Advertisement

Impact of Systemic Inflammation on the Progression of Gestational Diabetes Mellitus

  • Tove LekvaEmail author
  • Errol R. Norwitz
  • Pål Aukrust
  • Thor Ueland
Diabetes and Pregnancy (CJ Homko, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Diabetes and Pregnancy

Abstract

With increasing rates of obesity and new diagnostic criteria for gestational diabetes mellitus (GDM), the overall prevalence of GDM is increasing worldwide. Women with GDM have an increased risk of maternal and fetal complications during pregnancy as well as long-term risks including higher prevalence of type 2 diabetes mellitus and cardiovascular disease. In recent years, the role of immune activation and inflammation in the pathogenesis of GDM has gained increasing attention. This monograph explores the current state of the literature as regards the expression of markers of inflammation in the maternal circulation, placenta, and adipose tissue of women with GDM.

Keywords

GDM Systemic inflammation Adipose tissue Placenta 

Notes

Acknowledgments

The authors wish to acknowledge SERVIER Medical Art (www.servier.fr) for use of their medical art kits when making the illustration in the article.

Compliance with Ethical Standards

Conflict of Interest

Tove Lekva, Errol R. Norwitz, Pål Aukrust, and Thor Ueland declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. 1.
    Buchanan TA, Xiang AH, Page KA. Gestational diabetes mellitus: risks and management during and after pregnancy. Nat Rev Endocrinol. 2012;8:639–49.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Catalano PM. Trying to understand gestational diabetes. Diabet Med. 2014;31:273–81.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Retnakaran R, Shen S, Hanley AJ, et al. Hyperbolic relationship between insulin secretion and sensitivity on oral glucose tolerance test. Obesity (Silver Spring). 2008;16:1901–7.CrossRefGoogle Scholar
  4. 4.
    American Diabetes Association. (12) Management of diabetes in pregnancy. Diabetes Care. 2015;38(Suppl):S77–9.CrossRefGoogle Scholar
  5. 5.
    Cundy T, Ackermann E, Ryan EA. Gestational diabetes: new criteria may triple the prevalence but effect on outcomes is unclear. BMJ. 2014;348:g1567.CrossRefPubMedGoogle Scholar
  6. 6.
    Metzger BE, Lowe LP, Dyer AR, et al. Hyperglycemia and adverse pregnancy outcomes. N Engl J Med. 2008;358:1991–2002.CrossRefPubMedGoogle Scholar
  7. 7.
    Kim C, Newton KM, Knopp RH. Gestational diabetes and the incidence of type 2 diabetes: a systematic review. Diabetes Care. 2002;25:1862–8.CrossRefPubMedGoogle Scholar
  8. 8.
    Tam WH, Ma RC, Yang X, et al. Glucose intolerance and cardiometabolic risk in adolescents exposed to maternal gestational diabetes: a 15-year follow-up study. Diabetes Care. 2010;33:1382–4.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Shah BR, Retnakaran R, Booth GL. Increased risk of cardiovascular disease in young women following gestational diabetes mellitus. Diabetes Care. 2008;31:1668–9.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Lekva T, Bollerslev J, Norwitz ER, et al. Aortic stiffness and cardiovascular risk in women with previous gestational diabetes mellitus. PLoS One. 2015;10:e0136892.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Gregor MF, Hotamisligil GS. Inflammatory mechanisms in obesity. Annu Rev Immunol. 2011;29:415–45.CrossRefPubMedGoogle Scholar
  12. 12.
    Mor G, Cardenas I, Abrahams V, et al. Inflammation and pregnancy: the role of the immune system at the implantation site. Ann N Y Acad Sci. 2011;1221:80–7.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Challis JR, Lockwood CJ, Myatt L, et al. Inflammation and pregnancy. Reprod Sci. 2009;16:206–15.CrossRefPubMedGoogle Scholar
  14. 14.
    Abell SK, Court D, Boyle JA, et al. Inflammatory and other biomarkers: role in pathophysiology and prediction of gestational diabetes mellitus. Int J Mol Sci. 2015;16:13442–73.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Pantham P, Aye IL, Powell TL. Inflammation in maternal obesity and gestational diabetes mellitus. Placenta. 2015;36:709–15.CrossRefPubMedGoogle Scholar
  16. 16.
    Makhseed M, Raghupathy R, Azizieh F, et al. Th1 and Th2 cytokine profiles in recurrent aborters with successful pregnancy and with subsequent abortions. Hum Reprod. 2001;16:2219–26.CrossRefPubMedGoogle Scholar
  17. 17.
    Soeters PB, Grimble RF. The conditional role of inflammation in pregnancy and cancer. Clin Nutr. 2013;32:460–5.CrossRefPubMedGoogle Scholar
  18. 18.
    Friis CM, Paasche Roland MC, Godang K, et al. Adiposity-related inflammation: effects of pregnancy. Obesity (Silver Spring). 2013;21:E124–30.CrossRefGoogle Scholar
  19. 19.
    Christian LM, Porter K. Longitudinal changes in serum proinflammatory markers across pregnancy and postpartum: effects of maternal body mass index. Cytokine. 2014;70:134–40.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Salustri A, Garlanda C, Hirsch E, et al. PTX3 plays a key role in the organization of the cumulus oophorus extracellular matrix and in in vivo fertilization. Development. 2004;131:1577–86.CrossRefPubMedGoogle Scholar
  21. 21.
    Larsson A, Palm M, Helmersson J, et al. Pentraxin 3 values during normal pregnancy. Inflammation. 2011;34:448–51.CrossRefPubMedGoogle Scholar
  22. 22.
    Garlanda C, Maina V, Cotena A, et al. The soluble pattern recognition receptor pentraxin-3 in innate immunity, inflammation and fertility. J Reprod Immunol. 2009;83:128–33.CrossRefPubMedGoogle Scholar
  23. 23.
    Burton GJ, Jauniaux E, Charnock-Jones DS. The influence of the intrauterine environment on human placental development. Int J Dev Biol. 2010;54:303–12.CrossRefPubMedGoogle Scholar
  24. 24.
    Redman CW, Tannetta DS, Dragovic RA, et al. Review: Does size matter? Placental debris and the pathophysiology of pre-eclampsia. Placenta. 2012;33(Suppl):S48–54.CrossRefPubMedGoogle Scholar
  25. 25.
    Naruse K, Innes BA, Bulmer JN, et al. Secretion of cytokines by villous cytotrophoblast and extravillous trophoblast in the first trimester of human pregnancy. J Reprod Immunol. 2010;86:148–50.CrossRefPubMedGoogle Scholar
  26. 26.
    Svensson-Arvelund J, Ernerudh J, Buse E, et al. The placenta in toxicology. Part II: systemic and local immune adaptations in pregnancy. Toxicol Pathol. 2014;42:327–38.CrossRefPubMedGoogle Scholar
  27. 27.
    Melgert BN, Spaans F, Borghuis T, et al. Pregnancy and preeclampsia affect monocyte subsets in humans and rats. PLoS One. 2012;7:e45229.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Ziegler-Heitbrock L, Hofer TP. Toward a refined definition of monocyte subsets. Front Immunol. 2013;4:23.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Aluvihare VR, Kallikourdis M, Betz AG. Regulatory T cells mediate maternal tolerance to the fetus. Nat Immunol. 2004;5:266–71.CrossRefPubMedGoogle Scholar
  30. 30.
    Tilburgs T, Roelen DL, van der Mast BJ, et al. Evidence for a selective migration of fetus-specific CD4+CD25bright regulatory T cells from the peripheral blood to the decidua in human pregnancy. J Immunol. 2008;180:5737–45.CrossRefPubMedGoogle Scholar
  31. 31.
    Richardson AC, Carpenter MW. Inflammatory mediators in gestational diabetes mellitus. Obstet Gynecol Clin North Am. 2007;34:213–24.CrossRefPubMedGoogle Scholar
  32. 32.
    Pendeloski KP, Mattar R, Torloni MR et al. Immunoregulatory molecules in patients with gestational diabetes mellitus. Endocrine. 2015.Google Scholar
  33. 33.
    Schlossberger V, Schober L, Rehnitz J, et al. The success of assisted reproduction technologies in relation to composition of the total regulatory T cell (Treg) pool and different Treg subsets. Hum Reprod. 2013;28:3062–73.CrossRefPubMedGoogle Scholar
  34. 34.
    Schober L, Radnai D, Spratte J, et al. The role of regulatory T cell (Treg) subsets in gestational diabetes mellitus. Clin Exp Immunol. 2014;177:76–85.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Medzhitov R. Toll-like receptors and innate immunity. Nat Rev Immunol. 2001;1:135–45.CrossRefPubMedGoogle Scholar
  36. 36.
    Xie BG, Jin S, Zhu WJ. Expression of toll-like receptor 4 in maternal monocytes of patients with gestational diabetes mellitus. Exp Ther Med. 2014;7:236–40.PubMedPubMedCentralGoogle Scholar
  37. 37.
    Kuzmicki M, Telejko B, Wawrusiewicz-Kurylonek N, et al. The expression of genes involved in NF-kappaB activation in peripheral blood mononuclear cells of patients with gestational diabetes. Eur J Endocrinol. 2013;168:419–27.CrossRefPubMedGoogle Scholar
  38. 38.
    Catalano P, DeMouzon SH. Maternal obesity and metabolic risk to the offspring: why lifestyle interventions may have not achieved the desired outcomes. Int J Obes (Lond). 2015;39:642–9.CrossRefGoogle Scholar
  39. 39.
    Mohammad MK, Morran M, Slotterbeck B, et al. Dysregulated Toll-like receptor expression and signaling in bone marrow-derived macrophages at the onset of diabetes in the non-obese diabetic mouse. Int Immunol. 2006;18:1101–13.CrossRefPubMedGoogle Scholar
  40. 40.
    Mullick AE, Tobias PS, Curtiss LK. Toll-like receptors and atherosclerosis: key contributors in disease and health? Immunol Res. 2006;34:193–209.CrossRefPubMedGoogle Scholar
  41. 41.
    Schulthess FT, Paroni F, Sauter NS, et al. CXCL10 impairs beta cell function and viability in diabetes through TLR4 signaling. Cell Metab. 2009;9:125–39.CrossRefPubMedGoogle Scholar
  42. 42.
    Moreli JB, Correa-Silva S, Damasceno DC, et al. Changes in the TNF-alpha/IL-10 ratio in hyperglycemia-associated pregnancies. Diabetes Res Clin Pract. 2015;107:362–9.CrossRefPubMedGoogle Scholar
  43. 43.
    Noureldeen AF, Qusti SY, Al-Seeni MN, et al. Maternal leptin, adiponectin, resistin, visfatin and tumor necrosis factor-alpha in normal and gestational diabetes. Indian J Clin Biochem. 2014;29:462–70.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    McLachlan KA, O'Neal D, Jenkins A, et al. Do adiponectin, TNFalpha, leptin and CRP relate to insulin resistance in pregnancy? Studies in women with and without gestational diabetes, during and after pregnancy. Diabetes Metab Res Rev. 2006;22:131–8.CrossRefPubMedGoogle Scholar
  45. 45.
    Kinalski M, Telejko B, Kuzmicki M, et al. Tumor necrosis factor alpha system and plasma adiponectin concentration in women with gestational diabetes. Horm Metab Res. 2005;37:450–4.CrossRefPubMedGoogle Scholar
  46. 46.
    Lopez-Tinoco C, Roca M, Fernandez-Deudero A, et al. Cytokine profile, metabolic syndrome and cardiovascular disease risk in women with late-onset gestational diabetes mellitus. Cytokine. 2012;58:14–9.CrossRefPubMedGoogle Scholar
  47. 47.
    Ozler S, Oztas E, Uygur D et al. The value of total antioxidant status and serum tumor necrosis factor-alpha levels at 24–28 weeks of gestation in the prediction of optimal treatment protocol in gestational diabetes mellitus. Exp. Clin. Endocrinol. Diabetes. 2015. doi: 10.1055/s00351554623.
  48. 48.
    Altinova AE, Toruner F, Bozkurt N, et al. Circulating concentrations of adiponectin and tumor necrosis factor-alpha in gestational diabetes mellitus. Gynecol Endocrinol. 2007;23:161–5.CrossRefPubMedGoogle Scholar
  49. 49.
    Ategbo JM, Grissa O, Yessoufou A, et al. Modulation of adipokines and cytokines in gestational diabetes and macrosomia. J Clin Endocrinol Metab. 2006;91:4137–43.CrossRefPubMedGoogle Scholar
  50. 50.
    Cseh K, Baranyi E, Melczer Z, et al. The pathophysiological influence of leptin and the tumor necrosis factor system on maternal insulin resistance: negative correlation with anthropometric parameters of neonates in gestational diabetes. Gynecol Endocrinol. 2002;16:453–60.CrossRefPubMedGoogle Scholar
  51. 51.
    Gao XL, Yang HX, Zhao Y. Variations of tumor necrosis factor-alpha, leptin and adiponectin in mid-trimester of gestational diabetes mellitus. Chin Med J (Engl). 2008;121:701–5.Google Scholar
  52. 52.•
    Guillemette L, Lacroix M, Battista MC, et al. TNFalpha dynamics during the oral glucose tolerance test vary according to the level of insulin resistance in pregnant women. J Clin Endocrinol Metab. 2014;99:1862–9. This study found that higher insulin resistance is associated with higher levels of circulating TNF at first and second trimesters of pregnancy also after adjustment for age, BMI, triglycerides, and adiponectin.CrossRefPubMedGoogle Scholar
  53. 53.
    Kalabay L, Cseh K, Pajor A, et al. Correlation of maternal serum fetuin/alpha2-HS-glycoprotein concentration with maternal insulin resistance and anthropometric parameters of neonates in normal pregnancy and gestational diabetes. Eur J Endocrinol. 2002;147:243–8.CrossRefPubMedGoogle Scholar
  54. 54.
    Kirwan JP, Hauguel-de MS, Lepercq J, et al. TNF-alpha is a predictor of insulin resistance in human pregnancy. Diabetes. 2002;51:2207–13.CrossRefPubMedGoogle Scholar
  55. 55.
    Winkler G, Cseh K, Baranyi E, et al. Tumor necrosis factor system in insulin resistance in gestational diabetes. Diabetes Res Clin Pract. 2002;56:93–9.CrossRefPubMedGoogle Scholar
  56. 56.
    Gauster M, Hiden U, van Poppel M, et al. Dysregulation of placental endothelial lipase in obese women with gestational diabetes mellitus. Diabetes. 2011;60:2457–64.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Saucedo R, Zarate A, Basurto L, et al. Relationship between circulating adipokines and insulin resistance during pregnancy and postpartum in women with gestational diabetes. Arch Med Res. 2011;42:318–23.CrossRefPubMedGoogle Scholar
  58. 58.
    Nergiz S, Altinkaya OS, Kucuk M, et al. Circulating galanin and IL-6 concentrations in gestational diabetes mellitus. Gynecol Endocrinol. 2014;30:236–40.CrossRefPubMedGoogle Scholar
  59. 59.
    Morisset AS, Dube MC, Cote JA, et al. Circulating interleukin-6 concentrations during and after gestational diabetes mellitus. Acta Obstet Gynecol Scand. 2011;90:524–30.CrossRefPubMedGoogle Scholar
  60. 60.
    Kuzmicki M, Telejko B, Szamatowicz J, et al. High resistin and interleukin-6 levels are associated with gestational diabetes mellitus. Gynecol Endocrinol. 2009;25:258–63.CrossRefPubMedGoogle Scholar
  61. 61.
    Hassiakos D, Eleftheriades M, Papastefanou I et al. Increased maternal serum interleukin-6 concentrations at 11 to 14 weeks of gestation in low risk pregnancies complicated with gestational diabetes mellitus: development of a prediction model. Horm. Metab Res. 2015;48:35–41.Google Scholar
  62. 62.
    Kuzmicki M, Telejko B, Zonenberg A, et al. Circulating pro- and anti-inflammatory cytokines in Polish women with gestational diabetes. Horm Metab Res. 2008;40:556–60.CrossRefPubMedGoogle Scholar
  63. 63.
    Maged AM, Moety GA, Mostafa WA, et al. Comparative study between different biomarkers for early prediction of gestational diabetes mellitus. J Matern Fetal Neonatal Med. 2014;27:1108–12.CrossRefPubMedGoogle Scholar
  64. 64.
    Ozgu-Erdinc AS, Yilmaz S, Yeral MI et al. Prediction of gestational diabetes mellitus in the first trimester: comparison of C-reactive protein, fasting plasma glucose, insulin and insulin sensitivity indices. J. Matern. Fetal Neonatal Med. 2014; 1–6.Google Scholar
  65. 65.
    Wolf M, Sandler L, Hsu K, et al. First-trimester C-reactive protein and subsequent gestational diabetes. Diabetes Care. 2003;26:819–24.CrossRefPubMedGoogle Scholar
  66. 66.
    Salmi AA, Zaki NM, Zakaria R, et al. Arterial stiffness, inflammatory and pro-atherogenic markers in gestational diabetes mellitus. Vasa. 2012;41:96–104.CrossRefPubMedGoogle Scholar
  67. 67.
    Vitoratos N, Valsamakis G, Mastorakos G, et al. Pre- and early post-partum adiponectin and interleukin-1beta levels in women with and without gestational diabetes. Hormones (Athens). 2008;7:230–6.CrossRefGoogle Scholar
  68. 68.
    Xu J, Zhao YH, Chen YP, et al. Maternal circulating concentrations of tumor necrosis factor-alpha, leptin, and adiponectin in gestational diabetes mellitus: a systematic review and meta-analysis. Scientific World J. 2014;2014:926932.Google Scholar
  69. 69.
    Qiu C, Sorensen TK, Luthy DA, et al. A prospective study of maternal serum C-reactive protein (CRP) concentrations and risk of gestational diabetes mellitus. Paediatr Perinat Epidemiol. 2004;18:377–84.CrossRefPubMedGoogle Scholar
  70. 70.
    Abdel Gader AG, Khashoggi TY, Habib F, et al. Haemostatic and cytokine changes in gestational diabetes mellitus. Gynecol Endocrinol. 2011;27:356–60.CrossRefPubMedGoogle Scholar
  71. 71.
    Georgiou HM, Lappas M, Georgiou GM, et al. Screening for biomarkers predictive of gestational diabetes mellitus. Acta Diabetol. 2008;45:157–65.CrossRefPubMedGoogle Scholar
  72. 72.
    Lapolla A, Dalfra MG, Sanzari M, et al. Lymphocyte subsets and cytokines in women with gestational diabetes mellitus and their newborn. Cytokine. 2005;31:280–7.CrossRefPubMedGoogle Scholar
  73. 73.
    Khan NA, Yessoufou A, Kim M, et al. N-3 fatty acids modulate Th1 and Th2 dichotomy in diabetic pregnancy and macrosomia. J Autoimmun. 2006;26:268–77.CrossRefPubMedGoogle Scholar
  74. 74.
    Yessoufou A, Hichami A, Besnard P, et al. Peroxisome proliferator-activated receptor alpha deficiency increases the risk of maternal abortion and neonatal mortality in murine pregnancy with or without diabetes mellitus: modulation of T cell differentiation. Endocrinology. 2006;147:4410–8.CrossRefPubMedGoogle Scholar
  75. 75.
    Montazeri S, Nalliah S, Radhakrishnan AK. Is there a genetic variation association in the IL-10 and TNF alpha promoter gene with gestational diabetes mellitus? Hereditas. 2010;147:94–102.CrossRefPubMedGoogle Scholar
  76. 76.
    Telejko B, Kuzmicki M, Zonenberg A, et al. Circulating monocyte chemoattractant protein-1 in women with gestational diabetes. Folia Histochem Cytobiol. 2007;45 Suppl 1:S153–6.PubMedGoogle Scholar
  77. 77.
    Kim SY, Sy V, Araki T, et al. Total adiponectin, but not inflammatory markers C-reactive protein, tumor necrosis factor-alpha, interluekin-6 and monocyte chemoattractant protein-1, correlates with increasing glucose intolerance in pregnant Chinese-Americans. J Diabetes. 2014;6:360–8.CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Klein K, Satler M, Elhenicky M, et al. Circulating levels of MCP-1 are increased in women with gestational diabetes. Prenat Diagn. 2008;28:845–51.CrossRefPubMedGoogle Scholar
  79. 79.
    Todoric J, Handisurya A, Knapp B, et al. Relationship of pentraxin 3 with insulin sensitivity in gestational diabetes. Eur J Clin Invest. 2013;43:341–9.CrossRefPubMedGoogle Scholar
  80. 80.
    Yildirim M, Simavli SA, Uysal DA et al. Is there any relationship between plasma pentraxin 3 levels and gestational diabetes mellitus? Gynecol. Obstet. Invest. 2015;80:223–7.Google Scholar
  81. 81.
    Norata GD, Garlanda C, Catapano AL. The long pentraxin PTX3: a modulator of the immunoinflammatory response in atherosclerosis and cardiovascular diseases. Trends Cardiovasc Med. 2010;20:35–40.CrossRefPubMedGoogle Scholar
  82. 82.
    Salio M, Chimenti S, De AN, et al. Cardioprotective function of the long pentraxin PTX3 in acute myocardial infarction. Circulation. 2008;117:1055–64.CrossRefPubMedGoogle Scholar
  83. 83.
    Osorio-Conles O, Guitart M, Chacon MR, et al. Plasma PTX3 protein levels inversely correlate with insulin secretion and obesity, whereas visceral adipose tissue PTX3 gene expression is increased in obesity. Am J Physiol Endocrinol Metab. 2011;301:E1254–61.CrossRefPubMedGoogle Scholar
  84. 84.
    Ogawa T, Kawano Y, Imamura T, et al. Reciprocal contribution of pentraxin 3 and C-reactive protein to obesity and metabolic syndrome. Obesity (Silver Spring). 2010;18:1871–4.CrossRefGoogle Scholar
  85. 85.
    Miyaki A, Choi Y, Maeda S. Pentraxin 3 production in the adipose tissue and the skeletal muscle in diabetic-obese mice. Am J Med Sci. 2014;347:228–33.CrossRefPubMedGoogle Scholar
  86. 86.
    Ben-Haroush A, Yogev Y, Hod M. Epidemiology of gestational diabetes mellitus and its association with Type 2 diabetes. Diabet Med. 2004;21:103–13.CrossRefPubMedGoogle Scholar
  87. 87.•
    Lappas M. Activation of inflammasomes in adipose tissue of women with gestational diabetes. Mol Cell Endocrinol. 2014;382:74–83. This study find an important role for adipose tissue inflammasome activation in the development of insulin resistance associated in pregnancies complicated by GDM.CrossRefPubMedGoogle Scholar
  88. 88.
    Black MH, Sacks DA, Xiang AH, et al. The relative contribution of prepregnancy overweight and obesity, gestational weight gain, and IADPSG-defined gestational diabetes mellitus to fetal overgrowth. Diabetes Care. 2013;36:56–62.CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Lekva T, Bollerslev J, Godang K, et al. β-cell dysfunction in women with previous gestational diabetes is associated with visceral adipose tissue distribution. Eur J Endocrinol. 2015;173:63–70.CrossRefPubMedGoogle Scholar
  90. 90.
    Kosus N, Kosus A, Turhan N. Relation between abdominal subcutaneous fat tissue thickness and inflammatory markers during pregnancy. Arch Med Sci. 2014;10:739–45.CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Skvarca A, Tomazic M, Blagus R, et al. Adiponectin/leptin ratio and insulin resistance in pregnancy. J Int Med Res. 2013;41:123–8.CrossRefPubMedGoogle Scholar
  92. 92.
    Al-Badri MR, Zantout MS, Azar ST. The role of adipokines in gestational diabetes mellitus. Ther Adv Endocrinol Metab. 2015;6:103–8.CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    Bao W, Baecker A, Song Y, et al. Adipokine levels during the first or early second trimester of pregnancy and subsequent risk of gestational diabetes mellitus: a systematic review. Metabolism. 2015;64:756–64.CrossRefPubMedGoogle Scholar
  94. 94.
    Hauguel-de MS, Guerre-Millo M. The placenta cytokine network and inflammatory signals. Placenta. 2006;27:794–8.CrossRefGoogle Scholar
  95. 95.
    Mrizak I, Grissa O, Henault B, et al. Placental infiltration of inflammatory markers in gestational diabetic women. Gen Physiol Biophys. 2014;33:169–76.CrossRefPubMedGoogle Scholar
  96. 96.•
    Aye IL, Lager S, Ramirez VI, et al. Increasing maternal body mass index is associated with systemic inflammation in the mother and the activation of distinct placental inflammatory pathways. Biol Reprod. 2014;90:129. This study suggests a link between elevated proinflammatory cytokines in maternal plasma and activation of placental inflammatory pathways.CrossRefPubMedPubMedCentralGoogle Scholar
  97. 97.
    Yu J, Zhou Y, Gui J, et al. Assessment of the number and function of macrophages in the placenta of gestational diabetes mellitus patients. J Huazhong Univ Sci Technolog Med Sci. 2013;33:725–9.CrossRefPubMedGoogle Scholar
  98. 98.
    Radaelli T, Varastehpour A, Catalano P, et al. Gestational diabetes induces placental genes for chronic stress and inflammatory pathways. Diabetes. 2003;52:2951–8.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Tove Lekva
    • 1
    • 2
    Email author
  • Errol R. Norwitz
    • 2
    • 3
  • Pål Aukrust
    • 1
    • 4
    • 5
  • Thor Ueland
    • 1
    • 4
  1. 1.Research Institute of Internal Medicine, Oslo University HospitalRikshospitaletOsloNorway
  2. 2.Mother Infant Research InstituteTufts Medical CenterBostonUSA
  3. 3.Department of Obstetrics & GynecologyTufts Medical Center and Tufts University School of MedicineBostonUSA
  4. 4.Faculty of MedicineUniversity of OsloOsloNorway
  5. 5.Section of Clinical Immunology and Infectious Diseases, Oslo University HospitalRikshospitaletOsloNorway

Personalised recommendations