Advertisement

Preeclampsia and Diabetes

  • Tracey L. WeissgerberEmail author
  • Lanay M. Mudd
Diabetes and Pregnancy (CJ Homko, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Diabetes and Pregnancy

Abstract

Preeclampsia is diagnosed in women presenting with new onset hypertension accompanied by proteinuria or other signs of severe organ dysfunction in the second half of pregnancy. Preeclampsia risk is increased 2- to 4-fold among women with type 1 or type 2 diabetes. The limited number of pregnant women with preexisting diabetes and the difficulties associated with diagnosing preeclampsia in women with proteinuria prior to pregnancy are significant barriers to research in this high-risk population. Gestational diabetes mellitus (GDM) also increases preeclampsia risk, although it is unclear whether these two conditions share a common pathophysiological pathway. Nondiabetic women who have had preeclampsia are more likely to develop type 2 diabetes later in life. Among women with type 1 diabetes, a history of preeclampsia is associated with an increased risk of retinopathy and nephropathy. More research examining the pathophysiology, treatment, and the long-term health implications of preeclampsia among women with preexisting and gestational diabetes is needed.

Keywords

Preeclampsia Type 1 diabetes Type 2 diabetes Gestational diabetes 

Notes

Acknowledgments

Tracey L. Weissgerber and Lanay M. Mudd were supported by Building Interdisciplinary Careers in Women’s Health awards from the Office of Women’s Health Research (TLW: K12HD065987; LMM: K12HD065879-03).

Compliance with Ethics Guidelines

Conflict of Interest

Tracey L. Weissgerber and Lanay M. Mudd declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    World Health Organization. World Health Report: make every mother, and child count. Geneva: WHO 2005.Google Scholar
  2. 2.
    Altman D, Carroli G, Duley L, Farrell B, Moodley J, Neilson J, et al. Do women with pre-eclampsia, and their babies, benefit from magnesium sulphate? The Magpie Trial: a randomised placebo-controlled trial. Lancet. 2002;359(9321):1877–90.CrossRefPubMedGoogle Scholar
  3. 3.
    Knuist M, Bonsel GJ, Zondervan HA, Treffers PE. Intensification of fetal and maternal surveillance in pregnant women with hypertensive disorders. Int J Gynaecol Obstet. 1998;61(2):127–33.CrossRefPubMedGoogle Scholar
  4. 4.
    Hauth JC, Ewell MG, Levine RJ, Esterlitz JR, Sibai B, Curet LB, et al. Pregnancy outcomes in healthy nulliparas who developed hypertension. Calcium for Preeclampsia Prevention Study Group. Obstet Gynecol. 2000;95(1):24–8.CrossRefPubMedGoogle Scholar
  5. 5.••
    Hypertension in pregnancy. Report of the American College of Obstetricians and Gynecologists’ Task Force on Hypertension in Pregnancy. Obstetrics and gynecology. 2013;122(5):1122-31. doi: 10.1097/01.AOG.0000437382.03963.88. This paper outlines new ACOG criteria for the diagnosis of preeclampsia.
  6. 6.•
    Mosca L, Benjamin EJ, Berra K, Bezanson JL, Dolor RJ, Lloyd-Jones DM, et al. Effectiveness-based guidelines for the prevention of cardiovascular disease in women—2011 update: a guideline from the American Heart Association. J Am Coll Cardiol. 2011;57(12):1404–23. doi: 10.1016/j.jacc.2011.02.005. This American Heart Association guideline identifies preeclampsia as a major risk factor for future cardiovascular disease in women.CrossRefPubMedCentralPubMedGoogle Scholar
  7. 7.•
    Bushnell C, McCullough LD, Awad IA, Chireau MV, Fedder WN, Furie KL, et al. Guidelines for the prevention of stroke in women: a statement for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2014;45(5):1545–88. doi: 10.1161/01.str.0000442009.06663.48. This American Heart Association guideline identifies preeclampsia as a risk factor for stroke years after pregnancy.CrossRefPubMedGoogle Scholar
  8. 8.
    Roberts JM, Lain KY. Recent insights into the pathogenesis of pre-eclampsia. Placenta. 2002;23(5):359–72. doi: 10.1053/plac.2002.0819.CrossRefPubMedGoogle Scholar
  9. 9.
    Jauniaux E, Hempstock J, Greenwold N, Burton GJ. Trophoblastic oxidative stress in relation to temporal and regional differences in maternal placental blood flow in normal and abnormal early pregnancies. Am J Pathol. 2003;162(1):115–25. doi: 10.1016/S0002-9440(10)63803-5.CrossRefPubMedCentralPubMedGoogle Scholar
  10. 10.
    Burton GJ, Woods AW, Jauniaux E, Kingdom JC. Rheological and physiological consequences of conversion of the maternal spiral arteries for uteroplacental blood flow during human pregnancy. Placenta. 2009;30(6):473–82. doi: 10.1016/j.placenta.2009.02.009.CrossRefPubMedCentralPubMedGoogle Scholar
  11. 11.
    Maynard SE, Min JY, Merchan J, Lim KH, Li J, Mondal S, et al. Excess placental soluble fms-like tyrosine kinase 1 (sFlt1) may contribute to endothelial dysfunction, hypertension, and proteinuria in preeclampsia. J Clin Investig. 2003;111(5):649–58. doi: 10.1172/JCI17189.CrossRefPubMedCentralPubMedGoogle Scholar
  12. 12.
    Venkatesha S, Toporsian M, Lam C, Hanai J, Mammoto T, Kim YM, et al. Soluble endoglin contributes to the pathogenesis of preeclampsia. Nat Med. 2006;12(6):642–9. doi: 10.1038/nm1429.CrossRefPubMedGoogle Scholar
  13. 13.
    Mutter WP, Karumanchi SA. Molecular mechanisms of preeclampsia. Microvasc Res. 2008;75(1):1–8. doi: 10.1016/j.mvr.2007.04.009.CrossRefPubMedCentralPubMedGoogle Scholar
  14. 14.
    Valdes E, Sepulveda-Martinez A, Manukian B, Parra-Cordero M. Assessment of pregestational insulin resistance as a risk factor of preeclampsia. Gynecol Obstet Investig. 2014;77(2):111–6. doi: 10.1159/000357944.CrossRefGoogle Scholar
  15. 15.
    Hauth JC, Clifton RG, Roberts JM, Myatt L, Spong CY, Leveno KJ, et al. Maternal insulin resistance and preeclampsia. Am J Obstet Gynecol. 2011;204(4):327.e1–6.CrossRefGoogle Scholar
  16. 16.
    Alsnes IV, Janszky I, Forman MR, Vatten LJ, Okland I. A population-based study of associations between preeclampsia and later cardiovascular risk factors. Am J Obstet Gynecol. 2014. doi: 10.1016/j.ajog.2014.06.026.PubMedGoogle Scholar
  17. 17.
    Jensen DM, Damm P, Moelsted-Pedersen L, Ovesen P, Westergaard JG, Moeller M, et al. Outcomes in type 1 diabetic pregnancies: a nationwide, population-based study. Diabetes Care. 2004;27(12):2819–23.CrossRefPubMedGoogle Scholar
  18. 18.
    Persson M, Norman M, Hanson U. Obstetric and perinatal outcomes in type 1 diabetic pregnancies: a large, population-based study. Diabetes Care. 2009;32(11):2005–9. doi: 10.2337/dc09-0656.CrossRefPubMedCentralPubMedGoogle Scholar
  19. 19.
    Knight KM, Thornburg LL, Pressman EK. Pregnancy outcomes in type 2 diabetic patients as compared with type 1 diabetic patients and nondiabetic controls. J Reprod Med. 2012;57(9–10):397–404.PubMedGoogle Scholar
  20. 20.
    Groen B, Links TP, van den Berg PP, Hellinga M, Moerman S, Visser GH, et al. Similar adverse pregnancy outcome in native and nonnative Dutch women with pregestational type 2 diabetes: a multicentre retrospective study. ISRN Obstet Gynecol. 2013;2013:361435. doi: 10.1155/2013/361435.CrossRefPubMedCentralPubMedGoogle Scholar
  21. 21.
    Knight KM, Pressman EK, Hackney DN, Thornburg LL. Perinatal outcomes in type 2 diabetic patients compared with non-diabetic patients matched by body mass index. J Matern Fetal Neonatal Med. 2012;25(6):611–5. doi: 10.3109/14767058.2011.587059.CrossRefPubMedGoogle Scholar
  22. 22.
    Lisonkova S, Joseph KS. Incidence of preeclampsia: risk factors and outcomes associated with early- versus late-onset disease. Am J Obstet Gynecol. 2013;209(6):544.e1–12.CrossRefGoogle Scholar
  23. 23.••
    Holmes VA, Young IS, Patterson CC, Pearson DW, Walker JD, Maresh MJ, et al. Optimal glycemic control, pre-eclampsia, and gestational hypertension in women with type 1 diabetes in the diabetes and pre-eclampsia intervention trial. Diabetes Care. 2011;34(8):1683–8. doi: 10.2337/dc11-0244. This paper from a large randomized controlled trial of vitamin C and E to prevent preeclampsia in women with type 1 diabetes shows that poor glycemic control is an independent risk factor for preeclampsia.CrossRefPubMedCentralPubMedGoogle Scholar
  24. 24.
    Colatrella A, Loguercio V, Mattei L, Trappolini M, Festa C, Stoppo M, et al. Hypertension in diabetic pregnancy: impact and long-term outlook. Best Pract Res Clin Endocrinol Metab. 2010;24(4):635–51. doi: 10.1016/j.beem.2010.05.003.CrossRefPubMedGoogle Scholar
  25. 25.
    Ekbom P, Damm P, Feldt-Rasmussen B, Feldt-Rasmussen U, Molvig J, Mathiesen ER. Pregnancy outcome in type 1 diabetic women with microalbuminuria. Diabetes Care. 2001;24(10):1739–44.CrossRefPubMedGoogle Scholar
  26. 26.••
    Myatt L, Redman CW, Staff AC, Hansson S, Wilson ML, Laivuori H, et al. Strategy for standardization of preeclampsia research study design. Hypertension. 2014;63(6):1293–301. doi: 10.1161/HYPERTENSIONAHA.113.02664. This guideline describes methods for standardizing and optimizing study design and data collection in preeclampsia studies.CrossRefPubMedGoogle Scholar
  27. 27.
    Caritis S, Sibai B, Hauth J, Lindheimer MD, Klebanoff M, Thom E, et al. Low-dose aspirin to prevent preeclampsia in women at high risk. National Institute of Child Health and Human Development Network of Maternal-Fetal Medicine Units. N Engl J Med. 1998;338(11):701–5. doi: 10.1056/NEJM199803123381101.CrossRefPubMedGoogle Scholar
  28. 28.
    McCance DR, Holmes VA, Maresh MJ, Patterson CC, Walker JD, Pearson DW, et al. Vitamins C and E for prevention of pre-eclampsia in women with type 1 diabetes (DAPIT): a randomised placebo-controlled trial. Lancet. 2010;376(9737):259–66. doi: 10.1016/S0140-6736(10)60630-7.CrossRefPubMedCentralPubMedGoogle Scholar
  29. 29.
    Reece EA, Leguizamon G, Homko C. Pregnancy performance and outcomes associated with diabetic nephropathy. Am J Perinatol. 1998;15(7):413–21. doi: 10.1055/s-2007-993968.CrossRefPubMedGoogle Scholar
  30. 30.
    Davison JM, Dunlop W. Renal hemodynamics and tubular function normal human pregnancy. Kidney Int. 1980;18(2):152–61.CrossRefPubMedGoogle Scholar
  31. 31.••
    Holmes VA, Young IS, Patterson CC, Maresh MJ, Pearson DW, Walker JD, et al. The role of angiogenic and antiangiogenic factors in the second trimester in the prediction of preeclampsia in pregnant women with type 1 diabetes. Diabetes Care. 2013;36(11):3671–7. doi: 10.2337/dc13-0944. This secondary analysis of a randomized controlled trial is the largest study examining the potential value of sFlt-1, sEng and PGF to predict preeclampsia in women with type 1 diabetes.CrossRefPubMedCentralPubMedGoogle Scholar
  32. 32.
    Yu Y, Jenkins AJ, Nankervis AJ, Hanssen KF, Scholz H, Henriksen T, et al. Anti-angiogenic factors and pre-eclampsia in type 1 diabetic women. Diabetologia. 2009;52(1):160–8. doi: 10.1007/s00125-008-1182-x.CrossRefPubMedGoogle Scholar
  33. 33.
    Powers RW, Jeyabalan A, Clifton RG, Van Dorsten P, Hauth JC, Klebanoff MA, et al. Soluble fms-like tyrosine kinase 1 (sFlt1), endoglin and placental growth factor (PlGF) in preeclampsia among high risk pregnancies. PLoS One. 2010;5(10):e13263. doi: 10.1371/journal.pone.0013263.CrossRefPubMedCentralPubMedGoogle Scholar
  34. 34.
    Cohen AL, Wenger JB, James-Todd T, Lamparello BM, Halprin E, Serdy S, et al. The association of circulating angiogenic factors and HbA1c with the risk of preeclampsia in women with preexisting diabetes. Hypertens Pregnancy. 2014;33(1):81–92.CrossRefPubMedCentralPubMedGoogle Scholar
  35. 35.•
    Zamudio S, Kovalenko O, Echalar L, Torricos T, Al-Khan A, Alvarez M, et al. Evidence for extraplacental sources of circulating angiogenic growth effectors in human pregnancy. Placenta. 2013;34(12):1170–6. doi: 10.1016/j.placenta.2013.09.016. This paper identifies methodological factors that influence measured concentrations of pro-angiogenic and anti-angiogenic factors. These factors must be accurately controlled to ensure the accuracy of study conclusions.CrossRefPubMedGoogle Scholar
  36. 36.
    Levy AP, Asleh R, Blum S, Levy NS, Miller-Lotan R, Kalet-Litman S, et al. Haptoglobin: basic and clinical aspects. Antioxid Redox Signal. 2010;12(2):293–304. doi: 10.1089/ars.2009.2793.CrossRefPubMedGoogle Scholar
  37. 37.
    Cid MC, Grant DS, Hoffman GS, Auerbach R, Fauci AS, Kleinman HK. Identification of haptoglobin as an angiogenic factor in sera from patients with systemic vasculitis. J Clin Investig. 1993;91(3):977–85. doi: 10.1172/JCI116319.CrossRefPubMedCentralPubMedGoogle Scholar
  38. 38.
    Langlois MR, Delanghe JR. Biological and clinical significance of haptoglobin polymorphism in humans. Clin Chem. 1996;42(10):1589–600.PubMedGoogle Scholar
  39. 39.
    Chappell LC, Seed PT, Briley A, Kelly FJ, Hunt BJ, Charnock-Jones DS, et al. A longitudinal study of biochemical variables in women at risk of preeclampsia. Am J Obstet Gynecol. 2002;187(1):127–36.CrossRefPubMedGoogle Scholar
  40. 40.
    Blum S, Milman U, Shapira C, Miller-Lotan R, Bennett L, Kostenko M, et al. Dual therapy with statins and antioxidants is superior to statins alone in decreasing the risk of cardiovascular disease in a subgroup of middle-aged individuals with both diabetes mellitus and the haptoglobin 2-2 genotype. Arterioscler Thromb Vasc Biol. 2008;28(3):e18–20. doi: 10.1161/ATVBAHA.107.159905.CrossRefPubMedGoogle Scholar
  41. 41.
    Levy AP, Friedenberg P, Lotan R, Ouyang P, Tripputi M, Higginson L, et al. The effect of vitamin therapy on the progression of coronary artery atherosclerosis varies by haptoglobin type in postmenopausal women. Diabetes Care. 2004;27(4):925–30.CrossRefPubMedGoogle Scholar
  42. 42.
    Levy AP, Gerstein HC, Miller-Lotan R, Ratner R, McQueen M, Lonn E, et al. The effect of vitamin E supplementation on cardiovascular risk in diabetic individuals with different haptoglobin phenotypes. Diabetes Care. 2004;27(11):2767.CrossRefPubMedGoogle Scholar
  43. 43.
    Blum S, Vardi M, Levy NS, Miller-Lotan R, Levy AP. The effect of vitamin E supplementation on cardiovascular risk in diabetic individuals with different haptoglobin phenotypes. Atherosclerosis. 2010;211(1):25–7. doi: 10.1016/j.atherosclerosis.2010.02.018.CrossRefPubMedCentralPubMedGoogle Scholar
  44. 44.
    Milman U, Blum S, Shapira C, Aronson D, Miller-Lotan R, Anbinder Y, et al. Vitamin E supplementation reduces cardiovascular events in a subgroup of middle-aged individuals with both type 2 diabetes mellitus and the haptoglobin 2-2 genotype: a prospective double-blinded clinical trial. Arterioscler Thromb Vasc Biol. 2008;28(2):341–7. doi: 10.1161/ATVBAHA.107.153965.CrossRefPubMedGoogle Scholar
  45. 45.
    Chappell LC, Seed PT, Briley AL, Kelly FJ, Lee R, Hunt BJ, et al. Effect of antioxidants on the occurrence of pre-eclampsia in women at increased risk: a randomised trial. Lancet. 1999;354(9181):810–6. doi: 10.1016/S0140-6736(99)80010-5.CrossRefPubMedGoogle Scholar
  46. 46.
    Beazley D, Ahokas R, Livingston J, Griggs M, Sibai BM. Vitamin C and E supplementation in women at high risk for preeclampsia: a double-blind, placebo-controlled trial. Am J Obstet Gynecol. 2005;192(2):520–1. doi: 10.1016/j.ajog.2004.09.005.CrossRefPubMedGoogle Scholar
  47. 47.
    Poston L, Briley AL, Seed PT, Kelly FJ, Shennan AH. Vitamin C and vitamin E in pregnant women at risk for pre-eclampsia (VIP Trial): randomised placebo-controlled trial. Lancet. 2006;367(9517):1145–54. doi: 10.1016/S0140-6736(06)68433-X.CrossRefPubMedGoogle Scholar
  48. 48.
    Spinnato 2nd JA, Freire S, Silva JL, Pinto E, Cunha Rudge MV, Martins-Costa S, et al. Antioxidant therapy to prevent preeclampsia: a randomized controlled trial. Obstet Gynecol. 2007;110(6):1311–8. doi: 10.1097/01.AOG.0000289576.43441.1f.CrossRefPubMedGoogle Scholar
  49. 49.
    Rumbold AR, Crowther CA, Haslam RR, Dekker GA, Robinson JS. Vitamins C and E and the risks of preeclampsia and perinatal complications. N Engl J Med. 2006;354(17):1796–806. doi: 10.1056/NEJMoa054186.CrossRefPubMedGoogle Scholar
  50. 50.
    Villar J, Purwar M, Merialdi M, Zavaleta N, Thi Nhu Ngoc N, Anthony J, et al. World Health Organisation multicentre randomised trial of supplementation with vitamins C and E among pregnant women at high risk for pre-eclampsia in populations of low nutritional status from developing countries. BJOG. 2009;116(6):780–8. doi: 10.1111/j.1471-0528.2009.02158.x.CrossRefPubMedGoogle Scholar
  51. 51.
    Roberts JM, Myatt L, Spong CY, Thom EA, Hauth JC, Leveno KJ, et al. Vitamins C and E to prevent complications of pregnancy-associated hypertension. N Engl J Med. 2010;362(14):1282–91. doi: 10.1056/NEJMoa0908056.CrossRefPubMedCentralPubMedGoogle Scholar
  52. 52.
    Depypere HT, Langlois MR, Delanghe JR, Temmerman M, Dhont M. Haptoglobin polymorphism in patients with preeclampsia. Clin Chem Lab Med. 2006;44(8):924–8. doi: 10.1515/CCLM.2006.182.CrossRefPubMedGoogle Scholar
  53. 53.
    Sammour RN, Nakhoul FM, Levy AP, Miller-Lotan R, Nakhoul N, Awad HR, et al. Haptoglobin phenotype in women with preeclampsia. Endocrine. 2010;38(2):303–8. doi: 10.1007/s12020-010-9392-7.CrossRefPubMedGoogle Scholar
  54. 54.
    Weissgerber TL, Roberts JM, Jeyabalan A, Powers RW, Lee M, Datwyler SA, et al. Haptoglobin phenotype, angiogenic factors, and preeclampsia risk. Am J Obstet Gynecol. 2012;206(4):358.e10–18. doi: 10.1016/j.ajog.2012.01.009.CrossRefGoogle Scholar
  55. 55.
    Raijmakers MT, Roes EM, te Morsche RH, Steegers EA, Peters WH. Haptoglobin and its association with the HELLP syndrome. J Med Genet. 2003;40(3):214–6.CrossRefPubMedCentralPubMedGoogle Scholar
  56. 56.•
    Weissgerber TL, Gandley RE, Roberts JM, Patterson CC, Holmes VA, Young IS, et al. Haptoglobin phenotype and preeclampsia incidence in women with type 1 diabetes supplemented with vitamins C and E. Br J Obstet Gynecol. 2013;120(10):1192–9. This secondary analysis of a randomized, controlled trial shows that Hp phenotype does not influence preeclampsia risk or the effectiveness of vitamin C and E supplementation in preventing preeclampsia in women with type 1 diabetes.CrossRefGoogle Scholar
  57. 57.
    Weissgerber TL, Gandley RE, McGee PL, Spong CY, Myatt L, Leveno KJ, et al. Haptoglobin phenotype, preeclampsia risk and the efficacy of vitamin C and E supplementation to prevent preeclampsia in a racially diverse population. PLoS One. 2013;8(4):e60479. doi: 10.1371/journal.pone.0060479.CrossRefPubMedCentralPubMedGoogle Scholar
  58. 58.
    American Diabetes Association. Standards of medical care in diabetes—2014. Diabetes Care. 2014;37 Suppl 1:S14–80. doi: 10.2337/dc14-S014.CrossRefGoogle Scholar
  59. 59.
    Jiwani A, Marseille E, Lohse N, Damm P, Hod M, Kahn JG. Gestational diabetes mellitus: results from a survey of country prevalence and practices. J Matern Fetal Neonatal Med. 2012;25(6):600–10. doi: 10.3109/14767058.2011.587921.CrossRefPubMedGoogle Scholar
  60. 60.
    Wendland EM, Torloni MR, Falavigna M, Trujillo J, Dode MA, Campos MA, et al. Gestational diabetes and pregnancy outcomes—a systematic review of the World Health Organization (WHO) and the International Association of Diabetes in Pregnancy Study Groups (IADPSG) diagnostic criteria. BMC Pregnancy Childbirth. 2012;12:23. doi: 10.1186/1471-2393-12-23.CrossRefPubMedCentralPubMedGoogle Scholar
  61. 61.
    Bellamy L, Casas JP, Hingorani AD, Williams D. Type 2 diabetes mellitus after gestational diabetes: a systematic review and meta-analysis. Lancet. 2009;373(9677):1773–9. doi: 10.1016/S0140-6736(09)60731-5.CrossRefPubMedGoogle Scholar
  62. 62.
    Catalano PM, Ehrenberg HM. The short- and long-term implications of maternal obesity on the mother and her offspring. BJOG. 2006;113(10):1126–33. doi: 10.1111/j.1471-0528.2006.00989.x.CrossRefPubMedGoogle Scholar
  63. 63.
    Ehrenberg HM, Mercer BM, Catalano PM. The influence of obesity and diabetes on the prevalence of macrosomia. Am J Obstet Gynecol. 2004;191(3):964–8. doi: 10.1016/j.ajog.2004.05.052.CrossRefPubMedGoogle Scholar
  64. 64.
    Mudd LM, Owe KM, Mottola MF, Pivarnik JM. Health benefits of physical activity during pregnancy: an international perspective. Med Sci Sports Exerc. 2013;45(2):268–77. doi: 10.1249/MSS.0b013e31826cebcb.CrossRefPubMedGoogle Scholar
  65. 65.••
    Schneider S, Freerksen N, Rohrig S, Hoeft B, Maul H. Gestational diabetes and preeclampsia—similar risk factor profiles? Early Hum Dev. 2012;88(3):179–84. doi: 10.1016/j.earlhumdev.2011.08.004. By using a perinatal health registry, this study was able to accurately describe prevalence rates for gestational diabetes, preeclampsia, and the co-occurrence of these two conditions within Germany. It also describes risk factors common to both conditions.CrossRefPubMedGoogle Scholar
  66. 66.
    Nerenberg KA, Johnson JA, Leung B, Savu A, Ryan EA, Chik CL, et al. Risks of gestational diabetes and preeclampsia over the last decade in a cohort of Alberta women. J Obstet Gynaecol Can. 2013;35(11):986–94.PubMedGoogle Scholar
  67. 67.
    Ostlund I, Haglund B, Hanson U. Gestational diabetes and preeclampsia. Eur J Obstet Gynecol Reprod Biol. 2004;113(1):12–6. doi: 10.1016/j.ejogrb.2003.07.001.CrossRefPubMedGoogle Scholar
  68. 68.
    Phaloprakarn C, Tangjitgamol S. Risk assessment for preeclampsia in women with gestational diabetes mellitus. J Perinat Med. 2009;37(6):617–21. doi: 10.1515/JPM.2009.108.CrossRefPubMedGoogle Scholar
  69. 69.•
    Barquiel B, Herranz L, Grande C, Castro-Dufourny I, Llaro M, Parra P, et al. Body weight, weight gain and hyperglycaemia are associated with hypertensive disorders of pregnancy in women with gestational diabetes. Diabetes Metab. 2014;40(3):204–10. doi: 10.1016/j.diabet.2013.12.011. This study showed that while pre-pregnancy weight status was the strongest risk factor for preeclampsia, gestational weight gain and glycemic control were also independent risk factors.CrossRefPubMedGoogle Scholar
  70. 70.
    Harper LM, Tita A, Biggio JR. The Institute of Medicine guidelines for gestational weight gain after a diagnosis of gestational diabetes and pregnancy outcomes. Am J Perinatol. 2014. doi: 10.1055/s-0034-1383846.PubMedCentralGoogle Scholar
  71. 71.
    Conti E, Zezza L, Ralli E, Caserta D, Musumeci MB, Moscarini M, et al. Growth factors in preeclampsia: a vascular disease model. A failed vasodilation and angiogenic challenge from pregnancy onwards? Cytokine Growth Factor Rev. 2013;24(5):411–25. doi: 10.1016/j.cytogfr.2013.05.008.CrossRefPubMedGoogle Scholar
  72. 72.
    de Resende Guimaraes MF, Brandao AH, de Lima Rezende CA, Cabral AC, Brum AP, Leite HV, et al. Assessment of endothelial function in pregnant women with preeclampsia and gestational diabetes mellitus by flow-mediated dilation of brachial artery. Arch Gynecol Obstet. 2014;290(3):441–7. doi: 10.1007/s00404-014-3220-x.CrossRefGoogle Scholar
  73. 73.
    Kane SC, Costa Fda S, Brennecke S. First trimester biomarkers in the prediction of later pregnancy complications. Biomed Res Int. 2014;2014:807196. doi: 10.1155/2014/807196.CrossRefPubMedCentralPubMedGoogle Scholar
  74. 74.
    Karacay O, Sepici-Dincel A, Karcaaltincaba D, Sahin D, Yalvac S, Akyol M, et al. A quantitative evaluation of total antioxidant status and oxidative stress markers in preeclampsia and gestational diabetic patients in 24–36 weeks of gestation. Diabetes Res Clin Pract. 2010;89(3):231–8. doi: 10.1016/j.diabres.2010.04.015.CrossRefPubMedGoogle Scholar
  75. 75.
    Wiznitzer A, Mayer A, Novack V, Sheiner E, Gilutz H, Malhotra A, et al. Association of lipid levels during gestation with preeclampsia and gestational diabetes mellitus: a population-based study. Am J Obstet Gynecol. 2009;201(5):482.e1–8. doi: 10.1016/j.ajog.2009.05.032.CrossRefGoogle Scholar
  76. 76.
    Zhou J, Zhao X, Wang Z, Hu Y. Combination of lipids and uric acid in mid-second trimester can be used to predict adverse pregnancy outcomes. J Matern Fetal Neonatal Med. 2012;25(12):2633–8. doi: 10.3109/14767058.2012.704447.CrossRefPubMedGoogle Scholar
  77. 77.•
    Wen SW, Xie RH, Tan H, Walker MC, Smith GN, Retnakaran R. Preeclampsia and gestational diabetes mellitus: pre-conception origins? Med Hypotheses. 2012;79(1):120–5. doi: 10.1016/j.mehy.2012.04.019. This paper provides a review of hypothesized etiological pathways for preeclampsia and gestational diabetes and argues that both of these conditions have their origins in pre-pregnancy maternal health.CrossRefPubMedGoogle Scholar
  78. 78.
    Mastrogiannis DS, Spiliopoulos M, Mulla W, Homko CJ. Insulin resistance: the possible link between gestational diabetes mellitus and hypertensive disorders of pregnancy. Curr Diab Rep. 2009;9(4):296–302.CrossRefPubMedGoogle Scholar
  79. 79.
    Landon MB, Spong CY, Thom E, Carpenter MW, Ramin SM, Casey B, et al. A multicenter, randomized trial of treatment for mild gestational diabetes. N Engl J Med. 2009;361(14):1339–48. doi: 10.1056/NEJMoa0902430.CrossRefPubMedCentralPubMedGoogle Scholar
  80. 80.
    Bevier WC, Fischer R, Jovanovic L. Treatment of women with an abnormal glucose challenge test (but a normal oral glucose tolerance test) decreases the prevalence of macrosomia. Am J Perinatol. 1999;16(6):269–75. doi: 10.1055/s-2007-993871.CrossRefPubMedGoogle Scholar
  81. 81.
    Deveer R, Deveer M, Akbaba E, Engin-Ustun Y, Aydogan P, Celikkaya H, et al. The effect of diet on pregnancy outcomes among pregnant with abnormal glucose challenge test. Eur Rev Med Pharmacol Sci. 2013;17(9):1258–61.PubMedGoogle Scholar
  82. 82.••
    Poolsup N, Suksomboon N, Amin M. Effect of treatment of gestational diabetes mellitus: a systematic review and meta-analysis. PLoS One. 2014;9(3):e92485. doi: 10.1371/journal.pone.0092485. This meta-analysis examines the effects of treating gestational diabetes on a range of pregnancy outcomes, including risk of diabetes. Results showed no effect on preeclampsia risk, although only three randomized trials have examined preeclampsia as a secondary outcome and the confidence intervals are extremely wide, indicating low power to detect a relationship.CrossRefPubMedCentralPubMedGoogle Scholar
  83. 83.
    Chesley LC. Remote prognosis after eclampsia. Perspect Nephrol Hypertens. 1976;5:31–40.PubMedGoogle Scholar
  84. 84.•
    Engeland A, Bjorge T, Daltveit AK, Skurtveit S, Vangen S, Vollset SE, et al. Risk of diabetes after gestational diabetes and preeclampsia. A registry-based study of 230,000 women in Norway. Eur J Epidemiol. 2011;26(2):157–63. doi: 10.1007/s10654-010-9527-4. Previous studies had very low power to examine future disease risk among women who developed both gestational diabetes and preeclampsia. Using a national birth registry, this study was able to more precisely estimate the risk of diabetes 5 years postpartum in relation to preeclampsia alone, gestational diabetes alone and both conditions combined.CrossRefPubMedCentralPubMedGoogle Scholar
  85. 85.
    Feig DS, Shah BR, Lipscombe LL, Wu CF, Ray JG, Lowe J, et al. Preeclampsia as a risk factor for diabetes: a population-based cohort study. PLoS Med. 2013;10(4):e1001425. doi: 10.1371/journal.pmed.1001425.CrossRefPubMedCentralPubMedGoogle Scholar
  86. 86.
    Libby G, Murphy DJ, McEwan NF, Greene SA, Forsyth JS, Chien PW, et al. Pre-eclampsia and the later development of type 2 diabetes in mothers and their children: an intergenerational study from the Walker cohort. Diabetologia. 2007;50(3):523–30. doi: 10.1007/s00125-006-0558-z.CrossRefPubMedGoogle Scholar
  87. 87.
    Mannisto T, Mendola P, Vaarasmaki M, Jarvelin MR, Hartikainen AL, Pouta A, et al. Elevated blood pressure in pregnancy and subsequent chronic disease risk. Circulation. 2013;127(6):681–90. doi: 10.1161/CIRCULATIONAHA.112.128751.CrossRefPubMedCentralPubMedGoogle Scholar
  88. 88.
    Savitz DA, Danilack VA, Elston B, Lipkind HS. Pregnancy-induced hypertension and diabetes and the risk of cardiovascular disease, stroke, and diabetes hospitalization in the year following delivery. Am J Epidemiol. 2014;180(1):41–4. doi: 10.1093/aje/kwu118.CrossRefPubMedGoogle Scholar
  89. 89.
    Gordin D, Hiilesmaa V, Fagerudd J, Ronnback M, Forsblom C, Kaaja R, et al. Pre-eclampsia but not pregnancy-induced hypertension is a risk factor for diabetic nephropathy in type 1 diabetic women. Diabetologia. 2007;50(3):516–22. doi: 10.1007/s00125-006-0544-5.CrossRefPubMedGoogle Scholar
  90. 90.
    Lovestam-Adrian M, Agardh CD, Aberg A, Agardh E. Pre-eclampsia is a potent risk factor for deterioration of retinopathy during pregnancy in type 1 diabetic patients. Diabetic Med. 1997;14(12):1059–65. doi: 10.1002/(SICI)1096-9136(199712)14:12<1059::AID-DIA505>3.0.CO;2-8.CrossRefPubMedGoogle Scholar
  91. 91.
    Gordin D, Kaaja R, Forsblom C, Hiilesmaa V, Teramo K, Groop PH. Pre-eclampsia and pregnancy-induced hypertension are associated with severe diabetic retinopathy in type 1 diabetes later in life. Acta Diabetol. 2013;50(5):781–7. doi: 10.1007/s00592-012-0415-0.CrossRefPubMedGoogle Scholar
  92. 92.
    Bell R, Bailey K, Cresswell T, Hawthorne G, Critchley J, Lewis-Barned N, et al. Trends in prevalence and outcomes of pregnancy in women with pre-existing type I and type II diabetes. BJOG. 2008;115(4):445–52. doi: 10.1111/j.1471-0528.2007.01644.x.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Division of Nephrology and HypertensionMayo ClinicRochesterUSA
  2. 2.Department of KinesiologyMichigan State UniversityEast LansingUSA

Personalised recommendations