Current Diabetes Reports

, 15:82 | Cite as

Targeting Inflammation Through a Physical Active Lifestyle and Pharmaceuticals for the Treatment of Type 2 Diabetes

  • Sine Haugaard Knudsen
  • Bente Klarlund Pedersen
Pharmacologic Treatment of Type 2 Diabetes (HE Lebovitz and G Bahtiyar, Section Editors)
Part of the following topical collections:
  1. Topical Collection on Pharmacologic Treatment of Type 2 Diabetes

Abstract

Evidence exists that interleukin (IL)-1β is involved in pancreatic β-cell damage, whereas TNF-α appears to be a key molecule in peripheral insulin resistance. Although increased plasma levels of IL-6 are seen in individuals with type 2 diabetes, mechanistic studies suggest that moderate acute elevations in IL-6, as provoked by exercise, exert anti-inflammatory effects by an inhibition of TNF-α and by stimulating IL-1 receptor antagonist (ra), thereby limiting IL-1β signaling. A number of medical treatments have anti-inflammatory effects. IL-1 antagonists have been tested in clinical studies and appear very promising. Also, there is a potential for anti-TNF-α strategies and salsalate has been shown to improve insulin sensitivity in clinical trials. Furthermore, the anti-inflammatory potential of statins, antagonists of the renin–angiotensin system, and glucose-lowering agents are discussed. While waiting for the outcome of long-term clinical pharmacological trials, it should be emphasized that physical activity represents a natural strong anti-inflammatory intervention with little or no side effects.

Keywords

Exercise Physical training Anti-inflammation Myokines Drugs 

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Pedersen BK. The diseasome of physical inactivity and the role of myokines in muscle-fat cross talk. J Physiol. 2009;587:5559–68.PubMedCentralPubMedCrossRefGoogle Scholar
  2. 2.
    Handschin C, Spiegelman BM. The role of exercise and PGC1alpha in inflammation and chronic disease. Nature. 2008;454:463–9.PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Esser N, Legrand-Poels S, Piette J, et al. Inflammation as a link between obesity, metabolic syndrome and type 2 diabetes. Diabetes Res Clin Pract. 2014;105:141–50.PubMedCrossRefGoogle Scholar
  4. 4.
    Kahn SE, Cooper ME, Del Prato S. Pathophysiology and treatment of type 2 diabetes: perspectives on the past, present, and future. Lancet. 2014;383:1068–83.PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Shoelson SE, Lee J, Goldfine AB. Inflammation and insulin resistance. J Clin Invest. 2006;116:1793–801.PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Donath MY, Shoelson SE. Type 2 diabetes as an inflammatory disease. Nat Rev Immunol. 2011;11:98–107.PubMedCrossRefGoogle Scholar
  7. 7.
    Chawla A, Nguyen KD, Goh YP. Macrophage-mediated inflammation in metabolic disease. Nat Rev Immunol. 2011;11:738–49.PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Ouchi N, Parker JL, Lugus JJ, et al. Adipokines in inflammation and metabolic disease. Nat Rev Immunol. 2011;11:85–97.PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Pickup JC, Mattock MB, Chusney GD, et al. NIDDM as a disease of the innate immune system: association of acute-phase reactants and interleukin-6 with metabolic syndrome X. Diabetologia. 1997;40:1286–92.PubMedCrossRefGoogle Scholar
  10. 10.
    Spranger J, Kroke A, Mohlig M, et al. Inflammatory cytokines and the risk to develop type 2 diabetes: results of the prospective population-based European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam Study. Diabetes. 2003;52:812–7.PubMedCrossRefGoogle Scholar
  11. 11.
    Herder C, Illig T, Rathmann W, et al. Inflammation and type 2 diabetes: results from KORA Augsburg. Gesundheitswesen. 2005;67 Suppl 1:S115–21.PubMedCrossRefGoogle Scholar
  12. 12.
    Herder C, Brunner EJ, Rathmann W, et al. Elevated levels of the anti-inflammatory interleukin-1 receptor antagonist precede the onset of type 2 diabetes: the Whitehall II study. Diabetes Care. 2009;32:421–3.PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Pedersen M, Bruunsgaard H, Weis N, et al. Circulating levels of TNF-alpha and IL-6-relation to truncal fat mass and muscle mass in healthy elderly individuals and in patients with type-2 diabetes. Mech Ageing Dev. 2003;124:495–502.PubMedCrossRefGoogle Scholar
  14. 14.
    Plomgaard P, Nielsen AR, Fischer CP, et al. Associations between insulin resistance and TNF-alpha in plasma, skeletal muscle and adipose tissue in humans with and without type 2 diabetes. Diabetologia. 2007;50:2562–71.PubMedCrossRefGoogle Scholar
  15. 15.
    Pradhan AD, Manson JE, Rifai N, et al. C-reactive protein, interleukin 6, and risk of developing type 2 diabetes mellitus. JAMA. 2001;286:327–34.PubMedCrossRefGoogle Scholar
  16. 16.
    Carstensen M, Herder C, Kivimaki M, et al. Accelerated increase in serum interleukin-1 receptor antagonist starts 6 years before diagnosis of type 2 diabetes: Whitehall II prospective cohort study. Diabetes. 2010;59:1222–7.PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Eguchi K, Manabe I. Macrophages and islet inflammation in type 2 diabetes. Diabetes Obes Metab. 2013;15 Suppl 3:152–8.PubMedCrossRefGoogle Scholar
  18. 18.
    Ehses JA, Perren A, Eppler E, et al. Increased number of islet-associated macrophages in type 2 diabetes. Diabetes. 2007;56:2356–70.PubMedCrossRefGoogle Scholar
  19. 19.
    Westwell-Roper CY, Ehses JA, Verchere CB. Resident macrophages mediate islet amyloid polypeptide-induced islet IL-1beta production and beta-cell dysfunction. Diabetes. 2014;63:1698–711.PubMedCrossRefGoogle Scholar
  20. 20.
    Larsen CM, Faulenbach M, Vaag A, et al. Interleukin-1-receptor antagonist in type 2 diabetes mellitus. N Engl J Med. 2007;356:1517–26.PubMedCrossRefGoogle Scholar
  21. 21.
    Hotamisligil GS, Peraldi P, Budavari A, et al. IRS-1-mediated inhibition of insulin receptor tyrosine kinase activity in TNF-alpha- and obesity-induced insulin resistance. Science. 1996;271:665–8.PubMedCrossRefGoogle Scholar
  22. 22.
    Uysal KT, Wiesbrock SM, Marino MW, et al. Protection from obesity-induced insulin resistance in mice lacking TNF-alpha function. Nature. 1997;389:610–4.PubMedCrossRefGoogle Scholar
  23. 23.
    Plomgaard P, Bouzakri K, Krogh-Madsen R, et al. Tumor necrosis factor-alpha induces skeletal muscle insulin resistance in healthy human subjects via inhibition of Akt substrate 160 phosphorylation. Diabetes. 2005;54:2939–45.PubMedCrossRefGoogle Scholar
  24. 24.
    Petersen AM, Pedersen BK. The anti-inflammatory effect of exercise. J Appl Physiol (1985). 2005;98(4):1154–62.Google Scholar
  25. 25.
    Pedersen BK, Saltin B. Evidence for prescribing exercise as therapy in chronic disease. Scand J Med Sci Sports. 2006;16 Suppl 1:3–63.PubMedCrossRefGoogle Scholar
  26. 26.•
    Pedersen BK. Muscle as a secretory organ. Compr Physiol. 2013;3:1337–62. A comprehensive review on the function of the skeletal muscle as a secretory and endocrine organ.PubMedGoogle Scholar
  27. 27.
    Pedersen BK, Febbraio M. Muscle-derived interleukin-6—a possible link between skeletal muscle, adipose tissue, liver, and brain. Brain Behav Immun. 2005;19:371–6.PubMedCrossRefGoogle Scholar
  28. 28.••
    Benatti FB, Pedersen BK. Exercise as an anti-inflammatory therapy for rheumatic diseases-myokine regulation. Nat Rev Rheumatol. 2015;11:86–97. A comprehensive review on anti-inflammatory effects of exercise in the context of rheumatic diseases.PubMedCrossRefGoogle Scholar
  29. 29.
    Pedersen BK, Febbraio MA. Muscles, exercise and obesity: skeletal muscle as a secretory organ. Nat Rev Endocrinol. 2012;8:457–65.PubMedCrossRefGoogle Scholar
  30. 30.
    Steensberg A, Fischer CP, Keller C, et al. IL-6 enhances plasma IL-1ra, IL-10, and cortisol in humans. Am J Physiol Endocrinol Metab. 2003;285:E433–7.PubMedCrossRefGoogle Scholar
  31. 31.
    Andreasen AS, Krabbe KS, Krogh-Madsen R, et al. Human endotoxemia as a model of systemic inflammation. Curr Med Chem. 2008;15:1697–705.PubMedCrossRefGoogle Scholar
  32. 32.
    Starkie R, Ostrowski SR, Jauffred S, et al. Exercise and IL-6 infusion inhibit endotoxin-induced TNF-alpha production in humans. FASEB J. 2003;17:884–6.PubMedGoogle Scholar
  33. 33.
    Schindler R, Mancilla J, Endres S, et al. Correlations and interactions in the production of interleukin-6 (IL-6), IL-1, and tumor necrosis factor (TNF) in human blood mononuclear cells: IL-6 suppresses IL-1 and TNF. Blood. 1990;75:40–7.PubMedGoogle Scholar
  34. 34.
    Mizuhara H, O’Neill E, Seki N, et al. T cell activation-associated hepatic injury: mediation by tumor necrosis factors and protection by interleukin 6. J Exp Med. 1994;179:1529–37.PubMedCrossRefGoogle Scholar
  35. 35.
    Ellingsgaard H, Ehses JA, Hammar EB, et al. Interleukin-6 regulates pancreatic alpha-cell mass expansion. Proc Natl Acad Sci U S A. 2008;105:13163–8.PubMedCentralPubMedCrossRefGoogle Scholar
  36. 36.
    Ellingsgaard H, Hauselmann I, Schuler B, et al. Interleukin-6 enhances insulin secretion by increasing glucagon-like peptide-1 secretion from L cells and alpha cells. Nat Med. 2011;17:1481–9.PubMedCentralPubMedCrossRefGoogle Scholar
  37. 37.
    Pischon T, Boeing H, Hoffmann K, et al. General and abdominal adiposity and risk of death in Europe. NEnglJMed. 2008;359:2105–20.CrossRefGoogle Scholar
  38. 38.
    Yudkin JS. Inflammation, obesity, and the metabolic syndrome. Horm Metab Res. 2007;39:707–9.PubMedCrossRefGoogle Scholar
  39. 39.
    Pedersen BK, Febbraio MA. Muscle as an endocrine organ: focus on muscle-derived interleukin-6. Physiol Rev. 2008;88:1379–406.PubMedCrossRefGoogle Scholar
  40. 40.
    Olsen RH, Krogh-Madsen R, Thomsen C, et al. Metabolic responses to reduced daily steps in healthy nonexercising men. JAMA. 2008;299:1261–3.PubMedCrossRefGoogle Scholar
  41. 41.
    Krogh-Madsen R, Pedersen M, Solomon TP, et al. Normal physical activity obliterates the deleterious effects of a high-caloric intake. J Appl Physiol (1985). 2014;116:231–9.CrossRefGoogle Scholar
  42. 42.
    Knudsen SH, Hansen LS, Pedersen M, et al. Changes in insulin sensitivity precede changes in body composition during 14 days of step reduction combined with overfeeding in healthy young men. J Appl Physiol (1985). 2012;113:7–15.CrossRefGoogle Scholar
  43. 43.
    Donath MY, Storling J, Maedler K, et al. Inflammatory mediators and islet beta-cell failure: a link between type 1 and type 2 diabetes. J Mol Med (Berl). 2003;81:455–70.CrossRefGoogle Scholar
  44. 44.••
    Donath MY. Targeting inflammation in the treatment of type 2 diabetes: time to start. Nat Rev Drug Discov. 2014;13:465–76. A comprehensive review on anti-inflammatory treatment in type 2 diabetes.PubMedCrossRefGoogle Scholar
  45. 45.
    Maedler K, Sergeev P, Ris F, et al. Glucose-induced beta cell production of IL-1beta contributes to glucotoxicity in human pancreatic islets. J Clin Invest. 2002;110:851–60.PubMedCentralPubMedCrossRefGoogle Scholar
  46. 46.••
    Hensen J, Howard CP, Walter V, et al. Impact of interleukin-1beta antibody (canakinumab) on glycaemic indicators in patients with type 2 diabetes mellitus: results of secondary endpoints from a randomized, placebo-controlled trial. Diabetes Metab. 2013;39:524–31. One of the most recent clinical trial testing anti-interleukin-1beta treatment in individuals with type 2 diabetes.PubMedCrossRefGoogle Scholar
  47. 47.
    Koenen TB, Stienstra R, van Tits LJ, et al. Hyperglycemia activates caspase-1 and TXNIP-mediated IL-1beta transcription in human adipose tissue. Diabetes. 2011;60:517–24.PubMedCentralPubMedCrossRefGoogle Scholar
  48. 48.
    Larsen CM, Faulenbach M, Vaag A, et al. Sustained effects of interleukin-1 receptor antagonist treatment in type 2 diabetes. Diabetes Care. 2009;32:1663–8.PubMedCentralPubMedCrossRefGoogle Scholar
  49. 49.
    Rissanen A, Howard CP, Botha J, et al. Effect of anti-IL-1beta antibody (canakinumab) on insulin secretion rates in impaired glucose tolerance or type 2 diabetes: results of a randomized, placebo-controlled trial. Diabetes Obes Metab. 2012;14:1088–96.PubMedCrossRefGoogle Scholar
  50. 50.
    Sloan-Lancaster J, Abu-Raddad E, Polzer J, et al. Double-blind, randomized study evaluating the glycemic and anti-inflammatory effects of subcutaneous LY2189102, a neutralizing IL-1beta antibody, in patients with type 2 diabetes. Diabetes Care. 2013;36:2239–46.PubMedCentralPubMedCrossRefGoogle Scholar
  51. 51.
    van Asseldonk EJ, Stienstra R, Koenen TB, et al. Treatment with anakinra improves disposition index but not insulin sensitivity in nondiabetic subjects with the metabolic syndrome: a randomized, double-blind, placebo-controlled study. J Clin Endocrinol Metab. 2011;96:2119–26.PubMedCrossRefGoogle Scholar
  52. 52.
    van Poppel PC, van Asseldonk EJ, Holst JJ, et al. The interleukin-1 receptor antagonist anakinra improves first-phase insulin secretion and insulinogenic index in subjects with impaired glucose tolerance. Diabetes Obes Metab. 2014;16:1269–73.PubMedCrossRefGoogle Scholar
  53. 53.
    Vandanmagsar B, Youm YH, Ravussin A, et al. The NLRP3 inflammasome instigates obesity-induced inflammation and insulin resistance. Nat Med. 2011;17:179–88.PubMedCentralPubMedCrossRefGoogle Scholar
  54. 54.
    Butcher MJ, Hallinger D, Garcia E, et al. Association of proinflammatory cytokines and islet resident leucocytes with islet dysfunction in type 2 diabetes. Diabetologia. 2014;57:491–501.PubMedCentralPubMedCrossRefGoogle Scholar
  55. 55.
    Boni-Schnetzler M, Thorne J, Parnaud G, et al. Increased interleukin (IL)-1beta messenger ribonucleic acid expression in beta-cells of individuals with type 2 diabetes and regulation of IL-1beta in human islets by glucose and autostimulation. J Clin Endocrinol Metab. 2008;93:4065–74.PubMedCentralPubMedCrossRefGoogle Scholar
  56. 56.
    Cavelti-Weder C, Babians-Brunner A, Keller C, et al. Effects of gevokizumab on glycemia and inflammatory markers in type 2 diabetes. Diabetes Care. 2012;35:1654–62.PubMedCentralPubMedCrossRefGoogle Scholar
  57. 57.
    Ridker PM, Thuren T, Zalewski A, et al. Interleukin-1beta inhibition and the prevention of recurrent cardiovascular events: rationale and design of the Canakinumab Anti-inflammatory Thrombosis Outcomes Study (CANTOS). Am Heart J. 2011;162:597–605.PubMedCrossRefGoogle Scholar
  58. 58.
    Rafiq S, Stevens K, Hurst AJ, et al. Common genetic variation in the gene encoding interleukin-1-receptor antagonist (IL-1RA) is associated with altered circulating IL-1RA levels. Genes Immun. 2007;8:344–51.PubMedCrossRefGoogle Scholar
  59. 59.
    Hotamisligil GS, Shargill NS, Spiegelman BM. Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance. Science. 1993;259:87–91.PubMedCrossRefGoogle Scholar
  60. 60.
    Garcia FA, Reboucas JF, Balbino TQ, et al. Pentoxifylline reduces the inflammatory process in diabetic rats: relationship with decreases of pro-inflammatory cytokines and inducible nitric oxide synthase. J Inflamm (Lond). 2015;12:33.CrossRefGoogle Scholar
  61. 61.
    Ofei F, Hurel S, Newkirk J, et al. Effects of an engineered human anti-TNF-alpha antibody (CDP571) on insulin sensitivity and glycemic control in patients with NIDDM. Diabetes. 1996;45:881–5.PubMedCrossRefGoogle Scholar
  62. 62.
    Paquot N, Castillo MJ, Lefebvre PJ, et al. No increased insulin sensitivity after a single intravenous administration of a recombinant human tumor necrosis factor receptor: Fc fusion protein in obese insulin-resistant patients. J Clin Endocrinol Metab. 2000;85:1316–9.PubMedGoogle Scholar
  63. 63.
    Bernstein LE, Berry J, Kim S, et al. Effects of etanercept in patients with the metabolic syndrome. Arch Intern Med. 2006;166:902–8.PubMedCentralPubMedCrossRefGoogle Scholar
  64. 64.
    Dominguez H, Storgaard H, Rask-Madsen C, et al. Metabolic and vascular effects of tumor necrosis factor-alpha blockade with etanercept in obese patients with type 2 diabetes. J Vasc Res. 2005;42:517–25.PubMedCrossRefGoogle Scholar
  65. 65.
    Stanley TL, Zanni MV, Johnsen S, et al. TNF-alpha antagonism with etanercept decreases glucose and increases the proportion of high molecular weight adiponectin in obese subjects with features of the metabolic syndrome. J Clin Endocrinol Metab. 2011;96:E146–50.PubMedCentralPubMedCrossRefGoogle Scholar
  66. 66.
    Navarro JF, Mora C, Muros M, et al. Additive antiproteinuric effect of pentoxifylline in patients with type 2 diabetes under angiotensin II receptor blockade: a short-term, randomized, controlled trial. J Am Soc Nephrol. 2005;16:2119–26.PubMedCrossRefGoogle Scholar
  67. 67.
    Mauer J, Chaurasia B, Goldau J, et al. Signaling by IL-6 promotes alternative activation of macrophages to limit endotoxemia and obesity-associated resistance to insulin. Nat Immunol. 2014;15:423–30.PubMedCentralPubMedCrossRefGoogle Scholar
  68. 68.
    Serrano AL, Baeza-Raja B, Perdiguero E, et al. Interleukin-6 is an essential regulator of satellite cell-mediated skeletal muscle hypertrophy. Cell Metab. 2008;7:33–44.PubMedCrossRefGoogle Scholar
  69. 69.
    Munoz-Canoves P, Scheele C, Pedersen BK, et al. Interleukin-6 myokine signaling in skeletal muscle: a double-edged sword? FEBS J. 2013;280:4131–48.PubMedCentralPubMedCrossRefGoogle Scholar
  70. 70.
    Carey AL, Lamont B, Andrikopoulos S, et al. Interleukin-6 gene expression is increased in insulin-resistant rat skeletal muscle following insulin stimulation. Biochem Biophys Res Commun. 2003;302:837–40.PubMedCrossRefGoogle Scholar
  71. 71.
    Wallenius V, Wallenius K, Ahren B, et al. Interleukin-6-deficient mice develop mature-onset obesity. Nat Med. 2002;8:75–9.PubMedCrossRefGoogle Scholar
  72. 72.
    Stouthard JM, Romijn JA, Van der Poll T, et al. Endocrinologic and metabolic effects of interleukin-6 in humans. Am J Physiol. 1995;268:E813–9.PubMedGoogle Scholar
  73. 73.
    Tsigos C, Papanicolaou DA, Kyrou I, et al. Dose-dependent effects of recombinant human interleukin-6 on glucose regulation. J Clin Endocrinol Metab. 1997;82:4167–70.PubMedCrossRefGoogle Scholar
  74. 74.
    Steensberg A, Fischer CP, Sacchetti M, et al. Acute interleukin-6 administration does not impair muscle glucose uptake or whole-body glucose disposal in healthy humans. J Physiol. 2003;548:631–8.PubMedCentralPubMedCrossRefGoogle Scholar
  75. 75.
    Carey AL, Steinberg GR, Macaulay SL, et al. Interleukin-6 increases insulin-stimulated glucose disposal in humans and glucose uptake and fatty acid oxidation in vitro via AMP-activated protein kinase. Diabetes. 2006;55:2688–97.PubMedCrossRefGoogle Scholar
  76. 76.
    Harder-Lauridsen NM, Krogh-Madsen R, Holst JJ, et al. Effect of IL-6 on the insulin sensitivity in patients with type 2 diabetes. Am J Physiol Endocrinol Metab. 2014;306:E769–78.PubMedCrossRefGoogle Scholar
  77. 77.
    Jiang LQ, Duque-Guimaraes DE, Machado UF, et al. Altered response of skeletal muscle to IL-6 in type 2 diabetic patients. Diabetes. 2013;62:355–61.PubMedCentralPubMedCrossRefGoogle Scholar
  78. 78.
    Scheele C, Nielsen S, Kelly M, et al. Satellite cells derived from obese humans with type 2 diabetes and differentiated into myocytes in vitro exhibit abnormal response to IL-6. PLoS One. 2012;7:e39657. 1–10.PubMedCentralPubMedCrossRefGoogle Scholar
  79. 79.
    Febbraio MA, Rose-John S, Pedersen BK. Is interleukin-6 receptor blockade the Holy Grail for inflammatory diseases? Clin Pharmacol Ther. 2010;87:396–8.PubMedCrossRefGoogle Scholar
  80. 80.
    Nishimoto N. Clinical studies in patients with Castleman’s disease, Crohn’s disease, and rheumatoid arthritis in Japan. Clin Rev Allergy Immunol. 2005;28:221–30.PubMedCrossRefGoogle Scholar
  81. 81.•
    Goldfine AB, Fonseca V, Jablonski KA, et al. Salicylate (salsalate) in patients with type 2 diabetes: a randomized trial. Ann Intern Med. 2013;159:1–12. The most recent clinical trial testing salsalate in individuals with type 2 diabetes.PubMedCentralPubMedCrossRefGoogle Scholar
  82. 82.
    Fleischman A, Shoelson SE, Bernier R, et al. Salsalate improves glycemia and inflammatory parameters in obese young adults. Diabetes Care. 2008;31:289–94.PubMedCentralPubMedCrossRefGoogle Scholar
  83. 83.
    Goldfine AB, Silver R, Aldhahi W, et al. Use of salsalate to target inflammation in the treatment of insulin resistance and type 2 diabetes. Clin Transl Sci. 2008;1:36–43.PubMedCentralPubMedCrossRefGoogle Scholar
  84. 84.
    Koska J, Ortega E, Bunt JC, et al. The effect of salsalate on insulin action and glucose tolerance in obese non-diabetic patients: results of a randomised double-blind placebo-controlled study. Diabetologia. 2009;52:385–93.PubMedCentralPubMedCrossRefGoogle Scholar
  85. 85.
    Yuan M, Konstantopoulos N, Lee J, et al. Reversal of obesity- and diet-induced insulin resistance with salicylates or targeted disruption of Ikkbeta. Science. 2001;293:1673–7.PubMedCrossRefGoogle Scholar
  86. 86.
    Baur JA, Pearson KJ, Price NL, et al. Resveratrol improves health and survival of mice on a high-calorie diet. Nature. 2006;444:337–42.PubMedCrossRefGoogle Scholar
  87. 87.
    Timmers S, Konings E, Bilet L, et al. Calorie restriction-like effects of 30 days of resveratrol supplementation on energy metabolism and metabolic profile in obese humans. Cell Metab. 2011;14:612–22.PubMedCrossRefGoogle Scholar
  88. 88.
    Tome-Carneiro J, Larrosa M, Yanez-Gascon MJ, et al. One-year supplementation with a grape extract containing resveratrol modulates inflammatory-related microRNAs and cytokines expression in peripheral blood mononuclear cells of type 2 diabetes and hypertensive patients with coronary artery disease. Pharmacol Res. 2013;72:69–82.PubMedCrossRefGoogle Scholar
  89. 89.
    Zagotta I, Dimova EY, Debatin KM, et al. Obesity and inflammation: reduced cytokine expression due to resveratrol in a human in vitro model of inflamed adipose tissue. Front Pharmacol. 2015;6:79. 1–10.PubMedCentralPubMedCrossRefGoogle Scholar
  90. 90.
    Poulsen MM, Vestergaard PF, Clasen BF, et al. High-dose resveratrol supplementation in obese men: an investigator-initiated, randomized, placebo-controlled clinical trial of substrate metabolism, insulin sensitivity, and body composition. Diabetes. 2013;62:1186–95.PubMedCentralPubMedCrossRefGoogle Scholar
  91. 91.
    Olesen J, Gliemann L, Bienso R, et al. Exercise training, but not resveratrol, improves metabolic and inflammatory status in skeletal muscle of aged men. J Physiol. 2014;592:1873–86.PubMedCentralPubMedCrossRefGoogle Scholar
  92. 92.
    Gliemann L, Schmidt JF, Olesen J, et al. Resveratrol blunts the positive effects of exercise training on cardiovascular health in aged men. J Physiol. 2013;591:5047–59.PubMedCentralPubMedCrossRefGoogle Scholar
  93. 93.•
    Scheen AJ, Esser N, Paquot N. Antidiabetic agents: potential anti-inflammatory activity beyond glucose control. Diabetes Metab. 2015. doi:10.1016/j.diabet.2015.02.003. A comprehensive review on anti-inflammatory effects of glucose-lowering treatment in type 2 diabetes.Google Scholar
  94. 94.
    Chaudhuri A, Ghanim H, Vora M, et al. Exenatide exerts a potent antiinflammatory effect. J Clin Endocrinol Metab. 2012;97:198–207.PubMedCentralPubMedCrossRefGoogle Scholar
  95. 95.
    Ferdaoussi M, Abdelli S, Yang JY, et al. Exendin-4 protects beta-cells from interleukin-1 beta-induced apoptosis by interfering with the c-Jun NH2-terminal kinase pathway. Diabetes. 2008;57:1205–15.PubMedCrossRefGoogle Scholar
  96. 96.
    Makdissi A, Ghanim H, Vora M, et al. Sitagliptin exerts an antinflammatory action. J Clin Endocrinol Metab. 2012;97:3333–41.PubMedCentralPubMedCrossRefGoogle Scholar
  97. 97.
    Omar BA, Vikman J, Winzell MS, et al. Enhanced beta cell function and anti-inflammatory effect after chronic treatment with the dipeptidyl peptidase-4 inhibitor vildagliptin in an advanced-aged diet-induced obesity mouse model. Diabetologia. 2013;56:1752–60.PubMedCrossRefGoogle Scholar
  98. 98.
    Pugazhenthi U, Velmurugan K, Tran A, et al. Anti-inflammatory action of exendin-4 in human islets is enhanced by phosphodiesterase inhibitors: potential therapeutic benefits in diabetic patients. Diabetologia. 2010;53:2357–68.PubMedCrossRefGoogle Scholar
  99. 99.•
    Hogan AE, Gaoatswe G, Lynch L, et al. Glucagon-like peptide 1 analogue therapy directly modulates innate immune-mediated inflammation in individuals with type 2 diabetes mellitus. Diabetologia. 2014;57:781–4. Anti-inflammatory effects of glucagon-like peptide 1 analogue therapy in individuals with type 2 diabetes.PubMedCrossRefGoogle Scholar
  100. 100.
    Diaz-Delfin J, Morales M, Caelles C. Hypoglycemic action of thiazolidinediones/peroxisome proliferator-activated receptor gamma by inhibition of the c-Jun NH2-terminal kinase pathway. Diabetes. 2007;56:1865–71.PubMedCrossRefGoogle Scholar
  101. 101.
    Isoda K, Young JL, Zirlik A, et al. Metformin inhibits proinflammatory responses and nuclear factor-kappaB in human vascular wall cells. Arterioscler Thromb Vasc Biol. 2006;26:611–7.PubMedCrossRefGoogle Scholar
  102. 102.
    Lee HM, Kim JJ, Kim HJ, et al. Upregulated NLRP3 inflammasome activation in patients with type 2 diabetes. Diabetes. 2013;62:194–204.PubMedCentralPubMedCrossRefGoogle Scholar
  103. 103.
    Stocker DJ, Taylor AJ, Langley RW, et al. A randomized trial of the effects of rosiglitazone and metformin on inflammation and subclinical atherosclerosis in patients with type 2 diabetes. Am Heart J. 2007;153:445–6.PubMedCrossRefGoogle Scholar
  104. 104.
    Lamkanfi M, Mueller JL, Vitari AC, et al. Glyburide inhibits the Cryopyrin/Nalp3 inflammasome. J Cell Biol. 2009;187:61–70.PubMedCentralPubMedCrossRefGoogle Scholar
  105. 105.
    Derosa G, Cicero AF, Fogari E, et al. Pioglitazone compared to glibenclamide on lipid profile and inflammation markers in type 2 diabetic patients during an oral fat load. Horm Metab Res. 2011;43:505–12.PubMedCrossRefGoogle Scholar
  106. 106.
    Schondorf T, Musholt PB, Hohberg C, et al. The fixed combination of pioglitazone and metformin improves biomarkers of platelet function and chronic inflammation in type 2 diabetes patients: results from the PIOfix study. J Diabetes Sci Technol. 2011;5:426–32.PubMedCentralPubMedCrossRefGoogle Scholar
  107. 107.
    Tung D, Cheung PH, Ciallella J, et al. Novel anti-inflammatory effects of repaglinide in rodent models of inflammation. Pharmacology. 2011;88:295–301.PubMedCrossRefGoogle Scholar
  108. 108.
    Derosa G, Maffioli P, Ferrari I, et al. Acarbose actions on insulin resistance and inflammatory parameters during an oral fat load. Eur J Pharmacol. 2011;651:240–50.PubMedCrossRefGoogle Scholar
  109. 109.
    van der Zijl NJ, Moors CC, Goossens GH, et al. Does interference with the renin-angiotensin system protect against diabetes? Evidence and mechanisms. Diabetes Obes Metab. 2012;14:586–95.PubMedCrossRefGoogle Scholar
  110. 110.
    Jandeleit-Dahm KA, Tikellis C, Reid CM, et al. Why blockade of the renin-angiotensin system reduces the incidence of new-onset diabetes. J Hypertens. 2005;23:463–73.PubMedCrossRefGoogle Scholar
  111. 111.
    Fujisaka S, Usui I, Kanatani Y, et al. Telmisartan improves insulin resistance and modulates adipose tissue macrophage polarization in high-fat-fed mice. Endocrinology. 2011;152:1789–99.PubMedCrossRefGoogle Scholar
  112. 112.
    Manabe S, Okura T, Watanabe S, et al. Effects of angiotensin II receptor blockade with valsartan on pro-inflammatory cytokines in patients with essential hypertension. J Cardiovasc Pharmacol. 2005;46:735–9.PubMedCrossRefGoogle Scholar
  113. 113.
    Pavlatou MG, Mastorakos G, Margeli A, et al. Angiotensin blockade in diabetic patients decreases insulin resistance-associated low-grade inflammation. Eur J Clin Invest. 2011;41:652–8.PubMedCrossRefGoogle Scholar
  114. 114.
    Feldman M, Jialal I, Devaraj S, et al. Effects of low-dose aspirin on serum C-reactive protein and thromboxane B2 concentrations: a placebo-controlled study using a highly sensitive C-reactive protein assay. J Am Coll Cardiol. 2001;37:2036–41.PubMedCrossRefGoogle Scholar
  115. 115.
    Ridker PM, Rifai N, Pfeffer MA, et al. Long-term effects of pravastatin on plasma concentration of C-reactive protein. The Cholesterol and Recurrent Events (CARE) Investigators. Circulation. 1999;100:230–5.PubMedCrossRefGoogle Scholar
  116. 116.
    Jialal I, Miguelino E, Griffen SC, et al. Concomitant reduction of low-density lipoprotein-cholesterol and biomarkers of inflammation with low-dose simvastatin therapy in patients with type 1 diabetes. J Clin Endocrinol Metab. 2007;92:3136–40.PubMedCentralPubMedCrossRefGoogle Scholar
  117. 117.
    Erikstrup C, Ullum H, Pedersen BK. Short-term simvastatin treatment has no effect on plasma cytokine response in a human in vivo model of low-grade inflammation. Clin Exp Immunol. 2006;144:94–100.PubMedCentralPubMedCrossRefGoogle Scholar
  118. 118.
    Coward WR, Marei A, Yang A, et al. Statin-induced proinflammatory response in mitogen-activated peripheral blood mononuclear cells through the activation of caspase-1 and IL-18 secretion in monocytes. J Immunol. 2006;176:5284–92.PubMedCrossRefGoogle Scholar
  119. 119.
    Kuijk LM, Mandey SH, Schellens I, et al. Statin synergizes with LPS to induce IL-1beta release by THP-1 cells through activation of caspase-1. Mol Immunol. 2008;45:2158–65.PubMedCrossRefGoogle Scholar
  120. 120.
    Ridker PM, Danielson E, Fonseca FA, et al. Rosuvastatin to prevent vascular events in men and women with elevated C-reactive protein. N Engl J Med. 2008;359:2195–207.PubMedCrossRefGoogle Scholar
  121. 121.
    Sattar N, Preiss D, Murray HM, et al. Statins and risk of incident diabetes: a collaborative meta-analysis of randomised statin trials. Lancet. 2010;375:735–42.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Sine Haugaard Knudsen
    • 1
  • Bente Klarlund Pedersen
    • 1
  1. 1.Centre of Inflammation and Metabolism/Centre of Physical Activity Research (CIM/CFAS), RigshospitaletUniversity of CopenhagenCopenhagenDenmark

Personalised recommendations