Current Diabetes Reports

, Volume 13, Issue 3, pp 411–418 | Cite as

Diabetes Mellitus and Osteoporosis

  • Robert Sealand
  • Christie Razavi
  • Robert A. Adler
Diabetes and Other Diseases—Emerging Associations (D Aron, Section Editor)

Abstract

Diabetes mellitus (particularly type 2) and osteoporosis are two very common disorders, and both are increasing in prevalence. Adolescents with type 1 diabetes mellitus may not reach potential peak bone mass, putting them at greater fracture risk. In adults with type 2 diabetes, fracture risk is increased and is not explained by the bone mineral density measured by dual-energy X-ray absorptiometry, still considered the gold standard predictor of fracture. In this review, we explore potential mechanisms behind the increased fracture risk that occurs in patients with diabetes, even those with increased bone mineral density. One potential link between diabetes and bone is the osteoblast-produced factor, osteocalcin. It remains to be established whether osteocalcin reflects or affects the connection between bone and glucose metabolism. Several other potential mediators of the effects of diabetes on bone are discussed.

Keywords

Diabetes mellitus Type 1 diabetes mellitus Type 2 diabetes mellitus Osteoporosis Fracture Obesity Bone mineral density Dual energy X-ray absorptiometry Osteocalcin 

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. 1.
    World Health Organization: Diabetes Fact Sheet. Available at www.who.int/mediacentre/factsheets/fs312/en/index.html. Accessed December 2012.
  2. 2.
    Osteoporosis – General Statistics. Available at www.iofbonehealth.org/facts-statistics#category-14. Accessed December 2012
  3. 3.
    Bonds D, Larson J, Schwartz A, et al. Risk of fracture in women with type 2 diabetes: the women’s health initiative observational study. J Clin Endocrin Metab. 2006;91:3404–10.CrossRefGoogle Scholar
  4. 4.
    Strotmeyer E, Cauley J, Schwartz A, et al. Nontraumatic fracture risk with diabetes mellitus and impaired fasting glucose in older white and black adults: the health, aging, and body composition study. Arch Intern Med 2005;165:1612–1617.Google Scholar
  5. 5.
    • Ma L, Oei L, Jiang L, et al. Association between bone mineral density and type 2 diabetes mellitus: a meta-analysis of observational studies. Eur J Epidemiol. 2012;27:319–32. This study clearly demonstrates the increased bone density of type 2 diabetes mellitus.PubMedCrossRefGoogle Scholar
  6. 6.
    • Nielson CM, Marshall LM, Adams AL, et al. BMI and fracture risk in older men: the osteoporotic fractures in men study (MrOS). J Bone Miner Res. 2011;26:496–502. This prospective study of about 6,000 older men found that obesity was not protective of the skeleton. Indeed fracture risk was higher in obese men.PubMedCrossRefGoogle Scholar
  7. 7.
    Tanaka S, Kuroda T, Saito M, Shiraki M. Overweight/obesity and underweight are both risk factors for osteoporotic fractures at different sites in Japanese postmenopausal women. Osteoporos Int. 2013;24:69–76.PubMedCrossRefGoogle Scholar
  8. 8.
    Viegas M, Costa C, Lopes A, et al. Prevalence of osteoporosis and vertebral fractures in postmenopausal women with type 2 diabetes mellitus and their relationship with duration of the disease and chronic complications. J Diabetes Complications. 2011;25:216–21.PubMedCrossRefGoogle Scholar
  9. 9.
    Compston JE, Watts NB, Chapurlat R, et al. Obesity is not protective against fracture in postmenopausal women: GLOW. Am J Med. 2011;124:1043–50.PubMedCrossRefGoogle Scholar
  10. 10.
    Prieto-Alhambra D, Premaor MO, Fina Aviles F, et al. The association between fracture and obesity is site-dependent: a population-based study in postmenopausal women. J Bone Miner Res. 2012;27:294–300.PubMedCrossRefGoogle Scholar
  11. 11.
    Premaor MO, Compston JE, Aviles FF, et al. The association between fracture site and obesity in men: a population-based cohort study. J Bone Miner Res epublished 31 January 2013.Google Scholar
  12. 12.
    de Liefde I, Van der Klift M, de Laet C, et al. Bone mineral density and fracture risk in type 2 diabetes mellitus: the Rotterdam Study. Osteoporosis Int. 2005;16:1713–20.CrossRefGoogle Scholar
  13. 13.
    Lipscombe L, Jamal S, Booth G, et al. The risk of hip fractures in older individuals with diabetes: a population-based study. Diabetes Care. 2007;30:835–41.PubMedCrossRefGoogle Scholar
  14. 14.
    Bonds D, Larson J, Schwartz A, et al. Risk of fracture in women with type 2 diabetes: the Women’s Health Initiative Observational Study. J Clin Endocrin Metab. 2006;9:3404–10.CrossRefGoogle Scholar
  15. 15.
    Mendez J, Rojano-Mejia D, Pedraza J, et al. Bone mineral density in postmenopausal Mexican-Mestizo women with normal body mass index, overweight, or obesity. Menopause epublished December 30, 2012.Google Scholar
  16. 16.
    • Kao W, Kammerer C, Schneider J, et al. Type 2 diabetes is associated with increased bone mineral density in Mexican–American women. Arch Med Res. 2003;34:399–406. In women, obesity does not protect bones from fracture.PubMedCrossRefGoogle Scholar
  17. 17.
    Melton LJ, Riggs BL, Leibson C, et al. A bone structural basis for fracture risk in diabetes. J Clin Endocrinol Metab. 2008;93:4804–9.PubMedCrossRefGoogle Scholar
  18. 18.
    • Burghardt A, Issever A, Schwartz A, et al. High-resolution peripheral quantitative computed tomographic imaging of cortical and trabecular bone microarchitecture in patients with type 2 diabetes mellitus. J Clin Endocrinol Metab. 2010;95:5045–55. Using new techniques, the alterations of cortical bone found in type 2 diabetes mellitus may be one explanation for the increased fracture risk.PubMedCrossRefGoogle Scholar
  19. 19.
    • Patsch J, Burghardt A, Yap S, et al. Increased cortical porosity in type-2 diabetic postmenopausal women with fragility fractures. J Bone Miner Res 2012 10.1002 Epub ahead of print. This study provides information about cortical bone in T1DM.Google Scholar
  20. 20.
    Kanazawa I, Yamaguchi T, Yamamoto M, et al. Serum osteocalcin is associated with glucose metabolism and atherosclerosis parameters in type 2 diabetes mellitus. J Clin Endocrinol Metab. 2009;94:45–9.PubMedCrossRefGoogle Scholar
  21. 21.
    Gennari L, Merlotti D, Valenti R, et al. Circulating sclerostin levels and bone turnover in type 1 and type 2 diabetes. J Clin Endocrinol Metab. 2012;97(5):1737–44.PubMedCrossRefGoogle Scholar
  22. 22.
    Gaudio A, Privitera F, Battaglia K, et al. Sclerostin levels associated with inhibition of the Wnt/β-catenin signaling and reduced bone turnover in type 2 diabetes mellitus. J Clin Endocrinol Metab. 2012;97:3744–50.PubMedCrossRefGoogle Scholar
  23. 23.
    Garcia-Hernandez A, Arzate H, Gil-Chavarria I, Rojo R, Moreno-Fierros L. High glucose concentrations alter the biomineralization process in human osteoblastic cells. Bone. 2012;50:276–88.PubMedCrossRefGoogle Scholar
  24. 24.
    • Booth SL, Centi AM, Smith SR, Gundberg C. The role of osteocalcin in human glucose metabolism: marker or mediator? Nat Rev Endocrinol. 2013;9:43–55. This review of osteocalcin looks at the potential role of this bone protein in glucose metabolism.Google Scholar
  25. 25.
    Iglesias P, Arrieta F, Pinera M, et al. Serum concentrations of osteocalcin, procollagen type 1 N-terminal propeptide and beta-Crosslaps in obese subjects with varying degrees of glucose tolerance. Clin Endocrinol. 2011;75:184–8.CrossRefGoogle Scholar
  26. 26.
    Saito M, Marumo K. Collagen cross-links as a determinant of bone quality: a possible explanation for bone fragility in aging, osteoporosis, and diabetes mellitus. Osteoporos Int. 2010;21:195–214.PubMedCrossRefGoogle Scholar
  27. 27.
    Schwartz AV, Garnero P, Hillier TA, et al. Pentosidine and increased fracture risk in older adults with type 2 diabetes. J Clin Endocrinol Metab. 2009;94:2380–6.PubMedCrossRefGoogle Scholar
  28. 28.
    Yamamoto M, Yamaguchi T, Yamauchi M, Yano S, Sugimoto T. Serum pentosidine levels are positively associated with the presence of vertebral fractures in postmenopausal women with type 2 diabetes. J Clin Endocrinol Metab. 2008;93:1013–9.PubMedCrossRefGoogle Scholar
  29. 29.
    Pittas AG, Nelson J, Mitri J, et al. Plasma 25-hydroxyvitamin D and progression to diabetes in patients at risk for diabetes: an ancillary analysis in the Diabetes Prevention Program. Diabetes Care. 2012;35:565–73.PubMedCrossRefGoogle Scholar
  30. 30.
    Harris SS, Pittas AG, Palermo NJ. A randomized, placebo-controlled trial of vitamin D supplementation to improve glycaemia in overweight and obese African Americans. Diabetes Obes Metab. 2012;14:789–94.PubMedCrossRefGoogle Scholar
  31. 31.
    Lecka-Czernik B. Bone loss in diabetes: use of antidiabetic thiazolidinediones and secondary osteoporosis. Curr Osteoporos Rep. 2010;8:178–84.PubMedCrossRefGoogle Scholar
  32. 32.
    • Leslie WD, Rubin MR, Schwartz AV, Kanis JA. Type 2 diabetes and bone. J Bone Miner Res. 2012;27:2231–7. This important review of diabetes and fracture risk includes explanation of how the FRAX risk calculator should be viewed in patients with diabetes.PubMedCrossRefGoogle Scholar
  33. 33.
    Dunger DB, Acerini CL. IGF-I and diabetes in adolescence. Diabetes Metab. 1999;24:101–7.Google Scholar
  34. 34.
    Johnson SB, Silverstein J, Rosenbloom A, Carter R, Cunningham W. Assessing daily management in childhood diabetes. Health Psychol. 1986;5:545–64.PubMedCrossRefGoogle Scholar
  35. 35.
    Weissberg-Benchell J, Glasgow AM, Tynan WD, et al. J. Adolescent diabetes management and mismanagement. Diabetes Care. 1995;18:77–8.PubMedCrossRefGoogle Scholar
  36. 36.
    Albertson AM, Tobelmann RC, Marquart L. Estimated dietary calcium intake and food sources for adolescent females 1980–1992. J Adolesc Health. 1997;20:20–6.PubMedCrossRefGoogle Scholar
  37. 37.
    Thrailkill KM. Diabetes care for adolescents. In: Reece EA, Coustan DR, Gabbe SG, editors. Diabetes in women. Philadelphia: Lippincott Williams & Willkins; 2004.Google Scholar
  38. 38.
    Brown IR, McBain AM, Chalmers J, et al. Sex differences in the relationship of calcium and magnesium excretion to glycaemic control in type 1 diabetes mellitus. Clin Chim Acta. 1999;283:119–28.PubMedCrossRefGoogle Scholar
  39. 39.
    Holmes GKT. Screening for coeliac disease in type 1 diabetes. Arch Dis Child. 2002;87:495–9.PubMedCrossRefGoogle Scholar
  40. 40.
    Gunczler P, Lanes R, Paz-Martinez V, et al. Decreased lumbar spine bone mass and low bone turnover in children and adolescents with insulin dependent diabetes mellitus followed longitudinally. J Pediatr Endocrinol Metab. 1998;11:413–9.PubMedCrossRefGoogle Scholar
  41. 41.
    Pascual J, Argente J, Lopez MB, et al. Bone mineral density in children and adolescents with diabetes mellitus type 1 of recent onset. Calcif Tissue Int. 1998;62:31–5.PubMedCrossRefGoogle Scholar
  42. 42.
    Valerio G, del Puente A, Esposito-del Puente A, et al. The lumbar bone mineral density is affected by long-term poor metabolic control in adolescents with type 1 diabetes mellitus. Horm Res. 2002;58:266–72.PubMedCrossRefGoogle Scholar
  43. 43.
    Saha MT, Sievanen H, Salo MK, et al. Bone mass and structure in adolescents with type 1 diabetes compared to healthy peers. Osteoporos Int. 2009;20:1401–6.PubMedCrossRefGoogle Scholar
  44. 44.
    Gunczler P, Lanes R, Paoli M, et al. Decreased bone mineral density and bone formation markers shortly after diagnosis of clinical type 1 diabetes mellitus. J Pediatr Endocrinol Metab. 2001;14:525–8.PubMedCrossRefGoogle Scholar
  45. 45.
    Salvatoni A, Mancassola G, Biasoli R, et al. Bone mineral density in diabetic children and adolescents: a follow-up study. Bone. 2004;34:900–4.PubMedCrossRefGoogle Scholar
  46. 46.
    Hadjidakis DJ, Raptis AE, Sfakianakis M, Mylonakis A, Raptis SA. Bone mineral density of both genders in type 1 diabetes according to bone composition. J Diabetes Complications. 2006;20:302–7.PubMedCrossRefGoogle Scholar
  47. 47.
    Hamilton EJ, Rakic V, Davis WA, et al. A five-year prospective study of bone mineral density in men and women with diabetes: The Fremantle Diabetes Study. Acta Diabetol. 2012;49:153–8.PubMedCrossRefGoogle Scholar
  48. 48.
    Liu EY, Wactawski-Wende J, Donahue RP, et al. Does Low bone mineral density start in post-teenage years in women with type 1 diabetes? Diabetes Care. 2003;26:2365–9.PubMedCrossRefGoogle Scholar
  49. 49.
    Hofbauer LC, Brueck CC, Singh SK, Dobnig H. Osteoporosis in patients with diabetes mellitus. J Bone Miner Res. 2007;22:1317–28.PubMedCrossRefGoogle Scholar
  50. 50.
    Nicodemus KK, Folsom AR. Iowa Women’s Health Study: type 1 and type 2 diabetes and incident hip fractures in postmenopausal women. Diabetes Care. 2001;24:1192–7.PubMedCrossRefGoogle Scholar
  51. 51.
    Vestergaard P. Discrepancies in bone mineral density and fracture risk in patients with type 1 and type 2 diabetes: a meta-analysis. Osteoporos Int. 2007;18:427–44.PubMedCrossRefGoogle Scholar
  52. 52.
    Moerman EJ, Teng K, Lipschitz DA, Lecka-Czernik B. Aging activates adipogenic and suppresses osteogenic programs in mesenchymal marrow stroma/stem cells: the role of PPAR-gamma2 transcription factor and TGF-beta/BMP signaling pathways. Aging Cell. 2004;3:379–89.PubMedCrossRefGoogle Scholar
  53. 53.
    Lecka-Czernik B, Gubrij I, Moerman EA, et al. Inhibition of Osf2/Cbfa1 expression and terminal osteoblast differentiation by PPARgamma2. J Cell Biochem. 1999;74:357–71.Google Scholar
  54. 54.
    Botolin S, McCabe LR. Inhibition of PPAR-Gamma prevents type I diabetic bone marrow adiposity but not bone loss. J Cell Physiol. 2006;209:967–76.PubMedCrossRefGoogle Scholar
  55. 55.
    Lechleitner M, Koch T, Herold M, Dzien A, Hoppichler F. Tumour necrosis factor-alpha plasma level in patients with type 1 diabetes mellitus and its association with glycaemic control and cardiovascular risk. J Intern Med. 2000;248:67–76.PubMedCrossRefGoogle Scholar
  56. 56.
    • Coe LM, Irwin R, Lippner D, McCabe LR. The bone marrow microenvironment contributes to type I diabetes induced osteoblast death. J Cell Physiol. 2011;226:477–83. This study provides insight into how diabetes affects osteoblasts.PubMedCrossRefGoogle Scholar
  57. 57.
    Maor G, Karnieli E. The insulin-sensitive glucose transporter (GLUT4) is involved in early bone growth in control and diabetic mice, but is regulated through the insulin-like growth factor I receptor. Endocrinology. 1999;140:1841–51.PubMedCrossRefGoogle Scholar
  58. 58.
    Nixon AJ, Lillich JT, Burton-Wurster N, et al. Differentiated cellular function in fetal chondrocytes cultured with insulin-like growth factor-I and transforming growth factor-beta. J Orthop Res. 1998;16:531–41.PubMedCrossRefGoogle Scholar
  59. 59.
    Wan Y, Chong LW, Evans RM. PPAR-Gamma regulates osteoclastogenesis in mice. Nat Med. 2007;13:1496–503.PubMedCrossRefGoogle Scholar
  60. 60.
    Williams JP, Blair HC, McDonald JM, et al. Regulation of osteoclastic bone resorption by glucose. Biochem Biophys Res Commun. 1997;235:646–51.PubMedCrossRefGoogle Scholar
  61. 61.
    Fraser JH, Helfrich MH, Wallace HM, Ralston SH. Hydrogen peroxide, but not superoxide, stimulates bone resorption in mouse calvariae. Bone. 1996;19:223–6.PubMedCrossRefGoogle Scholar
  62. 62.
    Pater A, Sypniewska, Pilecki O. Biochemical markers of bone cell activity in children with type 1 diabetes mellitus. J Pediatr Endocrinol Metab. 2010;23:81–6.PubMedCrossRefGoogle Scholar
  63. 63.
    Hill PA, Tumber A, Meikle MC. Multiple extracellular signals promote osteoblast survival and apoptosis. Endocrinology. 1997;138:3849–58.PubMedCrossRefGoogle Scholar
  64. 64.
    Thomas DM, Udagawa N, Hards DK, et al. Insulin receptor expression in primary and cultured osteoclast-like cells. Bone. 1998;23:181–6.PubMedCrossRefGoogle Scholar
  65. 65.
    Conover CA, Lee PD, Riggs BL, Powell DR. Insulin-like growth factor-binding protein-1 expression in cultured human bone cells: regulation by insulin and glucocorticoid. Endocrinology. 1996;137:3295–301.PubMedCrossRefGoogle Scholar
  66. 66.
    Moyer-Mileur LJ, Slater H, Jordan KC, Murray MA. IGF-1 and IGF-binding proteins and bone mass, geometry, and strength: relation to metabolic control in adolescent girls with type 1 diabetes. J Bone Miner Res. 2008;23:1884–91.PubMedCrossRefGoogle Scholar
  67. 67.
    Pastor MMC, Lopez-Ibarra PJ, Escobar-Jimenez F, et al. Intensive insulin therapy and bone mineral density in type 1 diabetes mellitus: a prospective study. Osteoporos Int. 2000;11:455–9.CrossRefGoogle Scholar
  68. 68.
    Bierhaus A, Schiekofer S, Schwaninger M, et al. Diabetes-associated sustained activation of the transcription factor nuclear-kappa B. Diabetes. 2001;50:2792–808.PubMedCrossRefGoogle Scholar
  69. 69.
    Lindsey JB, Cipollone F, Abdullah SM, McGuire DK. Receptor for advanced glycation endproducts (RAGE) and soluble RAGE (sRAGE): cardiovascular implications. Diab Vasc Dis Res. 2009;6:7–14.PubMedCrossRefGoogle Scholar
  70. 70.
    Zhang Y, Papasian CJ, Deng HW. Alterations of vitamin D metabolic enzyme expression and calcium transporter abundance in kidney involved in type 1 diabetes-induced bone loss. Osteoporos Int. 2011;22:1781–8.PubMedCrossRefGoogle Scholar
  71. 71.
    Bronsky J, Prusa R. Amylin fasting plasma levels are decreased in patients with osteoporosis. Osteoporos Int. 2004;15:243–7.PubMedCrossRefGoogle Scholar
  72. 72.
    Horcajada-Molteni MN, Chanteranne B, Lebecque P, et al. Amylin and bone metabolism in streptozotocin-induced diabetic rats. J Bone Miner Res. 2001;16:958–65.PubMedCrossRefGoogle Scholar
  73. 73.
    Takeda S, Elefteriou F, Levasseur R, et al. Leptin regulates bone via the sympathetic nervous system. Cell. 2002;111:305–17.PubMedCrossRefGoogle Scholar
  74. 74.
    Ducy P, Karsenty G. The two faces of serotonin in bone biology. J Cell Biol. 2010;191:7–13.PubMedCrossRefGoogle Scholar
  75. 75.
    Ducy P, Amling M, Takeda S, et al. Leptin inhibits bone formation through a hypothalamic relay: a central control of bone mass. Cell. 2000;100:197–207.PubMedCrossRefGoogle Scholar
  76. 76.
    Kawai M, Devlin MJ, Rosen CJ. Fat targets for skeletal health. Nat Rev Rheumatol. 2009;5:365–72.PubMedCrossRefGoogle Scholar
  77. 77.
    Hedbacker K, Birsoy K, Wysocki RW, et al. Antidiabetic effects of IGFBP2, a leptin-regulated gene. Cell Metab. 2010;11:11–22.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York (outside the USA) 2013

Authors and Affiliations

  • Robert Sealand
    • 1
    • 2
  • Christie Razavi
    • 1
    • 2
  • Robert A. Adler
    • 1
    • 2
  1. 1.Endocrinology (111P)McGuire Veterans Affairs Medical CenterRichmondUSA
  2. 2.Endocrine DivisionVirginia Commonwealth University Health SystemRichmondUSA

Personalised recommendations