Current Diabetes Reports

, Volume 13, Issue 3, pp 419–427

Diabetes and HIV: Current Understanding and Future Perspectives

Diabetes and Other Diseases—Emerging Associations (D Aron, Section Editor)


Diabetes mellitus is a chronic disease with a higher risk of associated infections. HIV infection severely affects diabetic patients and acts as a significant health concern. Highly active antiretroviral therapy (HAART) has changed HIV from an acute infection to a chronic infection with associated significant metabolic abnormalities such as insulin resistance, impaired glucose tolerance, metabolic syndrome, diabetes, dyslipidemia, obesity, and lipodystrophy. These metabolic disturbances add complexity to the standards of care in HIV infection and further increase the risk for cardiovascular disease and renal complications. The co-association of diabetes and HIV needs to be managed appropriately to prevent mortality and morbidity and improve patient outcome. The current understanding of diabetes and other metabolic abnormalities along with management strategies in HIV infected patients are summarized in this article. The review also focuses on recent challenges in the diagnosis and management of co-existent diabetes and HIV infection.


Metabolic syndrome Lipids Glucose Insulin resistance HIV Diabetes Obesity Lipodystrophy Insulin Metformin 


Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    •Global Report. UNAIDS Report on the Global AIDS Epidemic. 2010. Available at: The report gives the latest statistics for HIV worldwide.
  2. 2.
    Carr A, Samaras K, Thorisdottir A, Kaufmann GR, Chisholm DJ, Cooper DA. Diagnosis, prediction, and natural course of HIV-1 protease-inhibitor-associated lipodystrophy, hyperlipidaemia, and diabetes mellitus: a cohort study. Lancet. 1999;353:2093–9.PubMedCrossRefGoogle Scholar
  3. 3.
    Butt AA, McGinnis K, Rodriguez-Barradas MC, Crystal S, Simberkoff M, Goetz MB, et al. HIV infection and the risk of diabetes mellitus. AIDS. 2009;23:1227–34.PubMedCrossRefGoogle Scholar
  4. 4.
    ••Calza L, Masetti G, Piergentili B, Trapani F, Cascavilla A, Manfredi R, et al. Prevalence of diabetes mellitus, hyperinsulinaemia, and metabolic syndrome among 755 adult patients with HIV-1 infection. Int J STD AIDS. 2011;22:43–5. A longer exposure to antiretroviral therapy and a diagnosis of lipodystrophy syndrome were significantly associated with both metabolic disturbances.PubMedCrossRefGoogle Scholar
  5. 5.
    ••Galli L, Salpietro S, Pellicciotta G, Galliani A, Piatti P, Hasson H, et al. Risk of type 2 diabetes among HIV-infected and healthy subjects in Italy. Eur J Epidemiol. 2012;27(8):657–65. A recent study about prevalence of type 2 diabetes mellitus in HIV-infected subjects in healthy subjects. Google Scholar
  6. 6.
    Hadigan C. Diabetes, insulin resistance, and HIV. Curr Infect Dis Rep. 2006;8:69–75.PubMedCrossRefGoogle Scholar
  7. 7.
    Florescu D, Kotler DP. Insulin resistance, glucose intolerance, and diabetes mellitus in HIV-infected patients. Antivir Ther. 2007;12:149–62.PubMedGoogle Scholar
  8. 8.
    •Samaras K. The burden of diabetes and hyperlipidemia in treated HIV infection and approaches for cardiometabolic care. Curr HIV/AIDS Rep. 2012;9:206–17. A recent review about current evidence base and clinical guidelines for diabetes and lipid management and cardiometabolic prevention in HIV-infected HAART recipients.PubMedCrossRefGoogle Scholar
  9. 9.
    Salehian B, Bilas J, Bazargan M, Abbasian M. Prevalence and incidence of diabetes in HIV-infected minority patients on protease inhibitors. J Natl Med Assoc. 2005;97:1088–92.PubMedGoogle Scholar
  10. 10.
    Barbaro G. Metabolic and cardiovascular complications of highly active antiretroviral therapy for HIV infection. Curr HIV Res. 2006;4:79–85.PubMedCrossRefGoogle Scholar
  11. 11.
    Carr A, Cooper DA. Adverse effects of antiretroviral therapy. Lancet. 2000;356:1423–30.PubMedCrossRefGoogle Scholar
  12. 12.
    •Das S. Insulin resistance and diabetes in HIV infection. Recent Pat Antiinfect Drug Discov. 2011;6:260–8. The present review article has the information of patients regarding the insulin resistance in HIV infection.PubMedCrossRefGoogle Scholar
  13. 13.
    •Krishnan S, Shouten JT, Atkinson B, Brown T, Wohl T, McComsey GA, et al. Metabolic syndrome before and after initiation of antiretroviral therapy in treatment-naive HIV-infected individuals. J Acquir Immune Defic Syndr. 2012;61(3):381–9. A recent study about the development of metabolic syndrome in HIV-infected individuals on ART, with virologic suppression and maintenance of high CD4+ T-cell counts as potentially modifiable factors that can reduce the risk of metabolic syndrome. Google Scholar
  14. 14.
    Abdel-Khalek I, Moallem HJ, Fikrig S, Castells S. New onset diabetes mellitus in an HIV-positive adolescent. AIDS Patient Care STDS. 1998;12:167–9.PubMedCrossRefGoogle Scholar
  15. 15.
    •Kalra S KB, Agrawal N, Unnikrishnan A. Understanding diabetes in patients with HIV/AIDS. Diabetol Metab Syndr. 2011;3(1):2. A review article on pathology of diabetes in HIV along with diagnosis and management. Google Scholar
  16. 16.
    Justman JE, Benning L, Danoff A, Minkoff H, Levine A, Greenblatt RM, et al. Protease inhibitor use and the incidence of diabetes mellitus in a large cohort of HIV-infected women. J Acquir Immune Defic Syndr. 2003;32:298–302.PubMedCrossRefGoogle Scholar
  17. 17.
    Brar I, Shuter J, Thomas A, Daniels E, Absalon J. A comparison of factors associated with prevalent diabetes mellitus among HIV-infected antiretroviral-naive individuals vs individuals in the national health and nutritional examination survey cohort. J Acquir Immune Defic Syndr. 2007;45:66–71.PubMedCrossRefGoogle Scholar
  18. 18.
    Kourtis AP, Bansil P, Kahn HS, Posner SF, Jamieson DJ. Diabetes trends in hospitalized HIV-infected persons in the United States, 1994-2004. Curr HIV Res. 2009;7:481–6.PubMedCrossRefGoogle Scholar
  19. 19.
    Brambilla AM, Novati R, Calori G, Meneghini E, Vacchini D, Luzi L, et al. Stavudine or indinavir-containing regimens are associated with an increased risk of diabetes mellitus in HIV-infected individuals. AIDS. 2003;17:1993–5.PubMedCrossRefGoogle Scholar
  20. 20.
    Brown TT, Tassiopoulos K, Bosch RJ, Shikuma C, McComsey GA. Association between systemic inflammation and incident diabetes in HIV-infected patients after initiation of antiretroviral therapy. Diabetes Care. 2010;33:2244–9.PubMedCrossRefGoogle Scholar
  21. 21.
    Butt AA, Fultz SL, Kwoh CK, Kelley D, Skanderson M, Justice AC. Risk of diabetes in HIV infected veterans pre- and post-HAART and the role of HCV coinfection. Hepatology. 2004;40:115–9.PubMedCrossRefGoogle Scholar
  22. 22.
    Ledergerber B, Furrer H, Rickenbach M, Lehmann R, Elzi L, Hirschel B, et al. Factors associated with the incidence of type 2 diabetes mellitus in HIV-infected participants in the Swiss HIV cohort study. Clin Infect Dis. 2007;45:111–9.PubMedCrossRefGoogle Scholar
  23. 23.
    Howard AA, Hoover DR, Anastos K, Wu X, Shi Q, Strickler HD, et al. The effects of opiate use and hepatitis C virus infection on risk of diabetes mellitus in the Women's interagency HIV study. J Acquir Immune Defic Syndr. 2010;54:152–9.PubMedGoogle Scholar
  24. 24.
    Monroe A. HIV/AIDS and diabetes: minimizing risk, optimizing care. BETA. 2009;21:38–44.PubMedGoogle Scholar
  25. 25.
    Capeau J, Bouteloup V, Katlama C, Bastard JP, Guiyedi V, Salmon-Ceron D, et al. Ten-year diabetes incidence in 1046 HIV-infected patients started on a combination antiretroviral treatment. AIDS. 2012;26:303–14.PubMedCrossRefGoogle Scholar
  26. 26.
    Gonzalez-Tome MI, Ramos Amador JT, Guillen S, Solis I, Fernandez-Ibieta M, Munoz E, et al. Gestational diabetes mellitus in a cohort of HIV-1 infected women. HIV Med. 2008;9:868–74.PubMedCrossRefGoogle Scholar
  27. 27.
    Gianotti N, Visco F, Galli L, Barda B, Piatti P, Salpietro S, et al. Detecting impaired glucose tolerance or type 2 diabetes mellitus by means of an oral glucose tolerance test in HIV-infected patients. HIV Med. 2011;12:109–17.PubMedCrossRefGoogle Scholar
  28. 28.
    De Wit S, Sabin CA, Weber R, Worm SW, Reiss P, Cazanave C, et al. Incidence and risk factors for new-onset diabetes in HIV-infected patients: the data collection on adverse events of anti-HIV drugs (D:A:D) study. Diabetes Care. 2008;31:1224–9.PubMedCrossRefGoogle Scholar
  29. 29.
    Tien PC, Schneider MF, Cole SR, Levine AM, Cohen M, DeHovitz J, et al. Antiretroviral therapy exposure and incidence of diabetes mellitus in the Women's interagency HIV study. AIDS. 2007;21:1739–45.PubMedCrossRefGoogle Scholar
  30. 30.
    Srivanich N, Ngarmukos C, Sungkanuparph S. Prevalence of, and risk factors for pre-diabetes in HIV-1-infected patients in Bangkok, Thailand. J Int Assoc Physicians AIDS Care. 2010;9:358–61.CrossRefGoogle Scholar
  31. 31.
    Revuelta MP. Cumulative insults to mitochondrial function may promote the emergence of 'syndrome X' and diabetes mellitus in HIV/HCV co-infected patients. Mitochondrion. 2004;4:175–84.PubMedCrossRefGoogle Scholar
  32. 32.
    Jain MK, Aragaki C, Fischbach L, Gibson S, Arora R, May L, et al. Hepatitis C is associated with type 2 diabetes mellitus in HIV-infected persons without traditional risk factors. HIV Med. 2007;8:491–7.PubMedCrossRefGoogle Scholar
  33. 33.
    Lo YC, Chang SY, Sheng WH, Hung CC, Chang SC. Association of pancreatic autoantibodies and human leukocyte antigen haplotypes with resolution of diabetes mellitus after therapy for hepatitis C virus infection in patients with HIV infection: case report and review of literature. Eur J Gastroenterol Hepatol. 2009;21:478–81.PubMedCrossRefGoogle Scholar
  34. 34.
    Hamill M, Brook G. An association between HIV/HCV co-infection and diabetes mellitus–is there a need for routine blood glucose monitoring? J Clin Virol. 2005;33:176–8.PubMedCrossRefGoogle Scholar
  35. 35.
    Rotger M, Gsponer T, Martinez R, Taffe P, Elzi L, Vernazza P, et al. Impact of single nucleotide polymorphisms and of clinical risk factors on new-onset diabetes mellitus in HIV-infected individuals. Clin Infect Dis. 2010;51:1090–8.PubMedCrossRefGoogle Scholar
  36. 36.
    Holly JM, Amiel SA, Sandhu RR, Rees LH, Wass JA. The role of growth hormone in diabetes mellitus. J Endocrinol. 1988;118:353–64.PubMedCrossRefGoogle Scholar
  37. 37.
    Smith JC, Evans LM, Wilkinson I, Goodfellow J, Cockcroft JR, Scanlon MF, et al. Effects of GH replacement on endothelial function and large-artery stiffness in GH-deficient adults: a randomized, double-blind, placebo-controlled study. Clin Endocrinol. 2002;56:493–501.CrossRefGoogle Scholar
  38. 38.
    Schauster AC, Geletko SM, Mikolich DJ. Diabetes mellitus associated with recombinant human growth hormone for HIV wasting syndrome. Pharmacotherapy. 2000;20:1129–34.PubMedCrossRefGoogle Scholar
  39. 39.
    Yarasheski KE, Tebas P, Sigmund C, Dagogo-Jack S, Bohrer A, Turk J, et al. Insulin resistance in HIV protease inhibitor-associated diabetes. J Acquir Immune Defic Syndr. 1999;21:209–16.PubMedCrossRefGoogle Scholar
  40. 40.
    Trabattoni D, Schenal M, Cesari M, Castelletti E, Pacei M, Goldberg B, et al. Low interleukin-10 production is associated with diabetes in HIV-infected patients undergoing antiviral therapy. Med Microbiol Immunol. 2006;195:125–32.PubMedCrossRefGoogle Scholar
  41. 41.
    Takarabe D, Rokukawa Y, Takahashi Y, Goto A, Takaichi M, Okamoto M, et al. Autoimmune diabetes in HIV-infected patients on highly active antiretroviral therapy. J Clin Endocrinol Metab. 2010;95:4056–60.PubMedCrossRefGoogle Scholar
  42. 42.
    Ferreira MA, Mangino M, Brumme CJ, Zhao ZZ, Medland SE, Wright MJ, et al. Quantitative trait loci for CD4:CD8 lymphocyte ratio are associated with risk of type 1 diabetes and HIV-1 immune control. Am J Hum Genet. 2010;86:88–92.PubMedCrossRefGoogle Scholar
  43. 43.
    ••Kalra SUA, Raza SA, Bantwal G, Baruah MP, Latt TS, Shrestha D, et al. South Asian consensus guidelines for the rational management of diabetes in human immunodeficiency virus/acquired immunodeficiency syndrome. Indian J Endocr Metab. 2011;15:242–50. The recent South Asian Guidelines about diagnosis and management of diabetes in HIV patients.CrossRefGoogle Scholar
  44. 44.
    Hresko RC, Hruz PW. HIV protease inhibitors act as competitive inhibitors of the cytoplasmic glucose binding site of GLUTs with differing affinities for GLUT1 and GLUT4. PLoS One. 2011;6:e25237.PubMedCrossRefGoogle Scholar
  45. 45.
    Deloumeaux J, Maachi M, Sow-Goerger MT, Lamaury I, Velayoudom FL, Cheret A, et al. Adiponectin and leptin in afro-Caribbean men and women with HIV infection: association with insulin resistance and type 2 diabetes. Diabetes Metab. 2011;37:98–104.PubMedCrossRefGoogle Scholar
  46. 46.
    Idiculla J, Ravindra'n GD, D'Souza J, Singh G, Furruqh S. Diabetes mellitus, insulin resistance, and metabolic syndrome in HIV-positive patients in south India. Int J Gen Med. 2011;4:73–8.PubMedCrossRefGoogle Scholar
  47. 47.
    Garg H, Joshi A, Mukherjee D. Cardiovascular complications of HIV infection and treatment. Cardiovasc Hematol Agents Med Chem. 2012 Aug 30 Accessed 15 Sept 2012Google Scholar
  48. 48.
    Worm SW, De Wit S, Weber R, Sabin CA, Reiss P, El-Sadr W, et al. Diabetes mellitus, preexisting coronary heart disease, and the risk of subsequent coronary heart disease events in patients infected with human immunodeficiency virus: the data collection on adverse events of anti-HIV drugs (D:A:D study). Circulation. 2009;119:805–11.PubMedCrossRefGoogle Scholar
  49. 49.
    Calza L. Renal toxicity associated with antiretroviral therapy. HIV Clin Trials. 2012;13:189–211.PubMedCrossRefGoogle Scholar
  50. 50.
    Cohen DB, Allain TJ, Glover S, Chimbayo D, Dzamalala H, Hofland HW, et al. A survey of the management, control, and complications of diabetes mellitus in patients attending a diabetes clinic in Blantyre, Malawi, an area of high HIV prevalence. AmJTrop Med Hyg. 2010;83:575–81.CrossRefGoogle Scholar
  51. 51.
    Medapalli RK, Parikh CR, Gordon K, Brown ST, Butt AA, Gibert CL, et al. Comorbid diabetes and the risk of progressive chronic kidney disease in HIV-infected adults: data from the veterans aging cohort study. J Acquir Immune Defic Syndr. 2012;60:393–9.PubMedCrossRefGoogle Scholar
  52. 52.
    Choi AI, Rodriguez RA, Bacchetti P, Bertenthal D, Volberding PA, O'Hare AM. Racial differences in end-stage renal disease rates in HIV infection vs diabetes. J Am Soc Nephrol. 2007;18:2968–74.PubMedCrossRefGoogle Scholar
  53. 53.
    Kim PS, Woods C, Dutcher L, Georgoff P, Rosenberg A, Mican JA, et al. Increased prevalence of albuminuria in HIV-infected adults with diabetes. PLoS One. 2011;6:e24610.PubMedCrossRefGoogle Scholar
  54. 54.
    Kim PS, Woods C, Georgoff P, Crum D, Rosenberg A, Smith M, et al. A1C underestimates glycemia in HIV infection. Diabetes Care. 2009;32:1591–3.PubMedCrossRefGoogle Scholar
  55. 55.
    Eckhardt BJ, Holzman RS, Kwan CK, Baghdadi J, Aberg JA. Glycated hemoglobin A(1c) as screening for diabetes mellitus in HIV-infected individuals. AIDS Patient Care STDS. 2012;26:197–201.PubMedGoogle Scholar
  56. 56.
    Tien PC, Schneider MF, Cox C, Karim R, Cohen M, Sharma A, et al. Association of HIV infection with incident diabetes mellitus: impact of using hemoglobin A1C as a criterion for diabetes. J Acquir Immune Defic Syndr. 2012;61(3):334–40.Google Scholar
  57. 57.
    Beatty GKM, Abbasi F, Chu J, Reaven GM, Rosen A, et al. Quantification of insulin-mediated glucose-disposal in HIV-infected individual: comparision of patients treated and untreated with protease inhibitors. J Acquir Immune Defic Syndr. 2003;33:34–40.PubMedCrossRefGoogle Scholar
  58. 58.
    Fairchild AL, Alkon A. Back to the future? diabetes, HIV, and the boundaries of public health. J Health Polit Policy Law. 2007;32:561–93.PubMedCrossRefGoogle Scholar
  59. 59.
    • American Diabetes Association (ADA) Clinical Practice Recommendations. American Diabetes Association. Standards of medical care in diabetes—2012. Diabetes Care. 2012;35:S11–63. Recent ADA guidelines about medical care in diabetes with focus on patient centric approach.CrossRefGoogle Scholar
  60. 60.
    Polo R, Jose Galindo M, Martinez E, Alvarez J, Arevalo JM, Asensi V. et al [recommendations of the study group for metabolic alterations/secretariat for the national AIDS plan (GEAM/SPNS) on the management of metabolic and morphologic alterations in patients with HIV infection]. Enferm Infecc Microbiol Clin. 2006;24:96–117.PubMedCrossRefGoogle Scholar
  61. 61.
    Hadigan C, Corcoran C, Basgoz N, Davis B, Sax P, Grinspoon S. Metformin in the treatment of HIV lipodystrophy syndrome: a randomized controlled trial. JAMA. 2000;284:472–7.PubMedCrossRefGoogle Scholar
  62. 62.
    Hadigan C, Rabe J, Grinspoon S. Sustained benefits of metformin therapy on markers of cardiovascular risk in human immunodeficiency virus-infected patients with fat redistribution and insulin resistance. J Clin Endocrinol Metab. 2002;87:4611–5.PubMedCrossRefGoogle Scholar
  63. 63.
    Inzucchi SE, Bergenstal RM, Buse JB, Diamant M, Ferrannini E, Nauck M, et al. Management of hyperglycemia in type 2 diabetes: a patient-centered approach: position statement of the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care. 2012;35:1364–79.PubMedCrossRefGoogle Scholar
  64. 64.
    Aberg JAKJ, Libman H, Emmanuel P, Anderson JR, Stone VE, et al. Primary care guidelines for the management of persons infected with human immunodeficiency virus: 2009 update by the HIV Medicine Association of the Infectious Diseases Society of America. Clin Infect Dis. 2009;49:651–81.PubMedCrossRefGoogle Scholar
  65. 65.
    Kalra S, Unnikrishnan AG, Raza SA, Bantwal G, Baruah MP, Latt TS, et al. South Asian consensus guidelines for the rational management of diabetes in human immunodeficiency virus/acquired immunodeficiency syndrome. Indian J Endocrinol Metab. 2011;15:242–50.PubMedCrossRefGoogle Scholar
  66. 66.
    Kalra SKB, Nanda G. OPD management of ketosis in pregnancy: aspart vs regular insulin. Diabet Med. 2006;23:504.Google Scholar
  67. 67.
    Executive Summary of The Third Report of The National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, And Treatment of High Blood Cholesterol In Adults (Adult Treatment Panel III). JAMA. 2001;285:2486–97.Google Scholar
  68. 68.
    Grinspoon S. Diabetes mellitus, cardiovascular risk, and HIV disease. Circulation. 2009;119:770–2.PubMedCrossRefGoogle Scholar
  69. 69.
    Dube MPSD, Henry WK, Aberg JA, Torriani FJ, Hodis HN, Schouten J, et al. Preliminary guidelines for the evaluation and management of dyslipidemia in adults infected with human immunodeficiency virus and receiving antiretroviral therapy: recommendations of the adult AIDS clinical trial group cardiovascular disease focus group. Clin Infect Dis. 2000;31:1216–24.PubMedCrossRefGoogle Scholar
  70. 70.
    Carr A, Chuah J, Hudson J, French M, Hoy J, Law M, et al. A randomized, open-label comparison of 3 highly active antiretroviral therapy regimens including 2 nucleoside analogues and indinavir for previously untreated HIV-1 infection: the OzCombo1 study. AIDS. 2000;14:1171–80.PubMedCrossRefGoogle Scholar
  71. 71.
    Janssens B, Van Damme W, Raleigh B, Gupta J, Khem S, Soy Ty K, et al. Offering integrated care for HIV/AIDS, diabetes and hypertension within chronic disease clinics in Cambodia. Bull World Health Organ. 2007;85:880–5.PubMedGoogle Scholar
  72. 72.
    Tzoupis H, Leonis G, Megariotis G, Supuran CT, Mavromoustakos T, Papadopoulos MG. Dual inhibitors for aspartic proteases HIV-1 PR and renin: advancements in AIDS-hypertension-diabetes linkage via molecular dynamics, inhibition assays, and binding free energy calculations. J Med Chem. 2012;55:5784–96.PubMedCrossRefGoogle Scholar
  73. 73.
    Questions and answers on the review aliskiren-containing medicines: European Medicines Agency. 2012.Google Scholar
  74. 74.
    Pandey K, Sinha PK, Rabidas V, Kumar N, Bimal S, Verma N, et al. HIV, visceral leishmaniasis, and Parkinsonism combined with diabetes mellitus and hyperuricaemia: a case report. Cases J. 2008;1:183.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Bharti HospitalKarnalIndia
  2. 2.Diabetes, Obesity and Thyroid CenterGwaliorIndia

Personalised recommendations