Current Diabetes Reports

, 15:1 | Cite as

Impact of Gestational Diabetes Mellitus in the Maternal-to-Fetal Transport of Nutrients

  • João Ricardo AraújoEmail author
  • Elisa Keating
  • Fátima Martel
Diabetes and Pregnancy (CJ Homko, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Diabetes and Pregnancy


Gestational diabetes mellitus (GDM) is a metabolic disorder prevalent among pregnant women. This disease increases the risk of adverse perinatal outcomes and diseases in the offspring later in life. The human placenta, the main interface between the maternal and fetal blood circulations, is responsible for the maternal-to-fetal transfer of nutrients essential for fetal growth and development. In this context, the aim of this article is to review the latest advances in the placental transport of macro and micronutrients and how they are affected by GDM and its associated conditions, such as elevated levels of glucose, insulin, leptin, inflammation, and oxidative stress. Data analyzed in this article suggest that GDM and its associated conditions, particularly high levels of glucose, leptin, and oxidative stress, disturb placental nutrient transport and, consequently, fetal nutrient supply. As a consequence, this disturbance may contribute to the fetal and postnatal adverse health outcomes associated with GDM.


Gestational diabetes Placenta Transport Nutrients Fetal programming 



This work was supported by Fundação para a Ciência e a Tecnologia (FCT) and COMPETE, QREN, and FEDER (SFRH/BD/63086/2009).

Compliance with Ethics Guidelines

Conflict of Interest

João Ricardo Araújo, Elisa Keating, and Fátima Martel declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.


Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Negrato CA, Gomes MB. Historical facts of screening and diagnosing diabetes in pregnancy. Diabetol Metab Syndr. 2013;5:22. doi: 10.1186/1758-5996-5-22.CrossRefPubMedCentralPubMedGoogle Scholar
  2. 2.
    Lappas M, Hiden U, Desoye G, Froehlich J, Hauguel-de Mouzon S, Jawerbaum A. The role of oxidative stress in the pathophysiology of gestational diabetes mellitus. Antioxid Redox Signal. 2011;15:3061–100. doi: 10.1089/ars.2010.3765.CrossRefPubMedGoogle Scholar
  3. 3.
    Magon N, Chauhan M. Pregnancy in type 1 diabetes mellitus: how special are special issues? N Am J Med Sci. 2012;4:250–6. doi: 10.4103/1947-2714.97202.CrossRefPubMedCentralPubMedGoogle Scholar
  4. 4.•
    American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care. 2013;36:S67–74. doi: 10.2337/dc13-S067. These useful guidelines provide definitions for the various types of diabetes, including gestational diabetes.CrossRefPubMedCentralGoogle Scholar
  5. 5.
    Shang M, Lin L. IADPSG criteria for diagnosing gestational diabetes mellitus and predicting adverse pregnancy outcomes. J Perinatol. 2014;34:100–4. doi: 10.1038/jp.2013.143.CrossRefPubMedGoogle Scholar
  6. 6.
    Sacks DA, Hadden DR, Maresh M, Deerochanawong C, Dyer AR, Metzger BE, et al. Frequency of gestational diabetes mellitus at collaborating centers based on IADPSG consensus panel-recommended criteria: the Hyperglycemia and Adverse Pregnancy Outcome (HAPO) Study. Diabetes Care. 2012;35:526–8. doi: 10.2337/dc11-1641.CrossRefPubMedCentralPubMedGoogle Scholar
  7. 7.
    Ben-Haroush A, Yogev Y, Hod M. Epidemiology of gestational diabetes mellitus and its association with type 2 diabetes. Diabet Med. 2004;21:103–13. doi: 10.1046/j.1464-5491.2003.00985.x.CrossRefPubMedGoogle Scholar
  8. 8.
    Lepercq J, Cauzac M, Lahlou N, Timsit J, Girard J, Auwerx J, et al. Overexpression of placental leptin in diabetic pregnancy: a critical role for insulin. Diabetes. 1998;47:847–50. doi: 10.2337/diabetes.47.5.847.CrossRefPubMedGoogle Scholar
  9. 9.
    Ategbo JM, Grissa O, Yessoufou A, Hichami A, Dramane KL, Moutairou K, et al. Modulation of adipokines and cytokines in gestational diabetes and macrosomia. J Clin Endocrinol Metab. 2006;91:4137–43. doi: 10.1210/jc.2006-0980.CrossRefPubMedGoogle Scholar
  10. 10.
    Guvener M, Ucar HI, Oc M, Pinar A. Plasma leptin levels increase to a greater extent following on-pump coronary artery surgery in type 2 diabetic patients than in nondiabetic patients. Diabetes Res Clin Pract. 2012;96:371–8. doi: 10.1016/j.diabres.2012.01.008.CrossRefPubMedGoogle Scholar
  11. 11.
    Plomgaard P, Nielsen AR, Fischer CP, Mortensen OH, Broholm C, Penkowa M, et al. Associations between insulin resistance and TNF-alpha in plasma, skeletal muscle and adipose tissue in humans with and without type 2 diabetes. Diabetologia. 2007;50:2562–71. doi: 10.1007/s00125-007-0834-6.CrossRefPubMedGoogle Scholar
  12. 12.
    Metzger BE, Lowe LP, Dyer AR, Trimble ER, Chaovarindr U, Coustan DR, et al. Hyperglycemia and adverse pregnancy outcomes. N Engl J Med. 2008;358:1991–2002. doi: 10.1056/NEJMoa0707943.CrossRefPubMedGoogle Scholar
  13. 13.
    Pettitt DJ, Lawrence JM, Beyer J, Hillier TA, Liese AD, Mayer-Davis B, et al. Association between maternal diabetes in utero and age at offspring’s diagnosis of type 2 diabetes. Diabetes Care. 2008;31:2126–30. doi: 10.2337/dc08-0769.CrossRefPubMedCentralPubMedGoogle Scholar
  14. 14.
    Biri A, Korucuoglu U, Ozcan P, Aksakal N, Turan O, Himmetoglu O. Effect of different degrees of glucose intolerance on maternal and perinatal outcomes. J Matern Fetal Neonatal Med. 2009;22:473–8. doi: 10.1080/14767050802610344.CrossRefPubMedGoogle Scholar
  15. 15.
    Franks PW, Looker HC, Kobes S, Touger L, Tataranni PA, Hanson RL, et al. Gestational glucose tolerance and risk of type 2 diabetes in young Pima Indian offspring. Diabetes. 2006;55:460–5. doi: 10.2337/diabetes.55.02.06.db05-0823.CrossRefPubMedGoogle Scholar
  16. 16.
    Takayama-Hasumi S, Yoshino H, Shimisu M, Minei S, Sanaka M, Omori Y. Insulin-receptor kinase is enhanced in placentas from non-insulin-dependent diabetic women with large-for-gestational-age babies. Diabetes Res Clin Pract. 1994;22:107–16. doi: 10.1016/0168-8227(94)90043-4.CrossRefPubMedGoogle Scholar
  17. 17.
    Coughlan MT, Vervaart PP, Permezel M, Georgiou HM, Rice GE. Altered placental oxidative stress status in gestational diabetes mellitus. Placenta. 2004;25:78–84. doi: 10.1016/S0143-4004(03)00183-8.CrossRefPubMedGoogle Scholar
  18. 18.
    Herrera E, Ortega-Senovilla H. Disturbances in lipid metabolism in diabetic pregnancy—are these the cause of the problem? Best Pract Res Clin Endocrinol Metab. 2010;24:515–25. doi: 10.1016/j.beem.2010.05.006.CrossRefPubMedGoogle Scholar
  19. 19.
    Gluckman PD, Hanson MA, Cooper C, Thornburg KL. Effect of in utero and early-life conditions on adult health and disease. N Engl J Med. 2008;359:61–73. doi: 10.1056/NEJMra0708473.CrossRefPubMedCentralPubMedGoogle Scholar
  20. 20.
    Lee H, Jang HC, Park HK, Cho NH. Early manifestation of cardiovascular disease risk factors in offspring of mothers with previous history of gestational diabetes mellitus. Diabetes Res Clin Pract. 2007;78:238–45. doi: 10.1016/j.diabres.2007.03.023.CrossRefPubMedGoogle Scholar
  21. 21.
    Boney CM, Verma A, Tucker R, Vohr BR. Metabolic syndrome in childhood: association with birth weight, maternal obesity, and gestational diabetes mellitus. Pediatrics. 2005;115:e290–6. doi: 10.1542/peds.2004-1808.CrossRefPubMedGoogle Scholar
  22. 22.
    Ornoy A. Growth and neurodevelopmental outcome of children born to mothers with pregestational and gestational diabetes. Pediatr Endocrinol Rev. 2005;3:104–13.PubMedGoogle Scholar
  23. 23.
    Metzger BE, Buchanan TA, Coustan DR, de Leiva A, Dunger DB, Hadden DR, et al. Summary and recommendations of the fifth international workshop-conference on gestational diabetes mellitus. Diabetes Care. 2007;30 Suppl 2:S251–60. doi: 10.2337/dc07-s225.CrossRefPubMedGoogle Scholar
  24. 24.
    Fowden AL, Forhead AJ, Coan PM, Burton GJ. The placenta and intrauterine programming. J Neuroendocrinol. 2008;20:439–50. doi: 10.1111/j.1365-2826.2008.01663.x.CrossRefPubMedGoogle Scholar
  25. 25.
    Jansson T, Myatt L, Powell TL. The role of trophoblast nutrient and ion transporters in the development of pregnancy complications and adult disease. Curr Vasc Pharmacol. 2009;7:521–33. doi: 10.2174/157016109789043982.CrossRefPubMedGoogle Scholar
  26. 26.
    Sandovici I, Hoelle K, Angiolini E, Constancia M. Placental adaptations to the maternal-fetal environment: implications for fetal growth and developmental programming. Reprod Biomed Online. 2012;25:68–89. doi: 10.1016/j.rbmo.2012.03.017.CrossRefPubMedGoogle Scholar
  27. 27.
    Avagliano L, Garo C, Marconi AM. Placental amino acids transport in intrauterine growth restriction. J Pregnancy. 2012;2012:972562. doi: 10.1155/2012/972562.CrossRefPubMedCentralPubMedGoogle Scholar
  28. 28.
    Barker DJ, Hales CN, Fall CH, Osmond C, Phipps K, Clark PM. Type 2 (non-insulin-dependent) diabetes mellitus, hypertension and hyperlipidaemia (syndrome X): relation to reduced fetal growth. Diabetologia. 1993;36:62–7.CrossRefPubMedGoogle Scholar
  29. 29.••
    Lager S, Powell TL. Regulation of nutrient transport across the placenta. J Pregnancy. 2012;2012:179827. doi: 10.1155/2012/179827. This article reviews in detail the regulation of placental nutrient transport by a wide variety of conditions.CrossRefPubMedCentralPubMedGoogle Scholar
  30. 30.
    Day PE, Cleal JK, Lofthouse EM, Hanson MA, Lewis RM. What factors determine placental glucose transfer kinetics? Placenta. 2013;34:953–8. doi: 10.1016/j.placenta.2013.07.001.CrossRefPubMedCentralPubMedGoogle Scholar
  31. 31.
    Baumann MU, Deborde S, Illsley NP. Placental glucose transfer and fetal growth. Endocrine. 2002;19:13–22. doi: 10.1385/ENDO:19:1:13.CrossRefPubMedGoogle Scholar
  32. 32.•
    Carter AM. Evolution of placental function in mammals: the molecular basis of gas and nutrient transfer, hormone secretion, and immune responses. Physiol Rev. 2012;92:1543–76. doi: 10.1152/physrev.00040.2011. This review describes, from an evolutionary perspective, the structure and functions of the placenta.CrossRefPubMedGoogle Scholar
  33. 33.
    Cleal JK, Lewis RM. The mechanisms and regulation of placental amino acid transport to the human foetus. J Neuroendocrinol. 2008;20:419–26. doi: 10.1111/j.1365-2826.2008.01662.x.CrossRefPubMedGoogle Scholar
  34. 34.
    Desforges M, Sibley CP. Placental nutrient supply and fetal growth. Int J Dev Biol. 2010;54:377–90. doi: 10.1387/ijdb.082765md.CrossRefPubMedGoogle Scholar
  35. 35.
    Lager S, Jansson N, Olsson AL, Wennergren M, Jansson T, Powell TL. Effect of IL-6 and TNF-alpha on fatty acid uptake in cultured human primary trophoblast cells. Placenta. 2011;32:121–7. doi: 10.1016/j.placenta.2010.10.012.CrossRefPubMedGoogle Scholar
  36. 36.
    Battaglia FC, Regnault TR. Placental transport and metabolism of amino acids. Placenta. 2001;22:145–61. doi: 10.1053/plac.2000.0612.CrossRefPubMedGoogle Scholar
  37. 37.
    Jansson T. Amino acid transporters in the human placenta. Pediatr Res. 2001;49:141–7. doi: 10.1203/00006450-200102000-00003.CrossRefPubMedGoogle Scholar
  38. 38.
    Ayuk PT, Sibley CP, Donnai P, D’Souza S, Glazier JD. Development and polarization of cationic amino acid transporters and regulators in the human placenta. Am J Physiol Cell Physiol. 2000;278:C1162–71.PubMedGoogle Scholar
  39. 39.
    Cunningham P, McDermott L. Long chain PUFA transport in human term placenta. J Nutr. 2009;139:636–9. doi: 10.3945/jn.108.098608.CrossRefPubMedGoogle Scholar
  40. 40.
    Duttaroy AK. Transport of fatty acids across the human placenta: a review. Prog Lipid Res. 2009;48:52–61. doi: 10.1016/j.plipres.2008.11.001.CrossRefPubMedGoogle Scholar
  41. 41.
    Haggarty P. Fatty acid supply to the human fetus. Annu Rev Nutr. 2010;30:237–55. doi: 10.1146/annurev.nutr.012809.104742.CrossRefPubMedGoogle Scholar
  42. 42.
    Solanky N, Requena Jimenez A, D’Souza SW, Sibley CP, Glazier JD. Expression of folate transporters in human placenta and implications for homocysteine metabolism. Placenta. 2010;31:134–43. doi: 10.1016/j.placenta.2009.11.017.CrossRefPubMedGoogle Scholar
  43. 43.
    Zhao R, Matherly LH, Goldman ID. Membrane transporters and folate homeostasis: intestinal absorption and transport into systemic compartments and tissues. Expert Rev Mol Med. 2009;11:e4. doi: 10.1017/S1462399409000969.CrossRefPubMedCentralPubMedGoogle Scholar
  44. 44.
    Persson A, Johansson M, Jansson T, Powell TL. Na(+)/K(+)-ATPase activity and expression in syncytiotrophoblast plasma membranes in pregnancies complicated by diabetes. Placenta. 2002;23:386–91. doi: 10.1053/plac.2002.0807.CrossRefPubMedGoogle Scholar
  45. 45.
    Mitchell DM, Juppner H. Regulation of calcium homeostasis and bone metabolism in the fetus and neonate. Curr Opin Endocrinol Diabetes Obes. 2010;17:25–30. doi: 10.1097/MED.0b013e328334f041.PubMedGoogle Scholar
  46. 46.
    Gonzalez-Perrett S, Kim K, Ibarra C, Damiano AE, Zotta E, Batelli M, et al. Polycystin-2, the protein mutated in autosomal dominant polycystic kidney disease (ADPKD), is a Ca2+-permeable nonselective cation channel. Proc Natl Acad Sci U S A. 2001;98:1182–7. doi: 10.1073/pnas.021456598.CrossRefPubMedCentralPubMedGoogle Scholar
  47. 47.
    Brown K, Heller DS, Zamudio S, Illsley NP. Glucose transporter 3 (GLUT3) protein expression in human placenta across gestation. Placenta. 2011;32:1041–9. doi: 10.1016/j.placenta.2011.09.014.CrossRefPubMedCentralPubMedGoogle Scholar
  48. 48.
    Desoye G, Gauster M, Wadsack C. Placental transport in pregnancy pathologies. Am J Clin Nutr. 2011;94:1896S–902. doi: 10.3945/ajcn.110.000851.CrossRefPubMedGoogle Scholar
  49. 49.
    Illsley NP. Glucose transporters in the human placenta. Placenta. 2000;21:14–22. doi: 10.1053/plac.1999.0448.CrossRefPubMedGoogle Scholar
  50. 50.
    Gaither K, Quraishi AN, Illsley NP. Diabetes alters the expression and activity of the human placental GLUT1 glucose transporter. J Clin Endocrinol Metab. 1999;84:695–701. doi: 10.1210/jc.84.2.695.PubMedGoogle Scholar
  51. 51.
    Illsley NP, Sellers MC, Wright RL. Glycaemic regulation of glucose transporter expression and activity in the human placenta. Placenta. 1998;19:517–24. doi: 10.1016/S0143-4004(98)91045-1.CrossRefPubMedGoogle Scholar
  52. 52.
    Hahn T, Barth S, Weiss U, Mosgoeller W, Desoye G. Sustained hyperglycemia in vitro down-regulates the GLUT1 glucose transport system of cultured human term placental trophoblast: a mechanism to protect fetal development? FASEB J. 1998;12:1221–31.PubMedGoogle Scholar
  53. 53.
    Araújo JR, Pereira AC, Correia-Branco A, Keating E, Martel F. Oxidative stress induced by tert-butylhydroperoxide interferes with the placental transport of glucose: in vitro studies with BeWo cells. Eur J Pharmacol. 2013;720:218–26. doi: 10.1016/j.ejphar.2013.10.023.CrossRefPubMedGoogle Scholar
  54. 54.
    Lappas M, Andrikopoulos S, Permezel M. Hypoxanthine-xanthine oxidase down-regulates GLUT1 transcription via SIRT1 resulting in decreased glucose uptake in human placenta. J Endocrinol. 2012;213:49–57. doi: 10.1530/JOE-11-0355.CrossRefPubMedGoogle Scholar
  55. 55.
    Ericsson A, Hamark B, Jansson N, Johansson BR, Powell TL, Jansson T. Hormonal regulation of glucose and system A amino acid transport in first trimester placental villous fragments. Am J Physiol Regul Integr Comp Physiol. 2005;288:R656–62. doi: 10.1152/ajpregu.00407.2004.CrossRefPubMedGoogle Scholar
  56. 56.
    Araújo JR, Correia-Branco A, Pereira AC, Pinho MJ, Keating E, Martel F. Oxidative stress decreases uptake of neutral amino acids in a human placental cell line (BeWo cells). Reprod Toxicol. 2013;40C:76–81. doi: 10.1016/j.reprotox.2013.06.073.CrossRefGoogle Scholar
  57. 57.
    Jansson T, Ekstrand Y, Bjorn C, Wennergren M, Powell TL. Alterations in the activity of placental amino acid transporters in pregnancies complicated by diabetes. Diabetes. 2002;51:2214–9. doi: 10.2337/diabetes.51.7.2214.CrossRefPubMedGoogle Scholar
  58. 58.
    Dicke JM, Henderson GI. Placental amino acid uptake in normal and complicated pregnancies. Am J Med Sci. 1988;295:223–7.CrossRefPubMedGoogle Scholar
  59. 59.
    Araújo JR, Correia-Branco A, Ramalho C, Goncalves P, Pinho MJ, Keating E, et al. L-Methionine placental uptake: characterization and modulation in gestational diabetes mellitus. Reprod Sci. 2013;20:1492–507. doi: 10.1177/1933719113488442.CrossRefPubMedCentralPubMedGoogle Scholar
  60. 60.
    von Versen-Hoynck F, Rajakumar A, Parrott MS, Powers RW. Leptin affects system A amino acid transport activity in the human placenta: evidence for STAT3 dependent mechanisms. Placenta. 2009;30:361–7. doi: 10.1016/j.placenta.2009.01.004.CrossRefGoogle Scholar
  61. 61.
    Nandakumaran M, Harouny AK, Al-Yatama M, Al-Azemi MK, Sugathan TN. Effect of increased glucose load on maternal-fetal transport of alpha-aminoisobutyric acid in the perfused human placenta: in vitro study. Acta Diabetol. 2002;39:75–81. doi: 10.1007/s005920200017.CrossRefPubMedGoogle Scholar
  62. 62.
    Jones HN, Jansson T, Powell TL. Full-length adiponectin attenuates insulin signaling and inhibits insulin-stimulated amino acid transport in human primary trophoblast cells. Diabetes. 2010;59:1161–70. doi: 10.2337/db09-0824.CrossRefPubMedCentralPubMedGoogle Scholar
  63. 63.
    Jones HN, Jansson T, Powell TL. IL-6 stimulates system A amino acid transporter activity in trophoblast cells through STAT3 and increased expression of SNAT2. Am J Physiol Cell Physiol. 2009;297:C1228–35. doi: 10.1152/ajpcell.00195.2009.CrossRefPubMedGoogle Scholar
  64. 64.
    Nandakumaran M, Al-Shammari M, Al-Saleh E. Maternal-fetal transport kinetics of L-leucine in vitro in gestational diabetic pregnancies. Diabetes Metab. 2004;30:367–74.CrossRefPubMedGoogle Scholar
  65. 65.
    Roos S, Powell TL, Jansson T. Human placental taurine transporter in uncomplicated and IUGR pregnancies: cellular localization, protein expression, and regulation. Am J Physiol Regul Integr Comp Physiol. 2004;287:R886–93. doi: 10.1152/ajpregu.00232.2004.CrossRefPubMedGoogle Scholar
  66. 66.
    Lee NY, Kang YS. Regulation of taurine transport at the blood-placental barrier by calcium ion, PKC activator and oxidative stress conditions. J Biomed Sci. 2010;17:S37. doi: 10.1186/1423-0127-17-S1-S37.CrossRefPubMedCentralPubMedGoogle Scholar
  67. 67.
    Roos S, Lagerlof O, Wennergren M, Powell TL, Jansson T. Regulation of amino acid transporters by glucose and growth factors in cultured primary human trophoblast cells is mediated by mTOR signaling. Am J Physiol Cell Physiol. 2009;297:C723–31. doi: 10.1152/ajpcell.00191.2009.CrossRefPubMedGoogle Scholar
  68. 68.
    Keating E, Goncalves P, Campos I, Costa F, Martel F. Folic acid uptake by the human syncytiotrophoblast: interference by pharmacotherapy, drugs of abuse and pathological conditions. Reprod Toxicol. 2009;28:511–20. doi: 10.1016/j.reprotox.2009.07.001.CrossRefPubMedGoogle Scholar
  69. 69.
    Strid H, Bucht E, Jansson T, Wennergren M, Powell TL. ATP dependent Ca2+ transport across basal membrane of human syncytiotrophoblast in pregnancies complicated by intrauterine growth restriction or diabetes. Placenta. 2003;24:445–52.CrossRefPubMedGoogle Scholar
  70. 70.
    Montalbetti N, Cantero MR, Dalghi MG, Cantiello HF. Reactive oxygen species inhibit polycystin-2 (TRPP2) cation channel activity in term human syncytiotrophoblast. Placenta. 2008;29:510–8. doi: 10.1016/j.placenta.2008.02.015.CrossRefPubMedGoogle Scholar
  71. 71.
    Burton G, Barker DJP, Moffett A, Thornburg KL. The placenta and human developmental programming. 1st ed. Cambridge: Cambridge University Press; 2011.Google Scholar
  72. 72.
    Jansson T, Ekstrand Y, Wennergren M, Powell TL. Placental glucose transport in gestational diabetes mellitus. Am J Obstet Gynecol. 2001;184:111–6. doi: 10.1067/mob.2001.108075.CrossRefPubMedGoogle Scholar
  73. 73.
    Bloxam DL, Bax CM, Bax BE. Culture of syncytiotrophoblast for the study of human placental transfer. Part I: isolation and purification of cytotrophoblast. Placenta. 1997;18:93–8. doi: 10.1016/S0143-4004(97)90079-5.CrossRefPubMedGoogle Scholar
  74. 74.
    Thongsong B, Subramanian RK, Ganapathy V, Prasad PD. Inhibition of amino acid transport system a by interleukin-1beta in trophoblasts. J Soc Gynecol Investig. 2005;12:495–503. doi: 10.1016/j.jsgi.2005.06.008.CrossRefPubMedGoogle Scholar
  75. 75.
    Bode CJ, Jin H, Rytting E, Silverstein PS, Young AM, Audus KL. In vitro models for studying trophoblast transcellular transport. Methods Mol Med. 2006;122:225–39. doi: 10.1385/1-59259-989-3:225.PubMedCentralPubMedGoogle Scholar
  76. 76.
    Kulkarni A, Dangat K, Kale A, Sable P, Chavan-Gautam P, Joshi S. Effects of altered maternal folic acid, vitamin B12 and docosahexaenoic acid on placental global DNA methylation patterns in Wistar rats. PLoS One. 2011;6:e17706. doi: 10.1371/journal.pone.0017706.CrossRefPubMedCentralPubMedGoogle Scholar
  77. 77.
    Innis SM. Essential fatty acid transfer and fetal development. Placenta. 2005;26:S70–5. doi: 10.1016/j.placenta.2005.01.005.CrossRefPubMedGoogle Scholar
  78. 78.
    Larque E, Demmelmair H, Gil-Sanchez A, Prieto-Sanchez MT, Blanco JE, Pagan A, et al. Placental transfer of fatty acids and fetal implications. Am J Clin Nutr. 2011;94:1908S–13. doi: 10.3945/ajcn.110.001230.CrossRefPubMedGoogle Scholar
  79. 79.
    Ryan AS, Astwood JD, Gautier S, Kuratko CN, Nelson EB, Salem Jr N. Effects of long-chain polyunsaturated fatty acid supplementation on neurodevelopment in childhood: a review of human studies. Prostaglandins Leukot Essent Fatty Acids. 2010;82:305–14. doi: 10.1016/j.plefa.2010.02.007.CrossRefPubMedGoogle Scholar
  80. 80.
    Greenberg JA, Bell SJ, Ausdal WV. Omega-3 fatty acid supplementation during pregnancy. Rev Obstet Gynecol. 2008;1:162–9.PubMedCentralPubMedGoogle Scholar
  81. 81.
    Araújo JR, Correia-Branco A, Ramalho C, Keating E, Martel F. Gestational diabetes mellitus decreases placental uptake of long-chain polyunsaturated fatty acids: involvement of long-chain acyl-CoA synthetase. J Nutr Biochem. 2013;24:1741–50. doi: 10.1016/j.jnutbio.2013.03.003.CrossRefPubMedGoogle Scholar
  82. 82.
    Bonen A, Chabowski A, Luiken JJ, Glatz JF. Is membrane transport of FFA mediated by lipid, protein, or both? Mechanisms and regulation of protein-mediated cellular fatty acid uptake: molecular, biochemical, and physiological evidence. Physiology (Bethesda). 2007;22:15–29.Google Scholar
  83. 83.
    Weedon-Fekjaer MS, Dalen KT, Solaas K, Staff AC, Duttaroy AK, Nebb HI. Activation of LXR increases acyl-CoA synthetase activity through direct regulation of ACSL3 in human placental trophoblast cells. J Lipid Res. 2010;51:1886–96. doi: 10.1194/jlr.M004978.CrossRefPubMedCentralPubMedGoogle Scholar
  84. 84.
    Magnusson AL, Waterman IJ, Wennergren M, Jansson T, Powell TL. Triglyceride hydrolase activities and expression of fatty acid binding proteins in the human placenta in pregnancies complicated by intrauterine growth restriction and diabetes. J Clin Endocrinol Metab. 2004;89:4607–14. doi: 10.1210/jc.2003-032234.CrossRefPubMedGoogle Scholar
  85. 85.
    Radaelli T, Lepercq J, Varastehpour A, Basu S, Catalano PM, Hauguel-De Mouzon S. Differential regulation of genes for fetoplacental lipid pathways in pregnancy with gestational and type 1 diabetes mellitus. Am J Obstet Gynecol. 2009;201:209 e1–e10. doi: 10.1016/j.ajog.2009.04.019.Google Scholar
  86. 86.
    Gauster M, Hiden U, van Poppel M, Frank S, Wadsack C, Hauguel-de Mouzon S, et al. Dysregulation of placental endothelial lipase in obese women with gestational diabetes mellitus. Diabetes. 2011;60:2457–64. doi: 10.2337/db10-1434.CrossRefPubMedCentralPubMedGoogle Scholar
  87. 87.
    Pagan A, Prieto-Sanchez MT, Blanco-Carnero JE, Gil-Sanchez A, Parrilla JJ, Demmelmair H, et al. Materno-fetal transfer of docosahexaenoic acid is impaired by gestational diabetes mellitus. Am J Physiol Endocrinol Metab. 2013;305:E826–33. doi: 10.1152/ajpendo.00291.2013.CrossRefPubMedGoogle Scholar
  88. 88.
    Min Y, Lowy C, Ghebremeskel K, Thomas B, Bitsanis D, Crawford MA. Fetal erythrocyte membrane lipids modification: preliminary observation of an early sign of compromised insulin sensitivity in offspring of gestational diabetic women. Diabet Med. 2005;22:914–20. doi: 10.1111/j.1464-5491.2005.01556.x.CrossRefPubMedGoogle Scholar
  89. 89.
    Thomas BA, Ghebremeskel K, Lowy C, Offley-Shore B, Crawford MA. Plasma fatty acids of neonates born to mothers with and without gestational diabetes. Prostaglandins Leukot Essent Fatty Acids. 2005;72:335–41. doi: 10.1016/j.plefa.2005.01.001.CrossRefPubMedGoogle Scholar
  90. 90.
    Wijendran V, Bendel RB, Couch SC, Philipson EH, Cheruku S, Lammi-Keefe CJ. Fetal erythrocyte phospholipid polyunsaturated fatty acids are altered in pregnancy complicated with gestational diabetes mellitus. Lipids. 2000;35:927–31. doi: 10.1007/S11745-000-0602-2.CrossRefPubMedGoogle Scholar
  91. 91.
    Duttaroy AK, Jorgensen A. Insulin and leptin do not affect fatty acid uptake and metabolism in human placental choriocarcinoma (BeWo) cells. Prostaglandins Leukot Essent Fatty Acids. 2005;72:403–8. doi: 10.1016/j.plefa.2005.03.004.CrossRefPubMedGoogle Scholar
  92. 92.
    Lucock M. Folic acid: nutritional biochemistry, molecular biology, and role in disease processes. Mol Genet Metab. 2000;71:121–38. doi: 10.1006/mgme.2000.3027.CrossRefPubMedGoogle Scholar
  93. 93.
    Caballero B, Allen L, Prentice A. Encyclopedia of human nutrition. 2nd ed. Boston: Elsevier/Academic Press; 2005.Google Scholar
  94. 94.
    Zhao R, Diop-Bove N, Visentin M, Goldman ID. Mechanisms of membrane transport of folates into cells and across epithelia. Annu Rev Nutr. 2011;31:177–201. doi: 10.1146/annurev-nutr-072610-145133.CrossRefPubMedGoogle Scholar
  95. 95.
    Giugliani ER, Jorge SM, Goncalves AL. Serum and red blood cell folate levels in parturients, in the intervillous space of the placenta and in full-term newborns. J Perinat Med. 1985;13:55–9.CrossRefPubMedGoogle Scholar
  96. 96.
    Hutson JR, Stade B, Lehotay DC, Collier CP, Kapur BM. Folic acid transport to the human fetus is decreased in pregnancies with chronic alcohol exposure. PLoS One. 2012;7:e38057. doi: 10.1371/journal.pone.0038057.CrossRefPubMedCentralPubMedGoogle Scholar
  97. 97.
    Araújo JR, Correia-Branco A, Moreira L, Ramalho C, Martel F, Keating E. Folic acid uptake by the human syncytiotrophoblast is affected by gestational diabetes, hyperleptinemia, and TNF-alpha. Pediatr Res. 2013;73:388–94. doi: 10.1038/pr.2013.14.CrossRefPubMedGoogle Scholar
  98. 98.
    Torricelli M, Voltolini C, Bloise E, Biliotti G, Giovannelli A, De Bonis M, et al. Urocortin increases IL-4 and IL-10 secretion and reverses LPS-induced TNF-alpha release from human trophoblast primary cells. Am J Reprod Immunol. 2009;62:224–31. doi: 10.1111/j.1600-0897.2009.00729.x.CrossRefPubMedGoogle Scholar
  99. 99.
    Bardicef M, Bardicef O, Sorokin Y, Altura BM, Altura BT, Cotton DB, et al. Extracellular and intracellular magnesium depletion in pregnancy and gestational diabetes. Am J Obstet Gynecol. 1995;172:1009–13. doi: 10.1016/0002-9378(95)90035-7.CrossRefPubMedGoogle Scholar
  100. 100.••
    Jansson T, Powell TL. Role of placental nutrient sensing in developmental programming. Clin Obstet Gynecol. 2013;56:591–601. doi: 10.1097/GRF.0b013e3182993a2e. This article provides a simple description of how the fetoplacental unit responds to alterations in maternal nutrition and metabolism.CrossRefPubMedCentralPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • João Ricardo Araújo
    • 1
    Email author
  • Elisa Keating
    • 1
    • 2
  • Fátima Martel
    • 1
  1. 1.Department of Biochemistry, Faculty of Medicine of PortoUniversity of PortoPortoPortugal
  2. 2.Center for Biotechnology and Fine Chemistry, School of BiotechnologyPortuguese Catholic UniversityPortoPortugal

Personalised recommendations