New Insights into Diabetes Cell Therapy

  • Philippe A. LysyEmail author
  • Elisa Corritore
  • Etienne M. Sokal
Immunology and Transplantation (L Piemonti and V Sordi, Section Editors)
Part of the following topical collections:
  1. Topical Collection on Immunology and Transplantation


Since insulin discovery, islet transplantation was the first protocol to show the possibility to cure patients with type 1 diabetes using low-risk procedures. The scarcity of pancreas donors triggered a burst of studies focused on the production of new β cells in vitro. These were rapidly dominated by pluripotent stem cells (PSCs) demonstrating diabetes-reversal potential in diabetic mice. Subsequent enthusiasm fostered a clinical trial with immunoisolated embryonic-derived pancreatic progenitors. Yet safety is the Achilles’ heel of PSCs, and a whole branch of β cell engineering medicine focuses on transdifferentiation of adult pancreatic cells. New data showed the possibility to chemically stimulate acinar or α cells to undergo β cell neogenesis and provide opportunities to intervene in situ without the need for a transplant, at least after weighing benefits against systemic adverse effects. The current studies suggested the pancreas as a reservoir of facultative progenitors (e.g., in the duct lining) could be exploited ex vivo for expansion and β cell differentiation in timely fashion and without the hurdles of PSC use. Diabetes cell therapy is thus a growing field not only with great potential but also with many pitfalls to overcome for becoming fully envisioned as a competitor to the current treatment standards.


Diabetes Pancreas Progenitors Islets of Langerhans Transdifferentiation 



This study was supported by grants from Belgian Society for Pediatric Endocrinology and Diabetology (BESPEED), Institut de Recherche Clinique et Expérimentale (IREC), and Fonds National de la Recherche Scientifique (FNRS).

Compliance with Ethics Standards

Conflict of Interest

Philippe A. Lysy, Elisa Corritore, and Etienne M. Sokal declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.


Papers of particular interest, published recently, have been highlighted as: • Of importance. •• Of major importance

  1. 1.
    van Belle TL, Coppieters KT, von Herrath MG. Type 1 diabetes: etiology, immunology, and therapeutic strategies. Physiol Rev. 2011;91(1):79–118.CrossRefPubMedGoogle Scholar
  2. 2.
    Michels A et al. Prediction and prevention of type 1 diabetes: update on success of prediction and struggles at prevention. Pediatr Diabetes. 2015;16(7):465–84.CrossRefPubMedGoogle Scholar
  3. 3.
    Cameron FJ, Wherrett DK. Care of diabetes in children and adolescents: controversies, changes, and consensus. Lancet. 2015;385(9982):2096–106.CrossRefPubMedGoogle Scholar
  4. 4.
    Lind M et al. Glycemic control and excess mortality in type 1 diabetes. N Engl J Med. 2014;371(21):1972–82.CrossRefPubMedGoogle Scholar
  5. 5.
    Hampp C et al. Use of antidiabetic drugs in the U.S., 2003–2012. Diabetes Care. 2014;37(5):1367–74.CrossRefPubMedGoogle Scholar
  6. 6.
    Kelly WD et al. Allotransplantation of the pancreas and duodenum along with the kidney in diabetic nephropathy. Surgery. 1967;61(6):827–37.PubMedGoogle Scholar
  7. 7.
    Kaufman, D. State of the art of solid organ pancreas transplantation. in 75th Scientific Sessions of the American Diabetes Association. 2015. Boston, USA.Google Scholar
  8. 8.
    Boggi U et al. Transplantation of the pancreas. Curr Diab Rep. 2012;12(5):568–79.CrossRefPubMedGoogle Scholar
  9. 9.
    Niederhaus SV. Pancreas transplant alone. Curr Opin Organ Transplant. 2015;20(1):115–20.CrossRefPubMedGoogle Scholar
  10. 10.
    Redfield RR, Scalea JR, Odorico JS. Simultaneous pancreas and kidney transplantation: current trends and future directions. Curr Opin Organ Transplant. 2015;20(1):94–102.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Ricordi C et al. Automated method for isolation of human pancreatic islets. Diabetes. 1988;37(4):413–20.CrossRefPubMedGoogle Scholar
  12. 12.
    Shapiro AM et al. Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regimen. N Engl J Med. 2000;343(4):230–8.CrossRefPubMedGoogle Scholar
  13. 13.
    Barton FB et al. Improvement in outcomes of clinical islet transplantation: 1999–2010. Diabetes Care. 2012;35(7):1436–45.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.••
    Balamurugan AN et al. Islet product characteristics and factors related to successful human islet transplantation from the Collaborative Islet Transplant Registry (CITR) 1999–2010. Am J Transplant. 2014;14(11):2595–606. This work highlights the efforts of the CITR to develop successful state-of-the-art human islet transplantation protocols.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Brennan, D.C., et al., Long-term follow-up of the Edmonton Protocol of islet transplantation in the United States. Am J Transplant, 2015.Google Scholar
  16. 16.
    Ricordi, C. Clinical islet transplantation update. in 75th Scientific Sessions of the American Diabetes Association. 2015. Boston, USA.Google Scholar
  17. 17.
    Inverardi, L. Improved graft survival in islet transplant recipients treated with G-CSF (filgrastim) and exenatide. in 75th Scientific Sessions of the American Diabetes Association. 2015. Boston, USA.Google Scholar
  18. 18.
    Zoso A et al. Human fibrocytic myeloid-derived suppressor cells express IDO and promote tolerance via Treg-cell expansion. Eur J Immunol. 2014;44(11):3307–19.CrossRefPubMedGoogle Scholar
  19. 19.
    Haller MJ et al. Anti-thymocyte globulin/G-CSF treatment preserves beta cell function in patients with established type 1 diabetes. J Clin Invest. 2015;125(1):448–55.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Keymeulen B et al. Correlation between beta cell mass and glycemic control in type 1 diabetic recipients of islet cell graft. Proc Natl Acad Sci U S A. 2006;103(46):17444–9.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Piemonti L et al. Effects of cryopreservation on in vitro and in vivo long-term function of human islets. Transplantation. 1999;68(5):655–62.CrossRefPubMedGoogle Scholar
  22. 22.
    Lakey JR, Anderson TJ, Rajotte RV. Novel approaches to cryopreservation of human pancreatic islets. Transplantation. 2001;72(6):1005–11.CrossRefPubMedGoogle Scholar
  23. 23.
    Manning Fox JE et al. Human islet function following 20 years of cryogenic biobanking. Diabetologia. 2015;58(7):1503–12.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Pepper AR et al. A prevascularized subcutaneous device-less site for islet and cellular transplantation. Nat Biotechnol. 2015;33(5):518–23.CrossRefPubMedGoogle Scholar
  25. 25.
    Phelps EA et al. Vasculogenic bio-synthetic hydrogel for enhancement of pancreatic islet engraftment and function in type 1 diabetes. Biomaterials. 2013;34(19):4602–11.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Samikannu B et al. Dipeptidyl peptidase IV inhibition activates CREB and improves islet vascularization through VEGF-A/VEGFR-2 signaling pathway. PLoS One. 2013;8(12):e82639.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Hajizadeh-Saffar E et al. Inducible VEGF expression by human embryonic stem cell-derived mesenchymal stromal cells reduces the minimal islet mass required to reverse diabetes. Sci Rep. 2015;5:9322.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Calafiore R, Basta G. Clinical application of microencapsulated islets: actual prospectives on progress and challenges. Adv Drug Deliv Rev. 2014;67–68:84–92.CrossRefPubMedGoogle Scholar
  29. 29.
    Boettler, T., et al., Pancreatic tissue transplanted in TheraCyte encapsulation devices are protected and prevent hyperglycemia in a mouse model of immune-mediated diabetes. Cell Transplant, 2015.Google Scholar
  30. 30.
    Marigliano M et al. Pig-to-nonhuman primates pancreatic islet xenotransplantation: an overview. Curr Diab Rep. 2011;11(5):402–12.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Hering BJ et al. Prolonged diabetes reversal after intraportal xenotransplantation of wild-type porcine islets in immunosuppressed nonhuman primates. Nat Med. 2006;12(3):301–3.CrossRefPubMedGoogle Scholar
  32. 32.
    Dufrane D, Goebbels RM, Gianello P. Alginate macroencapsulation of pig islets allows correction of streptozotocin-induced diabetes in primates up to 6 months without immunosuppression. Transplantation. 2010;90(10):1054–62.CrossRefPubMedGoogle Scholar
  33. 33.
    Elliott RB et al. Live encapsulated porcine islets from a type 1 diabetic patient 9.5 yr after xenotransplantation. Xenotransplantation. 2007;14(2):157–61.CrossRefPubMedGoogle Scholar
  34. 34.
    Klymiuk N et al. Genetic modification of pigs as organ donors for xenotransplantation. Mol Reprod Dev. 2010;77(3):209–21.PubMedGoogle Scholar
  35. 35.•
    Shin JS et al. Long-term control of diabetes in immunosuppressed nonhuman primates (NHP) by the transplantation of adult porcine islets. Am J Transplant. 2015;15(11):2837–50. This study shows the efficacy of combination immunotherapy in achieving diabetes reversal in primates after pig islet transplantation.CrossRefPubMedGoogle Scholar
  36. 36.
    Soria B et al. Insulin-secreting cells derived from embryonic stem cells normalize glycemia in streptozotocin-induced diabetic mice. Diabetes. 2000;49(2):157–62.CrossRefPubMedGoogle Scholar
  37. 37.
    Lumelsky N et al. Differentiation of embryonic stem cells to insulin-secreting structures similar to pancreatic islets. Science. 2001;292(5520):1389–94.CrossRefPubMedGoogle Scholar
  38. 38.
    Hori Y et al. Growth inhibitors promote differentiation of insulin-producing tissue from embryonic stem cells. Proc Natl Acad Sci U S A. 2002;99(25):16105–10.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Kroon E et al. Pancreatic endoderm derived from human embryonic stem cells generates glucose-responsive insulin-secreting cells in vivo. Nat Biotechnol. 2008;26(4):443–52.CrossRefPubMedGoogle Scholar
  40. 40.
    D’Amour KA et al. Production of pancreatic hormone-expressing endocrine cells from human embryonic stem cells. Nat Biotechnol. 2006;24(11):1392–401.CrossRefPubMedGoogle Scholar
  41. 41.
    Fujikawa T et al. Teratoma formation leads to failure of treatment for type I diabetes using embryonic stem cell-derived insulin-producing cells. Am J Pathol. 2005;166(6):1781–91.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Blum B, Benvenisty N. The tumorigenicity of diploid and aneuploid human pluripotent stem cells. Cell Cycle. 2009;8(23):3822–30.CrossRefPubMedGoogle Scholar
  43. 43.
    Kahan B et al. Elimination of tumorigenic stem cells from differentiated progeny and selection of definitive endoderm reveals a Pdx1+ foregut endoderm stem cell lineage. Stem Cell Res. 2011;6(2):143–57.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Jiang W et al. CD24: a novel surface marker for PDX1-positive pancreatic progenitors derived from human embryonic stem cells. Stem Cells. 2011;29(4):609–17.CrossRefPubMedGoogle Scholar
  45. 45.
    Kelly OG et al. Cell-surface markers for the isolation of pancreatic cell types derived from human embryonic stem cells. Nat Biotechnol. 2011;29(8):750–6.CrossRefPubMedGoogle Scholar
  46. 46.
    Rezania A et al. Maturation of human embryonic stem cell-derived pancreatic progenitors into functional islets capable of treating pre-existing diabetes in mice. Diabetes. 2012;61(8):2016–29.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Bruin JE et al. Maturation and function of human embryonic stem cell-derived pancreatic progenitors in macroencapsulation devices following transplant into mice. Diabetologia. 2013;56(9):1987–98.CrossRefPubMedGoogle Scholar
  48. 48.••
    Rezania A et al. Reversal of diabetes with insulin-producing cells derived in vitro from human pluripotent stem cells. Nat Biotechnol. 2014;32(11):1121–33. This study demonstrate the potential of hESCs to acquire functional β cell-like functionality both in vitro and in vivo.CrossRefPubMedGoogle Scholar
  49. 49.••
    Pagliuca FW et al. Generation of functional human pancreatic beta cells in vitro. Cell. 2014;159(2):428–39. This team reported near-to-normal β-cell features of human pluripotent stem cells (ESCs and iPSCs) after cocktail-induced reprogramming.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Nostro MC et al. Stage-specific signaling through TGFbeta family members and WNT regulates patterning and pancreatic specification of human pluripotent stem cells. Development. 2011;138(5):861–71.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Osafune K et al. Marked differences in differentiation propensity among human embryonic stem cell lines. Nat Biotechnol. 2008;26(3):313–5.CrossRefPubMedGoogle Scholar
  52. 52.
    Mfopou JK et al. Noggin, retinoids, and fibroblast growth factor regulate hepatic or pancreatic fate of human embryonic stem cells. Gastroenterology. 2010;138(7):2233–45. 2245 e1-14.CrossRefPubMedGoogle Scholar
  53. 53.
    Hrvatin S et al. Differentiated human stem cells resemble fetal, not adult, beta cells. Proc Natl Acad Sci U S A. 2014;111(8):3038–43.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Matveyenko AV et al. Inconsistent formation and nonfunction of insulin-positive cells from pancreatic endoderm derived from human embryonic stem cells in athymic nude rats. Am J Physiol Endocrinol Metab. 2010;299(5):E713–20.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Agulnick AD et al. Insulin-producing endocrine cells differentiated in vitro from human embryonic stem cells function in macroencapsulation devices in vivo. Stem Cells Transl Med. 2015;4(10):1214–22.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Laurent LC et al. Dynamic changes in the copy number of pluripotency and cell proliferation genes in human ESCs and iPSCs during reprogramming and time in culture. Cell Stem Cell. 2011;8(1):106–18.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Gore A et al. Somatic coding mutations in human induced pluripotent stem cells. Nature. 2011;471(7336):63–7.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Jiang FX, Morahan G. Pancreatic stem cells remain unresolved. Stem Cells Dev. 2014;23(23):2803–12.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Lysy PA, Weir GC, Bonner-Weir S. Making beta cells from adult cells within the pancreas. Curr Diab Rep. 2013;13(5):695–703.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Shen W et al. Inhibition of DYRK1A and GSK3B induces human beta-cell proliferation. Nat Commun. 2015;6:8372.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Gershengorn MC et al. Epithelial-to-mesenchymal transition generates proliferative human islet precursor cells. Science. 2004;306(5705):2261–4.CrossRefPubMedGoogle Scholar
  62. 62.
    Russ HA et al. In vitro proliferation of cells derived from adult human beta-cells revealed by cell-lineage tracing. Diabetes. 2008;57(6):1575–83.CrossRefPubMedGoogle Scholar
  63. 63.
    Russ HA et al. Insulin-producing cells generated from dedifferentiated human pancreatic beta cells expanded in vitro. PLoS One. 2011;6(9):e25566.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Toren-Haritan G, Efrat S. TGFbeta pathway inhibition redifferentiates human pancreatic islet beta cells expanded in vitro. PLoS One. 2015;10(9):e0139168.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Lenz A, Toren-Haritan G, Efrat S. Redifferentiation of adult human beta cells expanded in vitro by inhibition of the WNT pathway. PLoS One. 2014;9(11):e112914.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Bar Y et al. Redifferentiation of expanded human pancreatic beta-cell-derived cells by inhibition of the NOTCH pathway. J Biol Chem. 2012;287(21):17269–80.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Seaberg RM et al. Clonal identification of multipotent precursors from adult mouse pancreas that generate neural and pancreatic lineages. Nat Biotechnol. 2004;22(9):1115–24.CrossRefPubMedGoogle Scholar
  68. 68.
    Smukler SR et al. The adult mouse and human pancreas contain rare multipotent stem cells that express insulin. Cell Stem Cell. 2011;8(3):281–93.CrossRefPubMedGoogle Scholar
  69. 69.
    Razavi R et al. Diabetes enhances the proliferation of adult pancreatic multipotent progenitor cells and biases their differentiation to more beta-cell production. Diabetes. 2015;64(4):1311–23.CrossRefPubMedGoogle Scholar
  70. 70.
    Habener JF, Stanojevic V. Alpha cells come of age. Trends Endocrinol Metab. 2013;24(3):153–63.CrossRefPubMedGoogle Scholar
  71. 71.
    Collombat P et al. The ectopic expression of Pax4 in the mouse pancreas converts progenitor cells into alpha and subsequently beta cells. Cell. 2009;138(3):449–62.CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Thorel F et al. Conversion of adult pancreatic alpha-cells to beta-cells after extreme beta-cell loss. Nature. 2010;464(7292):1149–54.CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Cavelti-Weder C et al. Pancreatic duct ligation after almost complete beta-cell loss: exocrine regeneration but no evidence of beta-cell regeneration. Endocrinology. 2013;154(12):4493–502.CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Chera S et al. Diabetes recovery by age-dependent conversion of pancreatic delta-cells into insulin producers. Nature. 2014;514(7523):503–7.CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.••
    Courtney M et al. The inactivation of Arx in pancreatic alpha-cells triggers their neogenesis and conversion into functional beta-like cells. PLoS Genet. 2013;9(10):e1003934. By showing the possibility to drive α-to-β reprogramming through inhibitory signals, this team confirmed the opportunity for pharmacological induction of β-cell replenishment.CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Fomina-Yadlin D et al. Small-molecule inducers of insulin expression in pancreatic alpha-cells. Proc Natl Acad Sci U S A. 2010;107(34):15099–104.CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Fomina-Yadlin D et al. GW8510 increases insulin expression in pancreatic alpha cells through activation of p53 transcriptional activity. PLoS One. 2012;7(1):e28808.CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Zhang, Y., et al., PAX4 Gene transfer induces alpha-to-beta cell phenotypic conversion and confers therapeutic benefits for diabetes treatment. Mol Ther, 2015.Google Scholar
  79. 79.
    Sangan CB et al. In vitro reprogramming of pancreatic alpha cells towards a beta cell phenotype following ectopic HNF4alpha expression. Mol Cell Endocrinol. 2015;399:50–9.CrossRefPubMedGoogle Scholar
  80. 80.
    Zhou Q et al. In vivo reprogramming of adult pancreatic exocrine cells to beta-cells. Nature. 2008;455(7213):627–32.CrossRefPubMedGoogle Scholar
  81. 81.••
    Li W et al. Long-term persistence and development of induced pancreatic beta cells generated by lineage conversion of acinar cells. Nat Biotechnol. 2014;32(12):1223–30. This group confirmed its own data about acinar-to-β reprogramming and obtained functional β cells after extended follow-up periods.CrossRefPubMedGoogle Scholar
  82. 82.
    Akinci E et al. Reprogramming of pancreatic exocrine cells towards a beta (beta) cell character using Pdx1, Ngn3 and MafA. Biochem J. 2012;442(3):539–50.CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Yamada T et al. Reprogramming mouse cells with a pancreatic duct phenotype to insulin-producing beta-like cells. Endocrinology. 2015;156(6):2029–38.CrossRefPubMedGoogle Scholar
  84. 84.••
    Baeyens L et al. Transient cytokine treatment induces acinar cell reprogramming and regenerates functional beta cell mass in diabetic mice. Nat Biotechnol. 2014;32(1):76–83. A groundbreaking work showing the possibility for pharmacological induction of acinar-to-β differentiation.CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Blaine SA et al. Epidermal growth factor receptor regulates pancreatic fibrosis. Am J Physiol Gastrointest Liver Physiol. 2009;297(3):G434–41.CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Hurtado M et al. Activation of the epidermal growth factor signalling pathway by tissue plasminogen activator in pancreas cancer cells. Gut. 2007;56(9):1266–74.CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Ray KC et al. Heparin-binding epidermal growth factor-like growth factor eliminates constraints on activated Kras to promote rapid onset of pancreatic neoplasia. Oncogene. 2014;33(7):823–31.CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Voudouri K et al. Insulin-like growth factor and epidermal growth factor signaling in breast cancer cell growth: focus on endocrine resistant disease. Anal Cell Pathol (Amst). 2015;2015:975495.Google Scholar
  89. 89.
    Sasaki S et al. Activation of GLP-1 and gastrin signalling induces in vivo reprogramming of pancreatic exocrine cells into beta cells in mice. Diabetologia. 2015;58(11):2582–91.CrossRefPubMedGoogle Scholar
  90. 90.
    Houbracken I et al. Lineage tracing evidence for transdifferentiation of acinar to duct cells and plasticity of human pancreas. Gastroenterology. 2011;141(2):731–41. 741 e1-4.CrossRefPubMedGoogle Scholar
  91. 91.
    Pan FC, Wright C. Pancreas organogenesis: from bud to plexus to gland. Dev Dyn. 2011;240(3):530–65.CrossRefPubMedGoogle Scholar
  92. 92.
    Bonner-Weir S et al. Islet neogenesis: a possible pathway for beta-cell replenishment. Rev Diabet Stud. 2012;9(4):407–16.CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    Kopp JL et al. Sox9+ ductal cells are multipotent progenitors throughout development but do not produce new endocrine cells in the normal or injured adult pancreas. Development. 2011;138(4):653–65.CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Furuyama K et al. Continuous cell supply from a Sox9-expressing progenitor zone in adult liver, exocrine pancreas and intestine. Nat Genet. 2011;43(1):34–41.CrossRefPubMedGoogle Scholar
  95. 95.
    Solar M et al. Pancreatic exocrine duct cells give rise to insulin-producing beta cells during embryogenesis but not after birth. Dev Cell. 2009;17(6):849–60.CrossRefPubMedGoogle Scholar
  96. 96.
    Al-Hasani K et al. Adult duct-lining cells can reprogram into beta-like cells able to counter repeated cycles of toxin-induced diabetes. Dev Cell. 2013;26(1):86–100.CrossRefPubMedGoogle Scholar
  97. 97.
    Yatoh S et al. Differentiation of affinity-purified human pancreatic duct cells to beta-cells. Diabetes. 2007;56(7):1802–9.CrossRefPubMedGoogle Scholar
  98. 98.
    Lee J et al. Expansion and conversion of human pancreatic ductal cells into insulin-secreting endocrine cells. Elife. 2013;2:e00940.PubMedPubMedCentralGoogle Scholar
  99. 99.
    Baertschiger RM et al. Mesenchymal stem cells derived from human exocrine pancreas express transcription factors implicated in beta-cell development. Pancreas. 2008;37(1):75–84.CrossRefPubMedGoogle Scholar
  100. 100.
    Seeberger KL et al. Expansion of mesenchymal stem cells from human pancreatic ductal epithelium. Laboratory investigation; a journal of technical methods and pathology. 2006;86(2):141–53.CrossRefPubMedGoogle Scholar
  101. 101.
    Corritore E et al. beta-Cell differentiation of human pancreatic duct-derived cells after in vitro expansion. Cell Reprogram. 2014;16(6):456–66.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Philippe A. Lysy
    • 1
    • 2
    Email author
  • Elisa Corritore
    • 1
  • Etienne M. Sokal
    • 1
  1. 1.Institut de Recherche Expérimentale et Clinique, Pediatric Research LaboratoryUniversité Catholique de LouvainBrusselsBelgium
  2. 2.Pediatric Endocrinology Unit, Cliniques Universitaires Saint LucUniversité Catholique de LouvainBrusselsBelgium

Personalised recommendations