Current Diabetes Reports

, Volume 13, Issue 5, pp 704–712 | Cite as

Immune Monitoring of Islet and Pancreas Transplant Recipients

Transplantation (A Pileggi, Section Editor)

Abstract

Type 1 diabetes (T1D) is an autoimmune disease in which the insulin-producing beta-cells are destroyed. Islet or pancreas transplantation can restore insulin secretion and are established therapies for subgroups of T1D patients. Long-term insulin-independence is, however, hampered by recurrent autoimmunity and rejection. Accurate monitoring of these immune events is therefore of critical relevance for the timely detection of deleterious immune responses. The identification of relevant immune biomarkers of allo- and autoreactivity has allowed a more accurate monitoring of disease progression and responses to therapy at early stages, allowing proper therapeutic intervention, and possibly improvements in the success rate of islet and pancreas transplantation. This review describes the tools established and validated to monitor immune correlates of auto- and alloreactivity that associate with clinical outcome and identifies challenges that current immunosuppression strategies trying to preserve islet graft function face.

Keywords

Type 1 diabetes Autoimmune disease Islet transplantation Pancreas transplantation Immune monitoring Biomarkers 

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. 1.
    • Coppieters KT, Dotta F, Amirian N, Campbell PD, Kay TW, Atkinson MA, et al. Demonstration of islet-autoreactive CD8 T cells in insulitic lesions from recent onset and long-term type 1 diabetes patients. J Exp Med. 2012;209:51–60. Ultimate proof that insulitis in human pancreatic leasions contain islet auoreactive CD8 T cells. PubMedCrossRefGoogle Scholar
  2. 2.
    Steffes MW, Sibley S, Jackson M, Thomas W. Beta-cell function and the development of diabetes-related complications in the diabetes control and complications trial. Diabetes Care. 2003;26:832–6.PubMedCrossRefGoogle Scholar
  3. 3.
    Barton FB, Rickels MR, Alejandro R, Hering BJ, Wease S, Naziruddin B, et al. Improvement in outcomes of clinical islet transplantation: 1999–2010. Diabetes Care. 2012;35:1436–45.PubMedCrossRefGoogle Scholar
  4. 4.
    Ryan EA, Paty BW, Senior PA, Bigam D, Alfadhli E, Kneteman NM, et al. Five-year follow-up after clinical islet transplantation. Diabetes. 2005;54:2060–9.PubMedCrossRefGoogle Scholar
  5. 5.
    Shapiro AM. State of the art of clinical islet transplantation and novel protocols of immunosuppression. Curr Diab Rep. 2011;11:345–54.PubMedCrossRefGoogle Scholar
  6. 6.
    Ziegler AG, Nepom GT. Prediction and pathogenesis in type 1 diabetes. Immunity. 2010;32:468–78.PubMedCrossRefGoogle Scholar
  7. 7.
    Martin S, Wolf-Eichbaum D, Duinkerken G, Scherbaum WA, Kolb H, Noordzij JG, et al. Development of type 1 diabetes despite severe hereditary B-lymphocyte deficiency. N Engl J Med. 2001;345:1036–40.PubMedCrossRefGoogle Scholar
  8. 8.
    Bosi E, Bottazzo GF, Secchi A, Pozza G, Shattock M, Saunders A, et al. Islet cell autoimmunity in type I diabetic patients after HLA-mismatched pancreas transplantation. Diabetes. 1989;38 Suppl 1:82–4.PubMedGoogle Scholar
  9. 9.
    Braghi S, Bonifacio E, Secchi A, Di CV, Pozza G, Bosi E. Modulation of humoral islet autoimmunity by pancreas allotransplantation influences allograft outcome in patients with type 1 diabetes. Diabetes. 2000;49:218–24.PubMedCrossRefGoogle Scholar
  10. 10.
    • Vendrame F, Pileggi A, Laughlin E, Allende G, Martin-Pagola A, Molano RD, et al. Recurrence of type 1 diabetes after simultaneous pancreas-kidney transplantation, despite immunosuppression, is associated with autoantibodies and pathogenic autoreactive CD4 T-cells. Diabetes. 2010;59:947–57. First evidence that recuurent autoimmunity may be cause of chronic loss of function in pancreas allograft recipients. PubMedCrossRefGoogle Scholar
  11. 11.
    Jaeger C, Brendel MD, Hering BJ, Eckhard M, Bretzel RG. Progressive islet graft failure occurs significantly earlier in autoantibody-positive than in autoantibody-negative IDDM recipients of intrahepatic islet allografts. Diabetes. 1997;46:1907–10.PubMedCrossRefGoogle Scholar
  12. 12.
    Piemonti L, Everly MJ, Maffi P, Scavini M, Poli F, Nano R, et al. Alloantibody and autoantibody monitoring predicts islet transplantation outcome in human type 1 Diabetes. Diabetes. 2012;62:1656–64.Google Scholar
  13. 13.
    Hilbrands R, Huurman VA, Gillard P, Velthuis JH, De WM, Mathieu C, et al. Differences in baseline lymphocyte counts and autoreactivity are associated with differences in outcome of islet cell transplantation in type 1 diabetic patients. Diabetes. 2009;58:2267–76.PubMedCrossRefGoogle Scholar
  14. 14.
    • Huurman VA, Hilbrands R, Pinkse GG, Gillard P, Duinkerken G, van de Linde P, et al. Cellular islet autoimmunity associates with clinical outcome of islet cell transplantation. PLoS One. 2008;3:e2435. First evidence that cellular islet autoimmunity before transplantation determines outcome, rather than islet autoantibodies at baseline. Alloreactivity to the islet donor proved secondary to recurrent islet autoimmunity. PubMedCrossRefGoogle Scholar
  15. 15.
    Huurman VA, van der Torren CR, Gillard P, Hilbrands R, van der Meer-Prins EP, Duinkerken G, et al. Immune responses against islet allografts during tapering of immunosuppression–a pilot study in 5 subjects. Clin Exp Immunol. 2012;169:190–8.PubMedCrossRefGoogle Scholar
  16. 16.
    Laughlin E, Burke G, Pugliese A, Falk B, Nepom G. Recurrence of autoreactive antigen-specific CD4+ T cells in autoimmune diabetes after pancreas transplantation. Clin Immunol. 2008;128:23–30.PubMedCrossRefGoogle Scholar
  17. 17.
    • Monti P, Scirpoli M, Maffi P, Ghidoli N, de Taddeo F, Bertuzzi F, et al. Islet transplantation in patients with autoimmune diabetes induces homeostatic cytokines that expand autoreactive memory T cells. J Clin Invest. 2008;118:1806–14. Demonstration of homeostatic expansion by islet auoreactive memory CD8 T cells following debulking induction therapy with thymoglobulin before islet transplantation. PubMedGoogle Scholar
  18. 18.
    Pinkse GG, Tysma OH, Bergen CA, Kester MG, Ossendorp F, van Veelen PA, et al. Autoreactive CD8 T cells associated with beta cell destruction in type 1 diabetes. Proc Natl Acad Sci USA. 2005;102:18425–30.PubMedCrossRefGoogle Scholar
  19. 19.
    Roep BO, Stobbe I, Duinkerken G, van Rood JJ, Lernmark A, Keymeulen B, et al. Auto- and alloimmune reactivity to human islet allografts transplanted into type 1 diabetic patients. Diabetes. 1999;48:484–90.PubMedCrossRefGoogle Scholar
  20. 20.
    Unger WW, Velthuis J, Abreu JR, Laban S, Quinten E, Kester MG, et al. Discovery of low-affinity preproinsulin epitopes and detection of autoreactive CD8 T-cells using combinatorial MHC multimers. J Autoimmun. 2011;37:151–9.PubMedCrossRefGoogle Scholar
  21. 21.
    Velthuis JH, Unger WW, van der Slik AR, Duinkerken G, Engelse M, Schaapherder AF, et al. Accumulation of autoreactive effector T cells and allo-specific regulatory T cells in the pancreas allograft of a type 1 diabetic recipient. Diabetologia. 2009;52:494–503.PubMedCrossRefGoogle Scholar
  22. 22.
    Velthuis JH, Unger WW, Abreu JR, Duinkerken G, Franken K, Peakman M, et al. Simultaneous detection of circulating autoreactive CD8+ T-cells specific for different islet cell-associated epitopes using combinatorial MHC multimers. Diabetes. 2010;59:1721–30.PubMedCrossRefGoogle Scholar
  23. 23.
    Trudeau JD, Kelly-Smith C, Verchere CB, Elliott JF, Dutz JP, Finegood DT, et al. Prediction of spontaneous autoimmune diabetes in NOD mice by quantification of autoreactive T cells in peripheral blood. J Clin Invest. 2003;111:217–23.PubMedGoogle Scholar
  24. 24.
    Unger WW, Pearson T, Abreu JR, Laban S, van der Slik AR, der Kracht SM, et al. Islet-specific CTL cloned from a type 1 diabetes patient cause beta-cell destruction after engraftment into HLA-A2 transgenic NOD/scid/IL2RG null mice. PLoS One. 2012;7:e49213.PubMedCrossRefGoogle Scholar
  25. 25.
    Abreu JR, Roep BO. Autoreactive CD8 T cells in Type 1 diabetes: implications for pathogenesis, diagnosis, disease progression, and therapeutic intervention. Diabetes Management. 2011;1:99–108.CrossRefGoogle Scholar
  26. 26.
    Campbell PM, Salam A, Ryan EA, Senior P, Paty BW, Bigam D, et al. Pretransplant HLA antibodies are associated with reduced graft survival after clinical islet transplantation. Am J Transplant. 2007;7:1242–8.PubMedCrossRefGoogle Scholar
  27. 27.
    Mohanakumar T, Narayanan K, Desai N, Ramachandran S, Shenoy S, Jendrisak M, et al. A significant role for histocompatibility in human islet transplantation. Transplantation. 2006;82:180–7.PubMedCrossRefGoogle Scholar
  28. 28.
    Olack BJ, Swanson CJ, Flavin KS, Phelan D, Brennan DC, White NH, et al. Sensitization to HLA antigens in islet recipients with failing transplants. Transplant Proc. 1997;29:2268–9.PubMedCrossRefGoogle Scholar
  29. 29.
    Cardani R, Pileggi A, Ricordi C, Gomez C, Baidal DA, Ponte GG, et al. Allosensitization of islet allograft recipients. Transplantation. 2007;84:1413–27.PubMedCrossRefGoogle Scholar
  30. 30.
    Kessler L, Parissiadis A, Bayle F, Moreau F, Pinget M, Froelich N, et al. Evidence for humoral rejection of a pancreatic islet graft and rescue with rituximab and IV immunoglobulin therapy. Am J Transplant. 2009;9:1961–6.PubMedCrossRefGoogle Scholar
  31. 31.
    Lobo PI, Spencer C, Simmons WD, Hagspiel KD, Angle JF, Deng S, et al. Development of anti-human leukocyte antigen class 1 antibodies following allogeneic islet cell transplantation. Transplant Proc. 2005;37:3438–40.PubMedCrossRefGoogle Scholar
  32. 32.
    • Campbell PM, Senior PA, Salam A, Labranche K, Bigam DL, Kneteman NM, et al. High risk of sensitization after failed islet transplantation. Am J Transplant. 2007;7:2311–7. Demonstration of immunization to donor HLA after islet transplantation. PubMedCrossRefGoogle Scholar
  33. 33.
    Roelen DL, Huurman VA, Hilbrands R, Gillard P, Duinkerken G, van der Meer-Prins PW, et al. Relevance of cytotoxic alloreactivity under different immunosuppressive regimens in clinical islet cell transplantation. Clin Exp Immunol. 2009;156:141–8.PubMedCrossRefGoogle Scholar
  34. 34.
    Stobbe I, Duinkerken G, van Rood JJ, Lernmark A, Keymeulen B, Pipeleers D, et al. Tolerance to kidney allograft transplanted into Type I diabetic patients persists after in vivo challenge with pancreatic islet allografts that express repeated mismatches. Diabetologia. 1999;42:1379–80.PubMedCrossRefGoogle Scholar
  35. 35.
    van Kampen CA, van de Linde P, Duinkerken G, van Schip JJ, Roelen DL, Keymeulen B, et al. Alloreactivity against repeated HLA mismatches of sequential islet grafts transplanted in non-uremic type 1 diabetes patients. Transplantation. 2005;80:118–26.PubMedCrossRefGoogle Scholar
  36. 36.
    Huurman VA, Velthuis JH, Hilbrands R, Tree TI, Gillard P, van der Meer-Prins PM, et al. Allograft-specific cytokine profiles associate with clinical outcome after islet cell transplantation. Am J Transplant. 2009;9:382–8.PubMedCrossRefGoogle Scholar
  37. 37.
    Sibley RK, Sutherland DE, Goetz F, Michael AF. Recurrent diabetes mellitus in the pancreas iso- and allograft. A light and electron microscopic and immunohistochemical analysis of four cases. Lab Invest. 1985;53:132–44.PubMedGoogle Scholar
  38. 38.
    Sibley RK, Sutherland DE. Pancreas transplantation. An immunohistologic and histopathologic examination of 100 grafts. Am J Pathol. 1987;128:151–70.PubMedGoogle Scholar
  39. 39.
    Sutherland DE, Sibley R, Xu XZ, Michael A, Srikanta AM, Taub F, et al. Twin-to-twin pancreas transplantation: reversal and reenactment of the pathogenesis of type I diabetes. Trans Assoc Am Physicians. 1984;97:80–7.PubMedGoogle Scholar
  40. 40.
    Sutherland DE, Goetz FC, Sibley RK. Recurrence of disease in pancreas transplants. Diabetes. 1989;38 Suppl 1:85–7.PubMedGoogle Scholar
  41. 41.
    Monti P, Scirpoli M, Rigamonti A, Mayr A, Jaeger A, Bonfanti R, et al. Evidence for in vivo primed and expanded autoreactive T cells as a specific feature of patients with type 1 diabetes. J Immunol. 2007;179:5785–92.PubMedGoogle Scholar
  42. 42.
    Danke NA, Yang J, Greenbaum C, Kwok WW. Comparative study of GAD65-specific CD4+ T cells in healthy and type 1 diabetic subjects. J Autoimmun. 2005;25:303–11.PubMedCrossRefGoogle Scholar
  43. 43.
    Viglietta V, Kent SC, Orban T, Hafler DA. GAD65-reactive T cells are activated in patients with autoimmune type 1a diabetes. J Clin Invest. 2002;109:895–903.PubMedGoogle Scholar
  44. 44.
    Alkemade GM, Clemente-Casares X, Yu Z, Xu BY, Wang J, Tsai S, et al. Local autoantigen expression as essential gatekeeper of memory T-cell recruitment to islet grafts in diabetic hosts. Diabetes. 2012;[In press].Google Scholar
  45. 45.
    Gillard P, Huurman V, Van der Auwera B, Decallonne B, Poppe K, Roep BO, et al. Graves hyperthyroidism after stopping immunosuppressive therapy in type 1 diabetic Islet cell recipients with pretransplant TPO autoantibodies. Diabetes Care. 2009;32:1817–9.PubMedCrossRefGoogle Scholar
  46. 46.
    Keymeulen B, Gillard P, Mathieu C, Movahedi B, Maleux G, Delvaux G, et al. Correlation between beta cell mass and glycemic control in type 1 diabetic recipients of islet cell graft. Proc Natl Acad Sci USA. 2006;103:17444–9.PubMedCrossRefGoogle Scholar
  47. 47.
    Roep BO, Kleijwegt FS, van Halteren AG, Bonato V, Boggi U, Vendrame F, et al. Islet inflammation and CXCL10 in recent-onset type 1 diabetes. Clin Exp Immunol. 2010;159:338–43.PubMedCrossRefGoogle Scholar
  48. 48.
    Valujskikh A, Li XC. Frontiers in nephrology: T cell memory as a barrier to transplant tolerance. J Am Soc Nephrol. 2007;18:2252–61.PubMedCrossRefGoogle Scholar

Copyright information

© European Union 2013

Authors and Affiliations

  1. 1.Department of Immunohematology and Blood TransfusionLeiden University Medical CenterLeidenThe Netherlands
  2. 2.JDRF Center for Beta Cell Therapy in DiabetesBrusselsBelgium

Personalised recommendations