Advertisement

Current Diabetes Reports

, 15:118 | Cite as

Hypoxia and Dark Adaptation in Diabetic Retinopathy: Interactions, Consequences, and Therapy

  • David J. Ramsey
  • G. B. Arden
Microvascular Complications—Retinopathy (JK Sun, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Microvascular Complications—Retinopathy

Abstract

In diabetes, retinal blood flow is compromised, and retinal hypoxia is likely to be further intensified during periods of darkness. During dark adaptation, rod photoreceptors in the outer retina are maximally depolarized and continuously release large amounts of the neurotransmitter glutamate—an energetically demanding process that requires the highest oxygen consumption per unit volume of any tissue of the body. In complete darkness, even more oxygen is consumed by the outer retina, producing a steep fall in the retinal oxygen tension curve which reaches a nadir at the depth of the mitochondrial-rich rod inner segments. In contrast to the normal retina, the diabetic retina cannot meet the added metabolic load imposed by the dark-adapted rod photoreceptors; this exacerbates retinal hypoxia and stimulates the overproduction of vascular endothelial growth factor (VEGF). The use of nocturnal illumination to prevent dark adaptation, specifically reducing the rod photoreceptor dark current, should ameliorate diabetic retinopathy.

Keywords

Dark adaptation Rod photoreceptors Light at night Hypoxia Diabetic retinopathy Diabetic macular edema 

Notes

Acknowledgments

The authors thank Carol Spencer (Lahey Hospital Library) and Judy Rabinowitz (Tufts University Hirsh Health Sciences Library) for research support.

Compliance with Ethical Standards

Conflict of Interest

David J. Ramsey and G.B. Arden declare that they have no conflict of interest

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    CDC. National diabetes fact sheet: national estimates and general information on diabetes and prediabetes in the United States, 2011. 2011.Google Scholar
  2. 2.
    Wong TY et al. Rates of progression in diabetic retinopathy during different time periods: a systematic review and meta-analysis. Diabetes Care. 2009;32(12):2307–13.PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Chen L, Magliano DJ, Zimmet PZ. The worldwide epidemiology of type 2 diabetes mellitus—present and future perspectives. Nat Rev Endocrinol. 2012;8(4):228–36.CrossRefGoogle Scholar
  4. 4.
    Yau JW et al. Global prevalence and major risk factors of diabetic retinopathy. Diabetes Care. 2012;35(3):556–64.PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Focal photocoagulation treatment of diabetic macular edema. Relationship of treatment effect to fluorescein angiographic and other retinal characteristics at baseline: ETDRS report no. 19. Early treatment diabetic retinopathy study research group. Arch Ophthalmol. 1995;113(9):1144–55.Google Scholar
  6. 6.
    Elman MJ et al. Randomized trial evaluating ranibizumab plus prompt or deferred laser or triamcinolone plus prompt laser for diabetic macular edema. Ophthalmology. 2010;117(6):1064–1077.e35.PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Mitchell P et al. The RESTORE study: ranibizumab monotherapy or combined with laser versus laser monotherapy for diabetic macular edema. Ophthalmology. 2011;118(4):615–25.PubMedCrossRefGoogle Scholar
  8. 8.
    Nguyen QD et al. Ranibizumab for diabetic macular edema: results from 2 phase III randomized trials: RISE and RIDE. Ophthalmology. 2012;119(4):789–801.PubMedCrossRefGoogle Scholar
  9. 9.
    Photocoagulation for diabetic macular edema. Early Treatment Diabetic Retinopathy Study report number 1. Early Treatment Diabetic Retinopathy Study research group. Arch Ophthalmol. 1985;103(12):1796–806.Google Scholar
  10. 10.
    Effect of ruboxistaurin in patients with diabetic macular edema: thirty-month results of the randomized PKC-DMES clinical trial. Arch Ophthalmol. 2007;125(3):318–24.Google Scholar
  11. 11.
    Techniques for scatter and local photocoagulation treatment of diabetic retinopathy: early treatment diabetic retinopathy study report no. 3. The early treatment diabetic retinopathy study research group. Int Ophthalmol Clin. 1987;27(4):254–64.Google Scholar
  12. 12.
    Osaadon P et al. A review of anti-VEGF agents for proliferative diabetic retinopathy. Eye (Lond). 2014;28(5):510–20.CrossRefGoogle Scholar
  13. 13.
    Network, D.R.C.R. prompt panretinal photocoagulation versus ranibizumab plus deferred panretinal photocoagulation for proliferative diabetic retinopathy (Protocol S). August 29, 2015; Available from: http://clinicaltrials.gov/show/NCT01489189.
  14. 14.
    Cheung N, Mitchell P, Wong TY. Diabetic retinopathy. Lancet. 2010;376(9735):124–36.PubMedCrossRefGoogle Scholar
  15. 15.
    Thomas BJ et al. Evolving strategies in the management of diabetic macular edema: clinical trials and current management. Can J Ophthalmol. 2013;48(1):22–30.PubMedCrossRefGoogle Scholar
  16. 16.
    Tight blood pressure control and risk of macrovascular and microvascular complications in type 2 diabetes: UKPDS 38. UK Prospective Diabetes Study Group. BMJ. 1998;317(7160):703–13.Google Scholar
  17. 17.
    The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. The Diabetes Control and Complications Trial Research Group. N Engl J Med. 1993;329(14):977–86.Google Scholar
  18. 18.
    Effect of intensive therapy on the microvascular complications of type 1 diabetes mellitus. JAMA. 2002;287(19):2563–9.Google Scholar
  19. 19.
    Klein R et al. The Wisconsin Epidemiologic Study of Diabetic Retinopathy. III. Prevalence and risk of diabetic retinopathy when age at diagnosis is 30 or more years. Arch Ophthalmol. 1984;102(4):527–32.PubMedCrossRefGoogle Scholar
  20. 20.
    Klein R et al. The Wisconsin Epidemiologic Study of Diabetic Retinopathy. II. Prevalence and risk of diabetic retinopathy when age at diagnosis is less than 30 years. Arch Ophthalmol. 1984;102(4):520–6.PubMedCrossRefGoogle Scholar
  21. 21.
    Aiello LP et al. Oral protein kinase c beta inhibition using ruboxistaurin: efficacy, safety, and causes of vision loss among 813 patients (1,392 eyes) with diabetic retinopathy in the Protein Kinase C beta Inhibitor-Diabetic Retinopathy Study and the Protein Kinase C beta Inhibitor-Diabetic Retinopathy Study 2. Retina. 2011;31(10):2084–94.PubMedCrossRefGoogle Scholar
  22. 22.
    Bursell SE et al. High-dose vitamin E supplementation normalizes retinal blood flow and creatinine clearance in patients with type 1 diabetes. Diabetes Care. 1999;22(8):1245–51.PubMedCrossRefGoogle Scholar
  23. 23.
    Effects of aspirin treatment on diabetic retinopathy. ETDRS report number 8. Early treatment diabetic retinopathy study research group. Ophthalmology. 1991;98(5 Suppl):757–65.Google Scholar
  24. 24.
    Arden GB et al. Regression of early diabetic macular oedema is associated with prevention of dark adaptation. Eye (Lond). 2011;25(12):1546–54.CrossRefGoogle Scholar
  25. 25.
    Arden GB et al. A preliminary trial to determine whether prevention of dark adaptation affects the course of early diabetic retinopathy. Eye (Lond). 2010;24(7):1149–55.CrossRefGoogle Scholar
  26. 26.
    Thoreson WB. Kinetics of synaptic transmission at ribbon synapses of rods and cones. Mol Neurobiol. 2007;36(3):205–23.PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Brandon C, Lam DM. L-glutamic acid: a neurotransmitter candidate for cone photoreceptors in human and rat retinas. Proc Natl Acad Sci U S A. 1983;80(16):5117–21.PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    Hodgkin AL et al. Effect of ions on retinal rods from Bufo marinus. J Physiol. 1984;350:649–80.PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Hagins WA, Penn RD, Yoshikami S. Dark current and photocurrent in retinal rods. Biophys J. 1970;10(5):380–412.PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Okawa H et al. ATP consumption by mammalian rod photoreceptors in darkness and in light. Curr Biol. 2008;18(24):1917–21.PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    Warburg O, Wind F, Negelein E. The metabolism of tumors in the body. J Gen Physiol. 1927;8(6):519–30.PubMedCentralPubMedCrossRefGoogle Scholar
  32. 32.
    Birol G et al. Oxygen distribution and consumption in the macaque retina. Am J Physiol Heart Circ Physiol. 2007;293(3):H1696–704.PubMedCrossRefGoogle Scholar
  33. 33.
    Yu DY, Cringle SJ. Outer retinal anoxia during dark adaptation is not a general property of mammalian retinas. Comp Biochem Physiol A Mol Integr Physiol. 2002;132(1):47–52.PubMedCrossRefGoogle Scholar
  34. 34.
    Linsenmeier RA et al. Retinal hypoxia in long-term diabetic cats. Invest Ophthalmol Vis Sci. 1998;39(9):1647–57.PubMedGoogle Scholar
  35. 35.
    Braun RD, Linsenmeier RA, Goldstick TK. Oxygen consumption in the inner and outer retina of the cat. Invest Ophthalmol Vis Sci. 1995;36(3):542–54.PubMedGoogle Scholar
  36. 36.
    Linsenmeier RA, Braun RD. Oxygen distribution and consumption in the cat retina during normoxia and hypoxemia. J Gen Physiol. 1992;99(2):177–97.PubMedCrossRefGoogle Scholar
  37. 37.
    Linsenmeier RA. Electrophysiological consequences of retinal hypoxia. Graefes Arch Clin Exp Ophthalmol. 1990;228(2):143–50.PubMedCrossRefGoogle Scholar
  38. 38.
    Haugh LM, Linsenmeier RA, Goldstick TK. Mathematical models of the spatial distribution of retinal oxygen tension and consumption, including changes upon illumination. Ann Biomed Eng. 1990;18(1):19–36.PubMedCrossRefGoogle Scholar
  39. 39.
    Linsenmeier RA. Effects of light and darkness on oxygen distribution and consumption in the cat retina. J Gen Physiol. 1986;88(4):521–42.PubMedCrossRefGoogle Scholar
  40. 40.
    Jones DP, Aw TY, Changli B, Sillau AH. Regulation of mitochondrial distribution: an adaptive response to changes in oxygen supply. In: Lahiri S, Cherniack NS, Fitzgerald RS, editors. Response and adaptation to hypoxia. New York: Springer; 1991. p. 25–35.CrossRefGoogle Scholar
  41. 41.
    Bill A, Sperber GO. Aspects of oxygen and glucose consumption in the retina: effects of high intraocular pressure and light. Graefes Arch Clin Exp Ophthalmol. 1990;228(2):124–7.PubMedCrossRefGoogle Scholar
  42. 42.
    Ames 3rd A et al. Light-induced increases in cGMP metabolic flux correspond with electrical responses of photoreceptors. J Biol Chem. 1986;261(28):13034–42.PubMedGoogle Scholar
  43. 43.
    Emran F, Dowling JE. Larval zebrafish turn off their photoreceptors at night. Commun Integr Biol. 2010;3(5):430–2.PubMedCentralPubMedCrossRefGoogle Scholar
  44. 44.
    Ashton N. Retinal micro-aneurysms in the non-diabetic subject. Br J Ophthalmol. 1951;35(4):189–212.PubMedCentralPubMedCrossRefGoogle Scholar
  45. 45.
    McFarland RA, Evans JN. Alterations in dark adaptation under reduced oxygen tensions. Am J Physiol. 1939;127:37–50.Google Scholar
  46. 46.
    Wise GN. Retinal neovascularization. Trans Am Ophthalmol Soc. 1956;54:729–826.PubMedCentralPubMedGoogle Scholar
  47. 47.
    Friedenwald JS. Diabetic retinopathy. Am J Ophthalmol. 1950;33(8):1187–99.PubMedCrossRefGoogle Scholar
  48. 48.
    Speiser P, Gittelsohn AM, Patz A. Studies on diabetic retinopathy. 3. Influence of diabetes on intramural pericytes. Arch Ophthalmol. 1968;80(3):332–7.PubMedCrossRefGoogle Scholar
  49. 49.
    Cogan DG, Toussaint D, Kuwabara T. Retinal vascular patterns. IV. Diabetic retinopathy. Arch Ophthalmol. 1961;66:366–78.PubMedCrossRefGoogle Scholar
  50. 50.
    Klein R et al. The Wisconsin Epidemiologic Study of Diabetic Retinopathy. XV. The long-term incidence of macular edema. Ophthalmology. 1995;102(1):7–16.PubMedCrossRefGoogle Scholar
  51. 51.
    Grading diabetic retinopathy from stereoscopic color fundus photographs--an extension of the modified Airlie house classification. ETDRS report number 10. Early treatment diabetic retinopathy study research group. Ophthalmology. 1991;98(5 Suppl):786–806.Google Scholar
  52. 52.
    Arend O et al. Retinal microcirculation in patients with diabetes mellitus: dynamic and morphological analysis of perifoveal capillary network. Br J Ophthalmol. 1991;75(9):514–8.PubMedCentralPubMedCrossRefGoogle Scholar
  53. 53.
    Fluorescein angiographic risk factors for progression of diabetic retinopathy. ETDRS report number 13. Early treatment diabetic retinopathy study research group. Ophthalmology. 1991;98(5 Suppl):834–40.Google Scholar
  54. 54.
    Frank RN. Diabetic retinopathy. N Engl J Med. 2004;350(1):48–58.PubMedCrossRefGoogle Scholar
  55. 55.
    Aiello LP. Vascular endothelial growth factor and the eye: biochemical mechanisms of action and implications for novel therapies. Ophthalmic Res. 1997;29(5):354–62.PubMedCrossRefGoogle Scholar
  56. 56.
    Pe’er J et al. Hypoxia-induced expression of vascular endothelial growth factor by retinal cells is a common factor in neovascularizing ocular diseases. Lab Investig. 1995;72(6):638–45.PubMedGoogle Scholar
  57. 57.
    Curtis TM, Gardiner TA, Stitt AW. Microvascular lesions of diabetic retinopathy: clues towards understanding pathogenesis? Eye (Lond). 2009;23(7):1496–508.CrossRefGoogle Scholar
  58. 58.
    Brownlee M. The pathobiology of diabetic complications: a unifying mechanism. Diabetes. 2005;54(6):1615–25.PubMedCrossRefGoogle Scholar
  59. 59.
    Kowluru R, Kern TS, Engerman RL. Abnormalities of retinal metabolism in diabetes or galactosemia. II. Comparison of gamma-glutamyl transpeptidase in retina and cerebral cortex, and effects of antioxidant therapy. Curr Eye Res. 1994;13(12):891–6.PubMedCrossRefGoogle Scholar
  60. 60.
    Shweiki D et al. Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature. 1992;359(6398):843–5.PubMedCrossRefGoogle Scholar
  61. 61.
    Leung DW et al. Vascular endothelial growth factor is a secreted angiogenic mitogen. Science. 1989;246(4935):1306–9.PubMedCrossRefGoogle Scholar
  62. 62.•
    Xin X et al. Hypoxic retinal Muller cells promote vascular permeability by HIF-1-dependent up-regulation of angiopoietin-like 4. Proc Natl Acad Sci U S A. 2013;110(36):E3425–34. This paper identifies angiopoietin-like 4 (ANGPTL4) as a cytokine up-regulated by HIF-1 in hypoxic Müller cells in vitro and the ischemic inner retina in vivo. Similar to VEGF, ANGPTL4 promotes increased vessel permeability and may be a novel and important target in DME.PubMedCentralPubMedCrossRefGoogle Scholar
  63. 63.
    Aiello LP et al. Vascular endothelial growth factor in ocular fluid of patients with diabetic retinopathy and other retinal disorders. N Engl J Med. 1994;331(22):1480–7.PubMedCrossRefGoogle Scholar
  64. 64.
    Mathews MK et al. Vascular endothelial growth factor and vascular permeability changes in human diabetic retinopathy. Invest Ophthalmol Vis Sci. 1997;38(13):2729–41.PubMedGoogle Scholar
  65. 65.
    Frank RN et al. An aldose reductase inhibitor and aminoguanidine prevent vascular endothelial growth factor expression in rats with long-term galactosemia. Arch Ophthalmol. 1997;115(8):1036–47.PubMedCrossRefGoogle Scholar
  66. 66.
    Murata T et al. The relation between expression of vascular endothelial growth factor and breakdown of the blood-retinal barrier in diabetic rat retinas. Lab Investig. 1996;74(4):819–25.PubMedGoogle Scholar
  67. 67.
    Ishibashi T, Tanaka K, Taniguchi Y. Platelet aggregation and coagulation in the pathogenesis of diabetic retinopathy in rats. Diabetes. 1981;30(7):601–6.PubMedCrossRefGoogle Scholar
  68. 68.
    Joussen AM et al. A central role for inflammation in the pathogenesis of diabetic retinopathy. FASEB J. 2004;18(12):1450–2.PubMedGoogle Scholar
  69. 69.
    Adamis AP. Is diabetic retinopathy an inflammatory disease? Br J Ophthalmol. 2002;86(4):363–5.PubMedCentralPubMedCrossRefGoogle Scholar
  70. 70.
    Kandarakis SA et al. Dietary glycotoxins induce RAGE and VEGF up-regulation in the retina of normal rats. Exp Eye Res. 2015;137:1–10.PubMedCrossRefGoogle Scholar
  71. 71.
    Puddu A et al. Vascular endothelial growth factor-C secretion is increased by advanced glycation end-products: possible implication in ocular neovascularization. Mol Vis. 2012;18:2509–17.PubMedCentralPubMedGoogle Scholar
  72. 72.
    Zhao B et al. VEGF-a regulates the expression of VEGF-C in human retinal pigment epithelial cells. Br J Ophthalmol. 2006;90(8):1052–9.PubMedCentralPubMedCrossRefGoogle Scholar
  73. 73.
    Brooks JT et al. Variations within oxygen-regulated gene expression in humans. J Appl Physiol (1985). 2009;106(1):212–20.CrossRefGoogle Scholar
  74. 74.
    Marsh S et al. Hypoxic induction of vascular endothelial growth factor is markedly decreased in diabetic individuals who do not develop retinopathy. Diabetes Care. 2000;23(9):1375–80.PubMedCrossRefGoogle Scholar
  75. 75.
    Nair G et al. MRI reveals differential regulation of retinal and choroidal blood volumes in rat retina. Neuroimage. 2011;54(2):1063–9.PubMedCentralPubMedCrossRefGoogle Scholar
  76. 76.
    Tornquist P, Alm A. Retinal and choroidal contribution to retinal metabolism in vivo. A study in pigs. Acta Physiol Scand. 1979;106(3):351–7.PubMedCrossRefGoogle Scholar
  77. 77.
    Alm A, Bill A. The oxygen supply to the retina. II. Effects of high intraocular pressure and of increased arterial carbon dioxide tension on uveal and retinal blood flow in cats. A study with radioactively labelled microspheres including flow determinations in brain and some other tissues. Acta Physiol Scand. 1972;84(3):306–19.PubMedCrossRefGoogle Scholar
  78. 78.
    Ahmed J et al. Oxygen distribution in the macaque retina. Invest Ophthalmol Vis Sci. 1993;34(3):516–21.PubMedGoogle Scholar
  79. 79.
    Cringle SJ et al. Light and choroidal PO2 modulation of intraretinal oxygen levels in an avascular retina. Invest Ophthalmol Vis Sci. 1999;40(10):2307–13.PubMedGoogle Scholar
  80. 80.
    Tillis TN et al. Preretinal oxygen changes in the rabbit under conditions of light and dark. Invest Ophthalmol Vis Sci. 1988;29(6):988–91.PubMedGoogle Scholar
  81. 81.
    Stefansson E. Retinal oxygen tension is higher in light than dark. Pediatr Res. 1988;23(1):5–8.PubMedCrossRefGoogle Scholar
  82. 82.
    Grunwald JE et al. Altered retinal vascular response to 100% oxygen breathing in diabetes mellitus. Ophthalmology. 1984;91(12):1447–52.PubMedCrossRefGoogle Scholar
  83. 83.
    Hammer M et al. Retinal vessel oxygen saturation under flicker light stimulation in patients with nonproliferative diabetic retinopathy. Invest Ophthalmol Vis Sci. 2012;53(7):4063–8.PubMedCrossRefGoogle Scholar
  84. 84.
    Yu DY et al. Intraretinal oxygen distribution in the rat with graded systemic hyperoxia and hypercapnia. Invest Ophthalmol Vis Sci. 1999;40(9):2082–7.PubMedGoogle Scholar
  85. 85.
    Lange CA et al. Intraocular oxygen distribution in advanced proliferative diabetic retinopathy. Am J Ophthalmol. 2011;152(3):406–412.e3.PubMedGoogle Scholar
  86. 86.
    Holekamp NM, Shui YB, Beebe D. Lower intraocular oxygen tension in diabetic patients: possible contribution to decreased incidence of nuclear sclerotic cataract. Am J Ophthalmol. 2006;141(6):1027–32.PubMedCrossRefGoogle Scholar
  87. 87.
    Tofts PS et al. Toward clinical application of manganese-enhanced MRI of retinal function. Brain Res Bull. 2010;81(2–3):333–8.PubMedCentralPubMedCrossRefGoogle Scholar
  88. 88.
    Nagaoka T et al. Alteration of choroidal circulation in the foveal region in patients with type 2 diabetes. Br J Ophthalmol. 2004;88(8):1060–3.PubMedCentralPubMedCrossRefGoogle Scholar
  89. 89.
    Movaffaghy A et al. Effect of isometric exercise on choroidal blood flow in type I diabetic patients. Klin Monatsbl Augenheilkd. 2002;219(4):299–301.PubMedCrossRefGoogle Scholar
  90. 90.
    Bursell SE et al. Retinal blood flow changes in patients with insulin-dependent diabetes mellitus and no diabetic retinopathy. Invest Ophthalmol Vis Sci. 1996;37(5):886–97.PubMedGoogle Scholar
  91. 91.
    Feke GT et al. Retinal circulatory abnormalities in type 1 diabetes. Invest Ophthalmol Vis Sci. 1994;35(7):2968–75.PubMedGoogle Scholar
  92. 92.
    Durham JT, Herman IM. Microvascular modifications in diabetic retinopathy. Curr Diabetes Rep. 2011;11(4):253–64.CrossRefGoogle Scholar
  93. 93.
    Skov Jensen P, Jeppesen P, Bek T. Differential diameter responses in macular and peripheral retinal arterioles may contribute to the regional distribution of diabetic retinopathy lesions. Graefes Arch Clin Exp Ophthalmol. 2011;249(3):407–12.PubMedCrossRefGoogle Scholar
  94. 94.
    Kohner EM. The retinal blood flow in diabetes. Diabete Metab. 1993;19(5):401–4.PubMedGoogle Scholar
  95. 95.
    Yoshida A et al. Retinal blood flow alterations during progression of diabetic retinopathy. Arch Ophthalmol. 1983;101(2):225–7.PubMedCrossRefGoogle Scholar
  96. 96.
    Cunha-Vaz JG et al. Studies on retinal blood flow. II. Diabetic retinopathy. Arch Ophthalmol. 1978;96(5):809–11.PubMedCrossRefGoogle Scholar
  97. 97.
    Bresnick GH et al. Patterns of ischemia in diabetic retinopathy. Trans Sect Ophthalmol Am Acad Ophthalmol Otolaryngol. 1976;81(4 Pt 1):OP694–709.PubMedGoogle Scholar
  98. 98.
    Davies SW et al. Overnight studies in severe chronic left heart failure: arrhythmias and oxygen desaturation. Br Heart J. 1991;65(2):77–83.PubMedCentralPubMedCrossRefGoogle Scholar
  99. 99.
    West SD, Nicoll DJ, Stradling JR. Prevalence of obstructive sleep apnoea in men with type 2 diabetes. Thorax. 2006;61(11):945–50.PubMedCentralPubMedCrossRefGoogle Scholar
  100. 100.
    Leong WB, et al. Effect of obstructive sleep apnoea on diabetic retinopathy and maculopathy: a systematic review and meta-analysis. Diabet Med. 2015. doi:  10.1111/dme.12817.
  101. 101.
    Nannapaneni S, Ramar K, Surani S. Effect of obstructive sleep apnea on type 2 diabetes mellitus: a comprehensive literature review. World J Diabetes. 2013;4(6):238–44.PubMedCentralPubMedCrossRefGoogle Scholar
  102. 102.
    Mason RH et al. High prevalence of sleep disordered breathing in patients with diabetic macular edema. Retina. 2012;32(9):1791–8.PubMedGoogle Scholar
  103. 103.
    Holfort SK, Jackson GR, Larsen M. Dark adaptation during transient hyperglycemia in type 2 diabetes. Exp Eye Res. 2010;91(5):710–4.PubMedCrossRefGoogle Scholar
  104. 104.
    Arden GB, Wolf JE, Tsang Y. Does dark adaptation exacerbate diabetic retinopathy? Evidence and a linking hypothesis. Vis Res. 1998;38(11):1723–9.PubMedCrossRefGoogle Scholar
  105. 105.
    Greenstein VC et al. Effects of early diabetic retinopathy on rod system sensitivity. Optom Vis Sci. 1993;70(1):18–23.PubMedCrossRefGoogle Scholar
  106. 106.
    Henson DB, North RV. Dark adaptation in diabetes mellitus. Br J Ophthalmol. 1979;63(8):539–41.PubMedCentralPubMedCrossRefGoogle Scholar
  107. 107.
    Amemiya T. Dark adaptation in diabetics. Ophthalmologica. 1977;174(6):322–6.PubMedCrossRefGoogle Scholar
  108. 108.
    Abraham FA, Haimovitz J, Berezin M. The photopic and scotopic visual thresholds in diabetics without diabetic retinopathy. Metab Pediatr Syst Ophthalmol. 1988;11(1–2):76–7.Google Scholar
  109. 109.
    Midena E et al. Macular recovery function (nyctometry) in diabetics without and with early retinopathy. Br J Ophthalmol. 1990;74(2):106–8.PubMedCentralPubMedCrossRefGoogle Scholar
  110. 110.
    Frost-Larsen K, Larsen HW. Nyctometry—a new screening method for selection of patients with simple diabetic retinopathy who are at risk of developing proliferative retinopathy. Results of a 3-year follow-up. Acta Ophthalmol (Copenh). 1983;61(3):353–61.CrossRefGoogle Scholar
  111. 111.
    Schulze DP, Freese R, Sauerwald R. Nyktometric examinations on eye function in diabetic retinopathy (author’s transl). Klin Monatsbl Augenheilkd. 1976;169(3):369–72.PubMedGoogle Scholar
  112. 112.
    Frost-Larsen K, Larsen HW. Macular recovery time recorded by nyctometry—a screening method for selection of patients who are at risk of developing proliferative diabetic retinopathy. Results of a 5-year follow-up. Acta Ophthalmol Suppl. 1985;173:39–47.PubMedGoogle Scholar
  113. 113.
    Ewing FM et al. Seeing beyond retinopathy in diabetes: electrophysiological and psychophysical abnormalities and alterations in vision. Endocr Rev. 1998;19(4):462–76.PubMedCrossRefGoogle Scholar
  114. 114.
    Wong R et al. The ChromaTest, a digital color contrast sensitivity analyzer, for diabetic maculopathy: a pilot study. BMC Ophthalmol. 2008;8:15.PubMedCentralPubMedCrossRefGoogle Scholar
  115. 115.
    Dean FM, Arden GB, Dornhorst A. Partial reversal of protan and tritan colour defects with inhaled oxygen in insulin dependent diabetic subjects. Br J Ophthalmol. 1997;81(1):27–30.PubMedCentralPubMedCrossRefGoogle Scholar
  116. 116.
    Greenstein VC et al. S (blue) cone pathway vulnerability in retinitis pigmentosa, diabetes and glaucoma. Invest Ophthalmol Vis Sci. 1989;30(8):1732–7.PubMedGoogle Scholar
  117. 117.
    Arden G, Gunduz K, Perry S. Color vision testing with a computer graphics system: preliminary results. Doc Ophthalmol. 1988;69(2):167–74.PubMedCrossRefGoogle Scholar
  118. 118.
    Holopigian K et al. Evidence for photoreceptor changes in patients with diabetic retinopathy. Invest Ophthalmol Vis Sci. 1997;38(11):2355–65.PubMedGoogle Scholar
  119. 119.
    Cho NC et al. Selective loss of S-cones in diabetic retinopathy. Arch Ophthalmol. 2000;118(10):1393–400.PubMedCrossRefGoogle Scholar
  120. 120.
    Tzekov R, Arden GB. The electroretinogram in diabetic retinopathy. Surv Ophthalmol. 1999;44(1):53–60.PubMedCrossRefGoogle Scholar
  121. 121.
    Yonemura D, Aoki T, Tsuzuki K. Electroretinogram in diabetic retinopathy. Arch Ophthalmol. 1962;68:19–24.PubMedCrossRefGoogle Scholar
  122. 122.
    Tyrberg M, Ponjavic V, Lovestam-Adrian M. Multifocal electroretinography (mfERG) in insulin dependent diabetics with and without clinically apparent retinopathy. Doc Ophthalmol. 2005;110(2–3):137–43.PubMedCrossRefGoogle Scholar
  123. 123.
    Klemp K et al. The multifocal ERG in diabetic patients without retinopathy during euglycemic clamping. Invest Ophthalmol Vis Sci. 2005;46(7):2620–6.PubMedCrossRefGoogle Scholar
  124. 124.
    Bresnick GH et al. Electroretinographic oscillatory potentials predict progression of diabetic retinopathy. Preliminary report. Arch Ophthalmol. 1984;102(9):1307–11.PubMedCrossRefGoogle Scholar
  125. 125.
    Simonsen SE. The value of the oscillatory potential in selecting juvenile diabetics at risk of developing proliferative retinopathy. Acta Ophthalmol (Copenh). 1980;58(6):865–78.CrossRefGoogle Scholar
  126. 126.
    Drasdo N et al. Effect of darkness on inner retinal hypoxia in diabetes. Lancet. 2002;359(9325):2251–3.PubMedCrossRefGoogle Scholar
  127. 127.
    Harris A et al. Hyperoxia improves contrast sensitivity in early diabetic retinopathy. Br J Ophthalmol. 1996;80(3):209–13.PubMedCentralPubMedCrossRefGoogle Scholar
  128. 128.
    Arden GB, Wolf JE Collier J, Wolff C Rosenberg M. Dark adaptation is impaired in diabetics before photopic visual losses can be seen. Can hypoxia of rods contribute to diabetic retinopathy? In: Hollyfield JG, Anderson RE, LaVail MM, editors. Retinal degenerative diseases and experimental therapy. Kluver Academic/ Plenum NY; 1999. p. 305–325.Google Scholar
  129. 129.
    Sharifipour F et al. Oxygen therapy for diabetic macular ischemia: a pilot study. Retina. 2011;31(5):937–41.PubMedCrossRefGoogle Scholar
  130. 130.
    Nguyen QD et al. Supplemental oxygen improves diabetic macular edema: a pilot study. Invest Ophthalmol Vis Sci. 2004;45(2):617–24.PubMedCrossRefGoogle Scholar
  131. 131.
    Wright JK, Franklin B, Zant E. Clinical case report: treatment of a central retinal vein occlusion with hyperbaric oxygen. Undersea Hyperb Med. 2007;34(5):315–9.PubMedGoogle Scholar
  132. 132.
    Chang YH et al. Hyperbaric oxygen therapy ameliorates the blood-retinal barrier breakdown in diabetic retinopathy. Clin Exp Ophthalmol. 2006;34(6):584–9.CrossRefGoogle Scholar
  133. 133.
    Barlow RB, Farell B, Khan M. Metabolic modulation of visual sensitivity. Adv Exp Med Biol. 2003;533:259–67.PubMedCrossRefGoogle Scholar
  134. 134.
    McFarland RA, Forbes WH. The effects of variations in the concentration of oxygen and of glucose on dark adaptation. J Gen Physiol. 1940;24(1):69–98.PubMedCentralPubMedCrossRefGoogle Scholar
  135. 135.
    Daniele S, Daniele C. Aggravation of laser-treated diabetic cystoid macular edema after prolonged flight: a case report. Aviat Space Environ Med. 1995;66(5):440–2.PubMedGoogle Scholar
  136. 136.
    Havelius U et al. Impaired dark adaptation in polycythemia. Improvement after treatment. Acta Ophthalmol Scand. 2000;78(1):53–7.PubMedCrossRefGoogle Scholar
  137. 137.
    Havelius U et al. II. Improved dark adaptation after carotid endarterectomy. Evidence of a long-term ischemic penumbra? Neurology. 1997;49(5):1360–4.PubMedCrossRefGoogle Scholar
  138. 138.
    Havelius U et al. I. Impaired dark adaptation in symptomatic carotid artery disease. Neurology. 1997;49(5):1353–9.PubMedCrossRefGoogle Scholar
  139. 139.
    McFarland RA, Halperin MH, Niven JI. Visual thresholds as an index of the modification of the effects of anoxia by glucose. Am J Physiol. 1945;144:378–88.Google Scholar
  140. 140.
    Ewing FM et al. Effect of acute hypoglycemia on visual information processing in adults with type 1 diabetes mellitus. Physiol Behav. 1998;64(5):653–60.PubMedCrossRefGoogle Scholar
  141. 141.
    McCrimmon RJ et al. Visual information processing during controlled hypoglycaemia in humans. Brain. 1996;119(Pt 4):1277–87.PubMedCrossRefGoogle Scholar
  142. 142.
    Barlow RB, Boudreau EA, Moore DC, Huckins SC, Lindstrom AM, Farell B. Glucose and time of day modulate human contrast sensitivity and fMRI signals from visual cortex. Invest Ophthalmol Vis Sci. 1997;38:S735.Google Scholar
  143. 143.
    Kurtenbach A et al. Hyperoxia, hyperglycemia, and photoreceptor sensitivity in normal and diabetic subjects. Vis Neurosci. 2006;23(3–4):651–61.PubMedGoogle Scholar
  144. 144.
    Lau JC, Linsenmeier RA. Increased intraretinal PO2 in short-term diabetic rats. Diabetes. 2014;63(12):4338–42.PubMedPubMedCentralCrossRefGoogle Scholar
  145. 145.
    Rimmer T, Linsenmeier RA. Resistance of diabetic rat electroretinogram to hypoxemia. Invest Ophthalmol Vis Sci. 1993;34(12):3246–52.PubMedGoogle Scholar
  146. 146.
    Padnick-Silver L, Linsenmeier RA. Effect of acute hyperglycemia on oxygen and oxidative metabolism in the intact cat retina. Invest Ophthalmol Vis Sci. 2003;44(2):745–50.PubMedCrossRefGoogle Scholar
  147. 147.
    van Dijk HW et al. Selective loss of inner retinal layer thickness in type 1 diabetic patients with minimal diabetic retinopathy. Invest Ophthalmol Vis Sci. 2009;50(7):3404–9.PubMedCentralPubMedCrossRefGoogle Scholar
  148. 148.
    Barber AJ, Lieth E, Khin SA, Antonetti DA, Buchanan AG, Gardner TW. Neural apoptosis in the retina during experimental and human diabetes. Early onset and effect of insulin. J Clin Invest. 1998 Aug 15;102(4):783–91.Google Scholar
  149. 149.
    Mordant DJ et al. Oxygen saturation measurements of the retinal vasculature in treated asymmetrical primary open-angle glaucoma using hyperspectral imaging. Eye (Lond). 2014;28(10):1190–200.CrossRefGoogle Scholar
  150. 150.
    Ramsey DJ, Ripps H, Qian H. An electrophysiological study of retinal function in the diabetic female rat. Invest Ophthalmol Vis Sci. 2006;47(11):5116–24.PubMedCrossRefGoogle Scholar
  151. 151.
    Tahara K, Matsuura T, Otori T. Diagnostic evaluation of diabetic retinopathy by 30-Hz flicker electroretinography. Jpn J Ophthalmol. 1993;37(2):204–10.PubMedGoogle Scholar
  152. 152.
    Ghirlanda G et al. Detection of inner retina dysfunction by steady-state focal electroretinogram pattern and flicker in early IDDM. Diabetes. 1991;40(9):1122–7.PubMedCrossRefGoogle Scholar
  153. 153.
    Bresnick GH, Palta M. Temporal aspects of the electroretinogram in diabetic retinopathy. Arch Ophthalmol. 1987;105(5):660–4.PubMedCrossRefGoogle Scholar
  154. 154.
    Sleightholm MA et al. Diabetic retinopathy: II. Assessment of severity and progression from fluorescein angiograms. J Diabet Complicat. 1988;2(3):117–20.CrossRefGoogle Scholar
  155. 155.
    Jorgensen CM, Hardarson SH, Bek T. The oxygen saturation in retinal vessels from diabetic patients depends on the severity and type of vision-threatening retinopathy. Acta Ophthalmol. 2014;92(1):34–9.PubMedCrossRefGoogle Scholar
  156. 156.
    Hsu SC, Molday RS. Glycolytic enzymes and a GLUT-1 glucose transporter in the outer segments of rod and cone photoreceptor cells. J Biol Chem. 1991;266(32):21745–52.PubMedGoogle Scholar
  157. 157.
    Hsu SC, Molday RS. Glucose metabolism in photoreceptor outer segments. Its role in phototransduction and in NADPH-requiring reactions. J Biol Chem. 1994;269(27):17954–9.PubMedGoogle Scholar
  158. 158.
    Panfoli I et al. Extra-mitochondrial aerobic metabolism in retinal rod outer segments: new perspectives in retinopathies. Med Hypotheses. 2012;78(4):423–7.PubMedCrossRefGoogle Scholar
  159. 159.
    Winkler BS. Glycolytic and oxidative metabolism in relation to retinal function. J Gen Physiol. 1981;77(6):667–92.PubMedCrossRefGoogle Scholar
  160. 160.
    Ramsey DJ, Ramsey KM, Vavvas DG. Genetic advances in ophthalmology: the role of melanopsin-expressing, intrinsically photosensitive retinal ganglion cells in the circadian organization of the visual system. Semin Ophthalmol. 2013;28(5–6):406–21.PubMedCrossRefGoogle Scholar
  161. 161.
    Arden GB. The absence of diabetic retinopathy in patients with retinitis pigmentosa: implications for pathophysiology and possible treatment. Br J Ophthalmol. 2001;85(3):366–70.PubMedCentralPubMedCrossRefGoogle Scholar
  162. 162.
    Holmes-Walker DJ, Mitchell P, Boyages SC. Does mitochondrial genome mutation in subjects with maternally inherited diabetes and deafness decrease severity of diabetic retinopathy? Diabet Med. 1998;15(11):946–52.PubMedCrossRefGoogle Scholar
  163. 163.
    Smith PR et al. Pigmentary retinal dystrophy and the syndrome of maternally inherited diabetes and deafness caused by the mitochondrial DNA 3243 tRNA(Leu) A to G mutation. Ophthalmology. 1999;106(6):1101–8.PubMedCrossRefGoogle Scholar
  164. 164.
    Pournaras CJ et al. Scatter photocoagulation restores tissue hypoxia in experimental vasoproliferative microangiopathy in miniature pigs. Ophthalmology. 1990;97(10):1329–33.PubMedCrossRefGoogle Scholar
  165. 165.
    Frank RN. Visual fields and electroretinography following extensive photocoagulation. Arch Ophthalmol. 1975;93(8):591–8.PubMedCrossRefGoogle Scholar
  166. 166.
    Laatikainen L. Preliminary report on effect of retinal panphotocoagulation on rubeosis iridis and neovascular glaucoma. Br J Ophthalmol. 1977;61(4):278–84.PubMedCentralPubMedCrossRefGoogle Scholar
  167. 167.
    Haut J et al. Treatment of diabetic retinopathy by centripetal pan-retinal photocoagulation with the argon laser. Arch Ophtalmol Rev Gen Ophtalmol. 1975;35(12):951–60.PubMedGoogle Scholar
  168. 168.
    Plumb AP et al. A comparative trial of xenon arc and argon laser photocoagulation in the treatment of proliferative diabetic retinopathy. Br J Ophthalmol. 1982;66(4):213–8.PubMedCentralPubMedCrossRefGoogle Scholar
  169. 169.
    Alder VA, Cringle SJ, Brown M. The effect of regional retinal photocoagulation on vitreal oxygen tension. Invest Ophthalmol Vis Sci. 1987;28(7):1078–85.PubMedGoogle Scholar
  170. 170.
    Stefansson E et al. Panretinal photocoagulation and retinal oxygenation in normal and diabetic cats. Am J Ophthalmol. 1986;101(6):657–64.PubMedCrossRefGoogle Scholar
  171. 171.
    Stefansson E, Landers 3rd MB, Wolbarsht ML. Increased retinal oxygen supply following pan-retinal photocoagulation and vitrectomy and lensectomy. Trans Am Ophthalmol Soc. 1981;79:307–34.PubMedCentralPubMedGoogle Scholar
  172. 172.
    Novack RL, Stefansson E, Hatchell DL. The effect of photocoagulation on the oxygenation and ultrastructure of avascular retina. Exp Eye Res. 1990;50(3):289–96.PubMedCrossRefGoogle Scholar
  173. 173.
    Molnar I et al. Effect of laser photocoagulation on oxygenation of the retina in miniature pigs. Invest Ophthalmol Vis Sci. 1985;26(10):1410–4.PubMedGoogle Scholar
  174. 174.••
    Sivaprasad S et al. A multicentre phase III randomised controlled single-masked clinical trial evaluating the clinical efficacy and safety of light-masks at preventing dark-adaptation in the treatment of early diabetic macular oedema (CLEOPATRA): study protocol for a randomised controlled trial. Trials. 2014;15:458. The outcomes of this study will provide insight into whether light-masks aimed at preventing dark-adaptation can prevent the progression of early DME. Enrollment for this trial has completed and the results from ~300 patients randomized to light-masks or observation are expected within two years time.PubMedCentralPubMedCrossRefGoogle Scholar
  175. 175.•
    McKeague C et al. Low-level night-time light therapy for age-related macular degeneration (ALight): study protocol for a randomized controlled trial. Trials. 2014;15:246. This phase I/IIa clinical trial of light at night examines the prevention of dark adaptation as a means of arresting the progression to neovascular age related macular degeneration (AMD). The hypothesis is that choroidal perfusion abnormalities promote hypoxia in AMD, which is exacerbated by the dark current.PubMedCentralPubMedCrossRefGoogle Scholar
  176. 176.
    Figueiro MG, Plitnick B, Rea MS. Pulsing blue light through closed eyelids: effects on acute melatonin suppression and phase shifting of dim light melatonin onset. Nat Sci Sleep. 2014;6:149–56.PubMedCentralPubMedCrossRefGoogle Scholar
  177. 177.
    Troxler IPV. Uber das Verschwinden gegeb- ener Gegenstande innerhalb unseres Gesichtskreises. In: Schmidt JHJA, editor. Ophthalmologische Bibliothek. Jena: Fromann; 1804. p. 1–119.Google Scholar
  178. 178.
    Ando K, Kripke DF. Light attenuation by the human eyelid. Biol Psychiatry. 1996;39(1):22–5.PubMedCrossRefGoogle Scholar
  179. 179.
    Winn B et al. Factors affecting light-adapted pupil size in normal human subjects. Invest Ophthalmol Vis Sci. 1994;35(3):1132–7.PubMedGoogle Scholar
  180. 180.
    Robinson J, Bayliss SC, Fielder AR. Transmission of light across the adult and neonatal eyelid in vivo. Vis Res. 1991;31(10):1837–40.PubMedCrossRefGoogle Scholar
  181. 181.
    Moseley MJ, Bayliss SC, Fielder AR. Light transmission through the human eyelid: in vivo measurement. Ophthalmic Physiol Opt. 1988;8(2):229–30.PubMedCrossRefGoogle Scholar
  182. 182.
    Wilhelm BJ et al. Pupil response components: studies in patients with Parinaud’s syndrome. Brain. 2002;125(Pt 10):2296–307.PubMedCrossRefGoogle Scholar
  183. 183.
    Rechtschaffen A. Current perspectives on the function of sleep. Perspect Biol Med. 1998;41(3):359–90.PubMedCrossRefGoogle Scholar
  184. 184.
    Luttrull JK, Dorin G. Subthreshold diode micropulse laser photocoagulation (SDM) as invisible retinal phototherapy for diabetic macular edema: a review. Curr Diabetes Rev. 2012;8(4):274–84.PubMedCentralPubMedCrossRefGoogle Scholar
  185. 185.
    Sivaprasad S et al. Micropulsed diode laser therapy: evolution and clinical applications. Surv Ophthalmol. 2010;55(6):516–30.PubMedCrossRefGoogle Scholar
  186. 186.
    Taban M et al. Efficacy of verteporfin photodynamic therapy on laser-induced choroidal neovascularization and the ancillary effect on diabetic microvasculopathy. Curr Eye Res. 2004;28(4):291–5.PubMedCrossRefGoogle Scholar
  187. 187.
    Ladd BS et al. Photodynamic therapy with verteporfin for choroidal neovascularization in patients with diabetic retinopathy. Am J Ophthalmol. 2001;132(5):659–67.PubMedCrossRefGoogle Scholar
  188. 188.
    Roelandts R. The history of phototherapy: something new under the sun? J Am Acad Dermatol. 2002;46(6):926–30.PubMedCrossRefGoogle Scholar
  189. 189.
    Ivandic BT, Ivandic T. Low-level laser therapy improves vision in a patient with retinitis pigmentosa. Photomed Laser Surg. 2014;32(3):181–4.PubMedCrossRefGoogle Scholar
  190. 190.••
    Calaza KC, et al. Mitochondrial decline precedes phenotype development in the complement factor H mouse model of retinal degeneration but can be corrected by near infrared light. Neurobiol Aging. 2015;36(10):2869–76. Exposure to near-infrared light may improve mitochondrial function thereby increasing ATP production countering the effects of aging and diabetes where oxidative stress and inflammation impair cellular metabolism.Google Scholar
  191. 191.
    Gkotsi D et al. Recharging mitochondrial batteries in old eyes. Near infra-red increases ATP. Exp Eye Res. 2014;122:50–3.PubMedCrossRefGoogle Scholar
  192. 192.
    Kokkinopoulos I et al. Age-related retinal inflammation is reduced by 670 nm light via increased mitochondrial membrane potential. Neurobiol Aging. 2013;34(2):602–9.PubMedCrossRefGoogle Scholar
  193. 193.
    Natoli R et al. 670 nm photobiomodulation as a novel protection against retinopathy of prematurity: evidence from oxygen induced retinopathy models. PLoS One. 2013;8(8):e72135.PubMedCentralPubMedCrossRefGoogle Scholar
  194. 194.
    Eells JT et al. Therapeutic photobiomodulation for methanol-induced retinal toxicity. Proc Natl Acad Sci U S A. 2003;100(6):3439–44.PubMedCentralPubMedCrossRefGoogle Scholar
  195. 195.•
    Tang J et al. Low-intensity far-red light inhibits early lesions that contribute to diabetic retinopathy: in vivo and in vitro. Invest Ophthalmol Vis Sci. 2013;54(5):3681–90. This study examined the effect of PBM treatment with far-red/near-infrared light (670 nm) in streptozotocin (STZ)-diabetic rats and in various commercially available cell lines exposed to hyperglycemic stress. In the animal model, abnormalities in leukostasis and expression of ICAM-1 were largely prevented; in cell culture, superoxide production, inflammatory biomarker expression, and cell death were all reduced. An important caveat to this work is that an albino animal model was utilized, which may significantly impact the properties of light exposure.PubMedCentralPubMedCrossRefGoogle Scholar
  196. 196.••
    Tang J, Herda AA, Kern TS. Photobiomodulation in the treatment of patients with non-center-involving diabetic macular oedema. Br J Ophthalmol. 2014;98(8):1013–5. Twice daily PBM treatment for only 80 seconds per treatment caused a reduction in focal retinal thickening in all 4 treated eyes in this study. Future studies of far-red/near-infrared phototherapy need evaluate the spectral and dose sensitivity of this effect.PubMedCentralPubMedCrossRefGoogle Scholar
  197. 197.
    Karu T. Primary and secondary mechanisms of action of visible to near-IR radiation on cells. J Photochem Photobiol B. 1999;49(1):1–17.PubMedCrossRefGoogle Scholar
  198. 198.•
    Begum R et al. Treatment with 670 nm light up regulates cytochrome C oxidase expression and reduces inflammation in an age-related macular degeneration model. PLoS One. 2013;8(2):e57828. This study examined the effect of PBM treatment with far-red/near-infrared light (670 nm) in the complement factor H knockout (CFH(−/−)) mouse model of AMD. A significant reduction in complement component C3, an inflammatory marker, was observed in the outer retina. The authors propose that environmental exposure to PBM may be effective in reducing inflammation in AMD and suggest COX activation as the mechanism.PubMedCentralPubMedCrossRefGoogle Scholar
  199. 199.
    Poyton RO, Ball KA. Therapeutic photobiomodulation: nitric oxide and a novel function of mitochondrial cytochrome C oxidase. Discov Med. 2011;11(57):154–9.PubMedGoogle Scholar
  200. 200.
    Yeager RL et al. Melatonin as a principal component of red light therapy. Med Hypotheses. 2007;69(2):372–6.PubMedCrossRefGoogle Scholar
  201. 201.
    Purves D, Williams SM. Neuroscience. Sunderland: Sinauer Associates; 2001. p. xviii, 681, 16, 3, 25 p.Google Scholar
  202. 202.
    Bone RA, Landrum JT, Tarsis SL. Preliminary identification of the human macular pigment. Vis Res. 1985;25(11):1531–5.PubMedCrossRefGoogle Scholar
  203. 203.
    Geeraets WJ et al. The loss of light energy in retina and choroid. Arch Ophthalmol. 1960;64:606–15.PubMedCrossRefGoogle Scholar
  204. 204.
    Solomon SG, Lennie P. The machinery of colour vision. Nat Rev Neurosci. 2007;8(4):276–86.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of Ophthalmology, Lahey Hospital & Medical CenterTufts University School of MedicineBurlingtonUSA
  2. 2.University College LondonLondonUK
  3. 3.Moorfields Eye Hospital NHS Foundation TrustLondonUK

Personalised recommendations