Current Diabetes Reports

, Volume 12, Issue 5, pp 542–550

Adipose Tissue, Hormones, and Treatment of Type 1 Diabetes

Treatment of Type 1 Diabetes (D Dabelea, Section Editor)

Abstract

Type 1 diabetes (T1D) is a serious disease with increasing incidence worldwide, with fatal consequences if untreated. Traditional therapies require direct or indirect insulin replacement, which involves numerous limitations and complications. While insulin is the major regulator of blood glucose, recent reports demonstrate the ability of several extra-pancreatic hormones to decrease blood glucose and improve metabolic homeostasis. Such hormones mainly include adipokines originating from adipose tissue (AT), while specific factors from the gut and liver also contribute to glucose homeostasis. Correction of T1D with adipokines is progressively becoming a realistic option, with the potential to overcome many problems associated with insulin replacement. Several recent studies demonstrate insulin-independent reversal or amelioration of T1D through administration of specific adipokines. Our recent work demonstrates the ability of healthy AT to compensate for the function of endocrine pancreas in long-term correction of T1D. This review discusses the potential of AT-related therapies for T1D as viable alternatives to insulin replacement.

Keywords

Type 1 diabetes Brown adipose tissue White adipose tissue Transplantation Adipokines Glucose homeostasis 

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Harwood Jr HJ. The adipocyte as an endocrine organ in the regulation of metabolic homeostasis. 2011. Neuropharmacology. 2012;63(1):57–75.PubMedCrossRefGoogle Scholar
  2. 2.
    Falcão-Pires I, Castro-Chaves P, Miranda-Silva D, Lourenco AP, Leite-Moreira AF. Physiological, pathological and potential therapeutic roles of adipokines. Drug Discov Today. 2012. doi:10.1016/j.drudis.2012.04.007.
  3. 3.
    Ouchi N, Parker JL, Lugus JJ, Walsh K. Adipokines in inflammation and metabolic disease. Nat Rev Immunol. 2011;11(2):85–97.PubMedCrossRefGoogle Scholar
  4. 4.
    Wozniak SE, Gee LL, Wachtel MS, Frezza EE. Adipose tissue: the new endocrine organ? A review article. Dig Dis Sci. 2009;54(9):1847–56.PubMedCrossRefGoogle Scholar
  5. 5.
    Bjorndal B, Burri L, Staalesen V, Skorve J, Berge RK. Different adipose depots: their role in the development of metabolic syndrome and mitochondrial response to hypolipidemic agents. J Obes. 2011. doi:10.1155/2011/490650.PubMedGoogle Scholar
  6. 6.
    Wronska A, Kmiec Z. Structural and biochemical characteristics of various white adipose tissue depots. Acta Physiol (Oxf). 2012;205(2):194–208.CrossRefGoogle Scholar
  7. 7.
    Cannon B, Nedergaard J. Brown adipose tissue: function and physiological significance. Physiol Rev. 2004;84(1):277–359.PubMedCrossRefGoogle Scholar
  8. 8.
    • Cypess AM, Lehman S, Williams G, Tal I, Rodman D, Goldfine AB. Identification and importance of brown adipose tissue in adult humans. N Engl J Med. 2009;360:1509–17. Demonstrates the presence of BAT in adult humans.PubMedCrossRefGoogle Scholar
  9. 9.
    • Saito M, Okamatsu-Ogura Y, Matsushita M, Watanabe K, Yoneshiro T, Nio-Kobayashi J, et al. High incidence of metabolically active brown adipose tissue in healthy adult humans: effects of cold exposure and adiposity. Diabetes. 2009;58:1526–31. Demonstrates the presence of BAT in adult humans.PubMedCrossRefGoogle Scholar
  10. 10.
    Ramachandran R, Gravenstein KS, Jeffrey Metter E, Egan JM, Ferrucci L, Chia CW. Selective contribution of regional adiposity, skeletal muscle, and adipokines to glucose Disposal in older adults. J Am Geriatr Soc. 2012;60(4):707–12.PubMedCrossRefGoogle Scholar
  11. 11.
    • Gauthier MS, Ruderman NB. Adipose tissue inflammation and insulin resistance: all obese humans are not created equal. Biochem J. 2010;430(2):e1–4. Demonstrates that inflammation of AT contributes more to insulin resistance than the quantity of AT.PubMedCrossRefGoogle Scholar
  12. 12.
    Vardanyan M, Parkin E, Gruessner C, Rodriguez Rilo HL. Pancreas vs. islet transplantation: a call on the future. Curr Opin Organ Transplant. 2010;15(1):124–30.PubMedCrossRefGoogle Scholar
  13. 13.
    Maffi P, Scavini M, Socci C, Piemonti L, Caldara R, Gremizzi C, et al. Risks and benefits of transplantation in the cure of type 1 diabetes: whole pancreas versus islet transplantation. A single center study. Rev Diabet Stud. 2011;8(1):44–50.PubMedCrossRefGoogle Scholar
  14. 14.
    Gruessner AC, Sutherland DE, Gruessner RW. Pancreas transplantation in the United States: a review. Curr Opin Organ Transplant. 2010;15(1):93–101.PubMedCrossRefGoogle Scholar
  15. 15.
    Burke 3rd GW, Vendrame F, Pileggi A, Ciancio G, Reijonen H, Pugliese A. Recurrence of autoimmunity following pancreas transplantation. Curr Diabetes Rep. 2011;11(5):413–9.CrossRefGoogle Scholar
  16. 16.
    Deters NA, Stokes RA, Gunton JE. Islet transplantation: factors in short-term islet survival. Arch Immunol Ther Exp (Warsz). 2011;59(6):421–9.CrossRefGoogle Scholar
  17. 17.
    Plesner A, Verchere CB. Advances and challenges in islet transplantation: islet procurement rates and lessons learned from suboptimal islet transplantation. J Transplant. 2011:979527.Google Scholar
  18. 18.
    Tuduri E, Bruin JE, Kieffer TJ. Restoring insulin production for type 1 diabetes. J Diabetes. 2012. doi:10.1111/j.1753-0407.2012.00196.x.
  19. 19.
    Zhao Y, Jiang Z, Zhao T, Ye M, Hu C, Yin Z, et al. Reversal of type 1 diabetes via islet β cell regeneration following immune modulation by cord blood-derived multipotent stem cells. BMC Med. 2012;10:3.PubMedCrossRefGoogle Scholar
  20. 20.
    Kim W, Egan JM. The role of incretins in glucose homeostasis and diabetes treatment. Pharmacol Rev. 2008;60(4):470–512.PubMedCrossRefGoogle Scholar
  21. 21.
    Tishinsky JM, Robinson LE, Dyck DJ. Insulin-sensitizing properties of adiponectin. Biochimie. 2012. doi:10.1016/j.biochi.2012.01.017.
  22. 22.
    Wolfson N, Gavish D, Matas Z, Boaz M, Shargorodsky M. Relation of adiponectin to glucose tolerance status, adiposity, and cardiovascular risk factor load. Exp Diabetes Res. 2012;2012:250621.PubMedCrossRefGoogle Scholar
  23. 23.
    Pereira RI, Snell-Bergeon JK, Erickson C, Schauer IE, Bergman BC, Rewers M, Maahs DM. Adiponectin dysregulation and insulin resistance in type 1 diabetes. J Clin Endocrinol Metab. 1997;82(4):1181–7.CrossRefGoogle Scholar
  24. 24.
    Miller RA, Chu Q, Le Lay J, Scherer PE, Ahima RS, Kaestner KH, et al. Adiponectin suppresses gluconeogenic gene expression in mouse hepatocytes independent of LKB1- AMPK signaling. J Clin Invest. 2011;121(6):2518–28.PubMedCrossRefGoogle Scholar
  25. 25.
    Dridi S, Taouis M. Adiponectin and energy homeostasis: consensus and controversy. J Nutr Biochem. 2009;20(11):831–9.PubMedCrossRefGoogle Scholar
  26. 26.
    Gardener H, Sjoberg C, Crisby M, Goldberg R, Mendez A, Wright CB, et al. Adiponectin and carotid intima-media thickness in the northern Manhattan study. Stroke. 2012;43(4):1123–5.PubMedCrossRefGoogle Scholar
  27. 27.
    Tian L, Luo N, Zhu X, Chung BH, Garvey WT, Fu Y. Adiponectin-AdipoR1/2-APPL1 signaling axis suppresses human foam cell formation: differential ability of AdipoR1 and AdipoR2 to regulate inflammatory cytokine responses. Atherosclerosis. 2012;221(1):66–75.PubMedCrossRefGoogle Scholar
  28. 28.
    Carlton ED, Demas GE, French SS. Leptin, a neuroendocrine mediator of immune responses, inflammation, and sickness behaviors. Horm Behav. 2012. doi:10.1016/j.yhbeh.2012.04.010.
  29. 29.
    Barnes KM, Miner JL. Role of resistin in insulin sensitivity in rodents and humans. Curr Protein Pept Sci. 2009;10(1):96–107.PubMedCrossRefGoogle Scholar
  30. 30.
    Nogueiras R, Novelle MG, Vazquez MJ, Lopez M, Dieguez C. Resistin: regulation of food intake, glucose homeostasis and lipid metabolism. Endocr Dev. 2010;17:175–84.PubMedCrossRefGoogle Scholar
  31. 31.
    Qatanani M, Szwergold NR, Greaves DR, Ahima RS, Lazar MA. Macrophage-derived human resistin exacerbates adipose tissue inflammation and insulin resistance in mice. J Clin Invest. 2009;119(3):531–9.PubMedCrossRefGoogle Scholar
  32. 32.
    Kraft R, Herndon DN, Kulp GA, Mecott GA, Trentzsch H, Jeschke MG. Retinol binding protein: marker for insulin resistance and inflammation postburn? JPEN J Parenter Enter Nutr. 2011;35(6):695–703.CrossRefGoogle Scholar
  33. 33.
    Norseen J, Hosooka T, Hammarstedt A, Yore MM, Kant S, Aryal P, et al. Retinol-Binding Protein 4 Inhibits Insulin Signaling in Adipocytes by Inducing Proinflammatory Cytokines in Macrophages through a c-Jun N-Terminal Kinase- and Toll-Like Receptor 4-Dependent and Retinol-Independent Mechanism. Mol Cell Biol. 2012;32(10):2010–9.PubMedCrossRefGoogle Scholar
  34. 34.
    Tan Y, Sun LQ, Kamal MA, Wang X, Seale JP, Qu X. Suppression of retinol-binding protein 4 with RNA oligonucleotide prevents high-fat diet-induced metabolic syndrome and nonalcoholic fatty liver disease in mice. Biochim Biophys Acta. 2011;1811(12):1045–53.PubMedCrossRefGoogle Scholar
  35. 35.
    Kitazawa M, Nagano M, Masumoto KH, Shigeyoshi Y, Natsume T, Hashimoto S. Angiopoietin-like 2, a circadian gene, improves type 2 diabetes through potentiation of insulin sensitivity in mice adipocytes. Endocrinology. 2011;152(7):2558–67.PubMedCrossRefGoogle Scholar
  36. 36.
    Xu A, Lam MC, Chan KW, Wang Y, Zhang J, Hoo RL, et al. Angiopoietin-like protein 4 decreases blood glucose and improves glucose tolerance but induces hyperlipidemia and hepatic steatosis in mice. Proc Natl Acad Sci U S A. 2005;102(17):6086–91.PubMedCrossRefGoogle Scholar
  37. 37.
    Kim MK, Lee JH, Kim H, Park SJ, Kim SH, Kang GB, et al. Crystal structure of visfatin/pre-B cell colony-enhancing factor 1/nicotinamide phosphoribosyltransferase, free and in complex with the anti-cancer agent FK-866. J Mol Biol. 2006;362(1):66–77.PubMedCrossRefGoogle Scholar
  38. 38.
    Sun Q, Li L, Li R, Yang M, Liu H, Nowicki MJ, et al. Overexpression of visfatin/PBEF/Nampt alters whole-body insulin sensitivity and lipid profile in rats. Ann Med. 2009;41(4):311–20.PubMedCrossRefGoogle Scholar
  39. 39.
    LeRoith D, Yakar S. Mechanisms of disease: metabolic effects of growth hormone and insulin-like growth factor 1. Nat Clin Pract Endocrinol Metab. 2007;3(3):302–10.PubMedCrossRefGoogle Scholar
  40. 40.
    Zenobi PD, Jaeggi-Groisman SE, Riesen WF, Roder ME, Froesch ER. Insulin-like growth factor-I improves glucose and lipid metabolism in type 2 diabetes mellitus. J Clin Invest. 1992;90(6):2234–41.PubMedCrossRefGoogle Scholar
  41. 41.
    Acerini CL, Patton CM, Savage MO, Kernell A, Westphal O, Dunger DB. Randomised placebocontrolled trial of human recombinant insulin-like growth factor I plus intensive insulin therapy in adolescents with insulin-dependent diabetes mellitus. Lancet. 1997;350(9086):1199–204.PubMedCrossRefGoogle Scholar
  42. 42.
    Zenobi PD, Glatz Y, Keller A, Graf S, Jaeggi-Groisman SE, Riesen WF, Schoenle EJ, Froesch ER. Beneficial metabolic effects of insulin-like growth factor I in patients with severe insulin-resistant diabetes type A. Eur J Endocrinol. 1994;131(3):251–7.PubMedCrossRefGoogle Scholar
  43. 43.
    Dunger D, Yuen K, Ong K. Insulin-like growth factor I and impaired glucose tolerance. Horm Res. 2004;62 Suppl 1:101–7.PubMedCrossRefGoogle Scholar
  44. 44.
    Xu J, Stanislaus S, Chinookoswong N, Lau YY, Hager T, Patel J, et al. Acute glucose-lowering and insulin sensitizing action of FGF21 in insulin-resistant mouse models–association with liver and adipose tissue effects. Am J Physiol Endocrinol Metab. 2009;297(5):E1105–14.PubMedCrossRefGoogle Scholar
  45. 45.
    Ge X, Chen C, Hui X, Wang Y, Lam KS, Xu A. Fibroblast growth factor 21 induces glucose transporter-1 expression through activation of the serum response factor/Ets-like protein-1 in adipocytes. J Biol Chem. 2011;286(40):34533–41.PubMedCrossRefGoogle Scholar
  46. 46.
    Domouzoglou EM, Maratos-Flier E. Fibroblast growth factor 21 is a metabolic regulator that plays a role in the adaptation to ketosis. Am J Clin Nutr. 2011;93(4):901S–5.PubMedCrossRefGoogle Scholar
  47. 47.
    Zhao Y, Dunbar JD, Kharitonenkov A. FGF21 as a therapeutic reagent. Adv Exp Med Biol. 2012;728:214–28.PubMedCrossRefGoogle Scholar
  48. 48.
    Phillips LK, Prins JB. Update on incretin hormones. Ann N Y Acad Sci. 2011;1243(1):E55–74.PubMedCrossRefGoogle Scholar
  49. 49.
    Bloomgarden ZT. Incretin concepts. Diabetes Care. 2010;33(2):e20–5.PubMedCrossRefGoogle Scholar
  50. 50.
    De Marinis YZ, Salehi A, Ward CE, Zhang Q, Abdulkader F, Bengtsson M, et al. GLP-1 inhibits and adrenaline stimulates glucagon release by differential modulation of N- and Ltype Ca2+ channel-dependent exocytosis. Cell Metab. 2010;11(6):543–53.PubMedCrossRefGoogle Scholar
  51. 51.
    Dardevet D, Moore MC, Neal D, DiCostanzo CA, Snead W, Cherrington AD. Insulin independent effects of GLP-1 on canine liver glucose metabolism: duration of infusion and involvement of hepatoportal region. Am J Physiol Endocrinol Metab. 2004;287(1):E75–81.PubMedCrossRefGoogle Scholar
  52. 52.
    Anagnostis P, Athyros VG, Adamidou F, Panagiotou A, Kita M, Karagiannis A, Mikhailidis DP. Glucagon-like peptide-1-based therapies and cardiovascular disease: looking beyond glycaemic control. Diabetes Obes Metab. 2011;13(4):302–12.PubMedCrossRefGoogle Scholar
  53. 53.
    Ussher JR, Drucker DJ. Cardiovascular biology of the incretin system. Endocr Rev. 2012;33(2):187–215.PubMedCrossRefGoogle Scholar
  54. 54.
    Challa TD, Beaton N, Arnold M, Rudofsky G, Langhans W, Wolfrum C. Regulation of adipocyte formation by GLP-1/GLP-1R signaling. J Biol Chem. 2012;287(9):6421–30.PubMedCrossRefGoogle Scholar
  55. 55.
    Gu W, Lloyd DJ, Chinookswong N, Komorowski R, Sivits Jr G, Graham M, et al. Pharmacological targeting of glucagon and glucagon-like peptide 1 receptors has different effects on energy state and glucose homeostasis in diet induced obese mice. J Pharmacol Exp Ther. 2011;338(1):70–81.PubMedCrossRefGoogle Scholar
  56. 56.
    Hu X, She M, Hou H, Li Q, Shen Q, Luo Y, Yin W. Adiponectin decreases plasma glucose and improves insulin sensitivity in diabetic Swine. Acta Biochim Biophys Sin (Shanghai). 2007;39(2):131–6.CrossRefGoogle Scholar
  57. 57.
    Fukushima M, Hattori Y, Tsukada H, Koga K, Kajiwara E, Kawano K, et al. Adiponectin gene therapy of streptozotocin-induced diabetic mice using hydrodynamic injection. J Gene Med. 2007;9(11):976–85.PubMedCrossRefGoogle Scholar
  58. 58.
    Ohashi K, Kihara S, Ouchi N, Kumada M, Fujita K, Hiuge A, et al. Adiponectin replenishment ameliorates obesity-related hypertension. Hypertension. 2006;47(6):1108–16.PubMedCrossRefGoogle Scholar
  59. 59.
    Park S, Kim DS, Kwon DY, Yang HJ. Long-term central infusion of adiponectin improves energy and glucose homeostasis by decreasing fat storage and suppressing hepatic gluconeogenesis without changing food intake. J Neuroendocrinol. 2011;23(8):687–98.PubMedCrossRefGoogle Scholar
  60. 60.
    •• Yu X, Park BH, Wang MY, Wang ZV, Unger RH. Making insulin-deficient type 1 diabetic rodents thrive without insulin. Proc Natl Acad Sci U S A. 2008;105(37):14070–5. First adipokine therapy demonstrating long-term correction of T1D without insulin.PubMedCrossRefGoogle Scholar
  61. 61.
    Wang MY, Chen L, Clark GO, Lee Y, Stevens RD, Ilkayeva OR, et al. Leptin therapy in insulindeficient type I diabetes. Proc Natl Acad Sci U S A. 2010;107(11):4813–9.PubMedCrossRefGoogle Scholar
  62. 62.
    Naito M, Fujikura J, Ebihara K, Miyanaga F, Yokoi H, Kusakabe T, et al. Therapeutic impact of leptin on diabetes, diabetic complications, and longevity in insulin-deficient diabetic mice. Diabetes. 2011;60(9):2265–73.PubMedCrossRefGoogle Scholar
  63. 63.
    Kruger AJ, Yang C, Lipson KL, Pino SC, Leif JH, Hogan CM, et al. Leptin treatment confers clinical benefit at multiple stages of virally induced type 1 diabetes in BB rats. Autoimmunity. 2011;44(2):137–48.PubMedCrossRefGoogle Scholar
  64. 64.
    Chen H, Zheng C, Zhang X, Li J, Li J, Zheng L, Huang K. Apelin alleviates diabetes-associated endoplasmic reticulum stress in the pancreas of Akita mice. Peptides. 2011;32(8):1634–9.PubMedCrossRefGoogle Scholar
  65. 65.
    Dray C, Knauf C, Daviaud D, Waget A, Boucher J, Buleon M, et al. Apelin stimulates glucose utilization in normal and obese insulin-resistant mice. Cell Metab. 2008;8(5):437–45.PubMedCrossRefGoogle Scholar
  66. 66.
    Castan-Laurell I, Dray C, Knauf C, Kunduzova O, Valet P. Apelin, a promising target for type 2 diabetes treatment? Trends Endocrinol Metab. 2012;23(5):234–41.PubMedCrossRefGoogle Scholar
  67. 67.
    Garber AJ. Incretin therapy––present and future. Rev Diabet Stud. 2011;8(3):307–22.PubMedCrossRefGoogle Scholar
  68. 68.
    Cernea S. The role of incretin therapy at different stages of diabetes. Rev Diabet Stud. 2011;8(3):323–38.PubMedCrossRefGoogle Scholar
  69. 69.
    Spellman CW. Incorporating glucagon-like peptide-1 receptor agonists into clinical practice. J Am Osteopath Assoc. 2012;112(1 Suppl 1):S7–S15.PubMedGoogle Scholar
  70. 70.
    Dupre J. Glycaemic effects of incretins in Type 1 diabetes mellitus: a concise review, with emphasis on studies in humans. Regul Pept. 2005;128(2):149–57.PubMedCrossRefGoogle Scholar
  71. 71.
    Suen CS, Burn P. The potential of incretin-based therapies in type 1 diabetes. Drug Discov Today. 2012;17(1–2):89–95.PubMedCrossRefGoogle Scholar
  72. 72.
    Hadjiyanni I, Baggio LL, Poussier P, Drucker DJ. Exendin-4 modulates diabetes onset in nonobese diabetic mice. Endocrinology. 2008;149(3):1338–49.PubMedCrossRefGoogle Scholar
  73. 73.
    Pugazhenthi U, Velmurugan K, Tran A, Mahaffey G, Pugazhenthi S. Anti-inflammatory action of exendin-4 in human islets is enhanced by phosphodiesterase inhibitors: potential therapeutic benefits in diabetic patients. Diabetologia. 2010;53(11):2357–68.PubMedCrossRefGoogle Scholar
  74. 74.
    Perez-Arana G, Blandino-Rosano M, Prada-Oliveira A, Aguilar-Diosdado M, Segundo C. Decrease in {beta}-cell proliferation precedes apoptosis during diabetes development in bio-breeding/worcester rat: beneficial role of Exendin-4. Endocrinology. 2010;151(6):2538–46.PubMedCrossRefGoogle Scholar
  75. 75.
    •• Gunawardana SC, Piston DW. Reversal of type 1 diabetes in mice by Brown adipose tissue transplant. Diabetes. 2012;61(3):674–82. First demonstration of insulinindependent reversal of T1D using endogenously produced hormones.PubMedCrossRefGoogle Scholar
  76. 76.
    Gunawardana SC, Benninger RKP, Piston DW. Subcutaneous transplantation of embryonic pancreas for correction of type 1 diabetes. Am J Physiol. 2009;296:E323–32.Google Scholar
  77. 77.
    Gunawardana SC, Benninger RKP, Piston DW. Blood glucose regulation through adipose tissue hormones following subcutaneous transplantation of pancreas, vol. J4. Banff: Keystone Symposia; 2009. p. 191.Google Scholar
  78. 78.
    Snell-Bergeon JK, West NA, Mayer-Davis EJ, Liese AD, Marcovina SM, D'Agostino Jr RB, Hamman RF, Dabelea D. Inflammatory markers are increased in youth with type 1 diabetes: the SEARCH Case-Control study. J Clin Endocrinol Metab. 2010;95(6):2868–76.PubMedCrossRefGoogle Scholar
  79. 79.
    Verrijn Stuart AA, Schipper HS, Tasdelen I, Egan DA, Prakken BJ, Kalkhoven E, de Jager W. Altered plasma adipokine levels and in vitro adipocyte differentiation in pediatric type 1 diabetes. J Clin Endocrinol Metab. 2012;97(2):463–72.PubMedCrossRefGoogle Scholar
  80. 80.
    Lowell BB, Flier JS. Brown adipose tissue, beta 3-adrenergic receptors, and obesity. Annu Rev Med. 1997;48:307–16.PubMedCrossRefGoogle Scholar
  81. 81.
    Fitzgibbons TP, Kogan S, Aouadi M, Hendricks GM, Straubhaar J, Czech MP. Similarity of mouse perivascular and brown adipose tissues and their resistance to diet-induced inflammation. Am J Physiol Heart Circ Physiol. 2011;301(4):H1425–37.PubMedCrossRefGoogle Scholar
  82. 82.
    Krings A, Rahman S, Huang S, Lu Y, Czernik PJ, Lecka-Czernik B. Bone marrow fat has brown adipose tissue characteristics, which are attenuated with aging and diabetes. Bone. 2012;50(2):546–52.PubMedCrossRefGoogle Scholar
  83. 83.
    Gomez-Hernandez A, Otero YF, de las Heras N, Escribano O, Cachofeiro V, Lahera V, Benito M. Brown fat lipoatrophy and increased visceral adiposity through a concerted adipocytokines overexpression induces vascular insulin resistance and dysfunction. Endocrinology. 2012;153(3):1242–55.PubMedCrossRefGoogle Scholar
  84. 84.
    Wu X, Motoshima H, Mahadev K, Stalker TJ, Scalia R, Goldstein BJ. Involvement of AMPactivated protein kinase in glucose uptake stimulated by the globular domain of adiponectin in primary rat adipocytes. Diabetes. 2003;52(6):1355–63.PubMedCrossRefGoogle Scholar
  85. 85.
    Cypess AM, Kahn CR. Brown fat as a therapy for obesity and diabetes. Curr Opin Endocrinol Diabetes Obes. 2010;17(2):143–9.PubMedCrossRefGoogle Scholar
  86. 86.
    Ginter E, Simko V. Brown fat tissue––a potential target to combat obesity. Bratisl Lek Listy. 2012;113(1):52–6.PubMedGoogle Scholar
  87. 87.
    • Seale P, Conroe HM, Estall J, Kajimura S, Frontini A, Ishibashi J, et al. Prdm16 determines the thermogenic program of subcutaneous white adipose tissue in mice. J Clin Invest. 2011;121(1):96–105. Demonstrates BAT-derived factors can improve WAT function and whole body metabolic homeostasis.PubMedCrossRefGoogle Scholar
  88. 88.
    • Bostrom P, Wu J, Jedrychowski MP, Korde A, Ye L, Lo JC, et al. A PGC1-α-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature. 2012;481(7382):463–8. Demonstrates BAT-derived factors can improve WAT function and whole body metabolic homeostasis.PubMedCrossRefGoogle Scholar
  89. 89.
    Gavrilova O, Marcus-Samuels B, Graham D, Kim JK, Shulman GI, Castle AL, et al. Surgical implantation of adipose tissue reverses diabetes in lipoatrophic mice. J Clin Invest. 2000;105(3):271–8.PubMedCrossRefGoogle Scholar
  90. 90.
    Klebanov S, Astle CM, DeSimone O, Ablamunits V, Harrison DE. Adipose tissue transplantation protects ob/ob mice from obesity, normalizes insulin sensitivity and restores fertility. J Endocrinol. 2005;186(1):203–11.PubMedCrossRefGoogle Scholar
  91. 91.
    • Ablamunits V, Klebanov S, Giese SY, Herold KC. Functional human to mouse adipose tissue xenotransplantation. J Endocrinol. 2012;212(1):41–7. Successful xenotransplantation of WAT to compensate for hormone deficiency.PubMedCrossRefGoogle Scholar
  92. 92.
    Tran TT, Kahn CR. Transplantation of adipose tissue and stem cells: role in metabolism and disease. Nat Rev Endocrinol. 2010;6(4):195–213.PubMedCrossRefGoogle Scholar
  93. 93.
    Skarulis MC, Celi FS, Mueller E, Zemskova M, Malek R, Hugendubler L, et al. Thyroid hormone induced brown adipose tissue and amelioration of diabetes in a patient with extreme insulin resistance. J Clin Endocrinol Metab. 2010;95(1):256–62.PubMedCrossRefGoogle Scholar
  94. 94.
    Vegiopoulos A, Muller-Decker K, Strzoda D, Schmitt I, Chichelnitskiy E, Ostertag A, et al. Cyclooxygenase-2 controls energy homeostasis in mice by de novo recruitment of brown adipocytes. Science. 2010;328(5982):1158–61.PubMedCrossRefGoogle Scholar
  95. 95.
    Bordicchia M, Liu D, Amri EZ, Ailhaud G, Dessi-Fulgheri P, Zhang C, et al. Cardiac natriuretic peptides act via p38 MAPK to induce the brown fat thermogenic program in mouse and human adipocytes. J Clin Invest. 2012;122(3):1022–36.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of Molecular Physiology and BiophysicsVanderbilt University Medical CenterNashvilleUSA

Personalised recommendations