boost Tregs in an setting were there are many allo-antigen self-reactive T cells.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.•
    Saadoun D, Rosenzwajg M, Joly F, et al. Regulatory T-cell responses to low-dose interleukin-2 in HCV-induced vasculitis. N Engl J Med. 2011;365:2067–77. This study and reference 98 were the first clincial trials showing that low-dose IL-2 increases Tregs and benefits patients undergoing a pathological self-reactive T cell response.PubMedCrossRefGoogle Scholar
  100. 100.
    Castela E, Le Duff F, Butori C, et al. Effects of low-dose recombinant interleukin 2 to promote T-regulatory cells in alopecia areata. JAMA Dermatol. 2014;150:748–51.PubMedCrossRefGoogle Scholar
  101. 101.
    von Spee-Mayer C, Siegert E, Abdirama D, et al. Low-dose interleukin-2 selectively corrects regulatory T cell defects in patients with systemic lupus erythematosus. Ann Rheum Dis. 2015. doi: 10.1136/annrheumdis-2015-207776.Google Scholar
  102. 102.
    Rosenzwajg M, Churlaud G, Mallone R, et al. Low-dose interleukin-2 fosters a dose-dependent regulatory T cell tuned milieu in T1D patients. J Autoimmun. 2015;58:48–58.PubMedCrossRefGoogle Scholar
  103. 103.
    Sherry NA, Tsai EB, Herold KC. Natural history of β-cell function in type 1 diabetes. Diabetes. 2005;54 Suppl 2:S32–9.PubMedCrossRefGoogle Scholar
  104. 104.
    Greenbaum CJ, Beam CA, Boulware D, et al. Fall in C-peptide during first 2 years from diagnosis: evidence of at least two distinct phases from composite Type 1 Diabetes TrialNet data. Diabetes. 2012;61:2066–73.PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Sherr JL, Ghazi T, Wurtz A, Rink L, Herold KC. Characterization of residual β cell function in long-standing type 1 diabetes. Diabetes Metab Res Rev. 2014;30:154–62.PubMedCrossRefGoogle Scholar
  106. 106.
    Klinke 2nd DJ. Extent of β cell destruction is important but insufficient to predict the onset of type 1 diabetes mellitus. PLoS One. 2008;3:e1374.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Krogvold L, Edwin B, Buanes T, et al. Pancreatic biopsy by minimal tail resection in live adult patients at the onset of type 1 diabetes: experiences from the DiViD study. Diabetologia. 2014;57:841–3.PubMedCrossRefGoogle Scholar
  108. 108.
    Campbell-Thompson M, Fu A, Kaddis JS, et al. Insulitis and β-cell mass in the natural history of type 1 diabetes. Diabetes. 2015. doi: 10.2337/db15-0779.Google Scholar
  109. 109.
    Coppieters KT, Dotta F, Amirian N, et al. Demonstration of islet-autoreactive CD8 T cells in insulitic lesions from recent onset and long-term type 1 diabetes patients. J Exp Med. 2012;209:51–60.PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Sorensen JS, Vaziri-Sani F, Maziarz M, et al. Islet autoantibodies and residual β cell function in type 1 diabetes children followed for 3–6 years. Diabetes Res Clin Pract. 2012;96:204–10.PubMedCrossRefGoogle Scholar
  111. 111.
    Hilbrands R, Huurman VA, Gillard P, et al. Differences in baseline lymphocyte counts and autoreactivity are associated with differences in outcome of islet cell transplantation in type 1 diabetic patients. Diabetes. 2009;58:2267–76.PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Jaeger C, Brendel MD, Eckhard M, Bretzel RG. Islet autoantibodies as potential markers for disease recurrence in clinical islet transplantation. Exp Clin Endocrinol Diabetes. 2000;108:328–33.PubMedCrossRefGoogle Scholar
  113. 113.
    Steffes MW, Sibley S, Jackson M. Thomas W β-cell function and the development of diabetes-related complications in the diabetes control and complications trial. Diabetes Care. 2003;26:832–6.PubMedCrossRefGoogle Scholar
  114. 114.
    Long SA, Rieck M, Sanda S, et al. Rapamycin/IL-2 combination therapy in patients with type 1 diabetes augments Tregs yet transiently impairs β-cell function. Diabetes. 2012;61:2340–8.PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Thomson AW, Turnquist HR, Raimondi G. Immunoregulatory functions of mTOR inhibition. Nat Rev Immunol. 2009;9:324–37.PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Rabinovitch A, Suarez-Pinzon WL, Shapiro AM, Rajotte RV, Power R. Combination therapy with sirolimus and interleukin-2 prevents spontaneous and recurrent autoimmune diabetes in NOD mice. Diabetes. 2002;51:638–45.PubMedCrossRefGoogle Scholar
  117. 117.
    Tanemura M, Saga A, Kawamoto K, et al. Rapamycin induces autophagy in islets: relevance in islet transplantation. Transplant Proc. 2009;41:334–8.PubMedCrossRefGoogle Scholar
  118. 118.
    Barlow AD, Nicholson ML, Herbert TP. Evidence for rapamycin toxicity in pancreatic β-cells and a review of the underlying molecular mechanisms. Diabetes. 2013;62:2674–82.PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Baeyens A, Perol L, Fourcade G, et al. Limitations of IL-2 and rapamycin in immunotherapy of type 1 diabetes. Diabetes. 2013;62:3120–31.PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.••
    Yu A, Snowhite I, Vendrame F, et al. Selective IL-2 responsiveness of regulatory T cells through multiple intrinsic mechanisms supports the use of low-dose IL-2 therapy in type 1 diabetes. Diabetes. 2015;64:2172–83. This study quantifies a therapeutic window in which Tregs selectively respond to IL2 and provides a mechanistic basis for this selective response.PubMedCrossRefGoogle Scholar
  121. 121.
    Ross JA, Cheng H, Nagy ZS, Frost JA, Kirken RA. Protein phosphatase 2A regulates interleukin-2 receptor complex formation and JAK3/STAT5 activation. J Biol Chem. 2010;285:3582–91.PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Kennedy-Nasser AA, Ku S, Castillo-Caro P, et al. Ultra low-dose IL-2 for GVHD prophylaxis after allogeneic hematopoietic stem cell transplantation mediates expansion of regulatory T cells without diminishing antiviral and antileukemic activity. Clin Cancer Res. 2014;20:2215–25.PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Churlaud G, Jimenez V, Ruberte J, et al. Sustained stimulation and expansion of Tregs by IL-2 control autoimmunity without impairing immune responses to infection, vaccination and cancer. Clin Immunol. 2014;151:114–26.PubMedCrossRefGoogle Scholar
  124. 124.
    Skyler JS. Prevention and reversal of type 1 diabetes—past challenges and future opportunities. Diabetes Care. 2015;38:997–1007.PubMedCrossRefGoogle Scholar
  125. 125.
    Tang Q, Henriksen KJ, Bi M, et al. In vitro-expanded antigen-specific regulatory T cells suppress autoimmune diabetes. J Exp Med. 2004;199:1455–65.PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Pugliese A. Insulin: a critical autoantigen and potential therapeutic agent in Type 1 diabetes. Expert Rev Clin Immunol. 2006;2:419–31.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Connor J. Dwyer
    • 1
  • Natasha C. Ward
    • 1
  • Alberto Pugliese
    • 1
    • 2
    • 3
  • Thomas R. Malek
    • 1
    • 2
    Email author
  1. 1.Department of Microbiology and Immunology, Miller School of MedicineUniversity of MiamiMiamiUSA
  2. 2.Diabetes Research Institute, Miller School of MedicineUniversity of MiamiMiamiUSA
  3. 3.Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, Miller School of MedicineUniversity of MiamiMiamiUSA

Personalised recommendations