Current Diabetes Reports

, Volume 12, Issue 5, pp 456–462

Guts, Germs, and Meals: The Origin of Type 1 Diabetes

Pathogenesis of Type 1 Diabetes (AG Ziegler, Section Editor)

Abstract

Type 1 diabetes mellitus (T1DM) is due, in part, to non-genetically determined factors including environmental factors. The nature of these environmental effects remains unclear but they are important to identify since they may be amenable to therapy. Recently, the gut microbiota, the trillions of microorganisms inhabiting the gut, as well as diet, have been implicated in T1DM pathogenesis. Since dietary changes can reshape this complex gut community, its co-evolution could have been altered by changes to our diet, agriculture, personal hygiene, and antibiotic usage, which coincide with the increased incidence of T1DM. Recent studies demonstrate an association between altered gut microbiota and T1DM in both T1DM patients and animal models of the disease. Further studies should provide new insight into those critical host-microbial interactions, potentially suggesting new diagnostic or therapeutic strategies for disease prevention.

Keywords

Microbiome Virome Enterotypes Type 1 diabetes Autoimmunity Autoimmune disease NOD mice Toll-like receptors Innate immune response Guts Germs Meals 

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    • Bach JF. The effect of infections on susceptibility to autoimmune and allergic diseases. N Engl J Med. 2002;347:911–20. Evidence that infections are relevant to the rising incidence of autoimmune and allergic diseases.PubMedCrossRefGoogle Scholar
  2. 2.
    Bluestone JA, Herold K, Eisenbarth G. Genetics, pathogenesis and clinical interventions in type 1 diabetes. Nature. 2010;464:1293–300.PubMedCrossRefGoogle Scholar
  3. 3.
    Todd JA. Etiology of type 1 diabetes. Immunity. 2010;32:457–67.PubMedCrossRefGoogle Scholar
  4. 4.
    Redondo MJ, Yu L, Hawa M, Mackenzie T, Pyke DA, Eisenbarth GS, et al. Heterogeneity of type I diabetes: analysis of monozygotic twins in Great Britain and the United States. Diabetologia. 2001;44:354–62.PubMedCrossRefGoogle Scholar
  5. 5.
    Ziegler AG, Nepom GT. Prediction and pathogenesis in type 1 diabetes. Immunity. 2010;32:468–78.PubMedCrossRefGoogle Scholar
  6. 6.
    Leslie RD, Delli Castelli M. Age-dependent influences on the origins of autoimmune diabetes: evidence and implications. Diabetes. 2004;53:3033–40.PubMedCrossRefGoogle Scholar
  7. 7.
    Harron KL, Feltbower RG, McKinney PA, Bodansky HJ, Campbell FM, Parslow RC. Rising rates of all types of diabetes in south Asian and non-south Asian children and young people aged 0–29 years in West Yorkshire, U.K., 1991–2006. Diabetes Care. 2011;34:652–4.PubMedCrossRefGoogle Scholar
  8. 8.
    Couper JJ, Beresford S, Hirte C, Baghurst PA, Pollard A, Tait BD, et al. Weight gain in early life predicts risk of islet autoimmunity in children with a first-degree relative with type 1 diabetes. Diabetes Care. 2009;32:94–9.PubMedCrossRefGoogle Scholar
  9. 9.
    Beyan H, Riese H, Hawa MI, Beretta G, Davidson HW, Hutton JC, et al. Glycotoxin and autoantibodies are additive environmentally determined predictors of type 1 diabetes: a twin and population study. Diabetes. 2012;61:1192–8.PubMedCrossRefGoogle Scholar
  10. 10.
    Cooper JD, Smyth DJ, Walker NM, Stevens H, Burren OS, Wallace C, et al. Inherited variation in vitamin D genes is associated with predisposition to autoimmune disease type 1 diabetes. Diabetes. 2011;60:1624–31.PubMedCrossRefGoogle Scholar
  11. 11.
    Heinig M, Petretto E, Wallace C, Bottolo L, Rotival M, Lu H, et al. A trans-acting locus regulates an anti-viral expression network and type 1 diabetes risk. Nature. 2010;467:460–4.PubMedCrossRefGoogle Scholar
  12. 12.
    Nejentsev S, Walker N, Riches D, Egholm M, Todd JA. Rare variants of IFIH1, a gene implicated in antiviral responses, protect against type 1 diabetes. Science. 2009;324:387–9.PubMedCrossRefGoogle Scholar
  13. 13.
    Vlassara H, Striker GE. AGE restriction in diabetes mellitus: a paradigm shift. Nat Rev Endocrinol. 2011;7:526–39.PubMedCrossRefGoogle Scholar
  14. 14.
    Oresic M, Simell S, Sysi-Aho M, Näntö-Salonen K, Seppänen-Laakso T, Parikka V, et al. Dysregulation of lipid and amino acid metabolism precedes islet autoimmunity in children who later progress to type 1 diabetes. J Exp Med. 2008;205:2975–84.PubMedCrossRefGoogle Scholar
  15. 15.
    Pflueger M, Seppänen-Laakso T, Suortti T, Hyötyläinen T, Achenbach P, Bonifacio E, et al. Age- and islet autoimmunity-associated differences in amino acid and lipid metabolites in children at risk for type 1 diabetes. Diabetes. 2011;60:2740–7.PubMedCrossRefGoogle Scholar
  16. 16.
    • Rakyan VK, Beyan H, Down TA, Hawa MI, Maslau S, Aden D, et al. Identification of type 1 diabetes-associated DNA methylation variable positions that precede disease diagnosis. PLoS Genet. 2011;7:e1002300. The first epigenome-wide association study (EWAS) of a common human disease.PubMedCrossRefGoogle Scholar
  17. 17.
    Turnbaugh PJ, Bäckhed F, Fulton L, Gordon JI. Diet-induced obesity is linked to marked but reversible alterations in the mouse distal gut microbiome. Cell Host Microbe. 2008;3:213–23.PubMedCrossRefGoogle Scholar
  18. 18.
    Turnbaugh PJ, Ridaura VK, Faith JJ, Rey FE, Knight R, Gordon JI. The effect of diet on the human gut microbiome: a metagenomic analysis in humanized gnotobiotic mice. Sci Transl Med. 2009;1:6ra14.PubMedCrossRefGoogle Scholar
  19. 19.
    Kosiewicz MM, Zirnheld AL, Alard P. Gut microbiota, immunity, and disease: a complex relationship. Front Microbiol. 2011;2:180.PubMedGoogle Scholar
  20. 20.
    Reading NC, Kasper DL. The starting lineup: key microbial players in intestinal immunity and homeostasis. Front Microbiol. 2011;2:148.PubMedGoogle Scholar
  21. 21.
    Smith PM, Garrett WS. The gut microbiota and mucosal T cells. Front Microbiol. 2011;2:111.PubMedGoogle Scholar
  22. 22.
    •• Olszak T, An D, Zeissig S, Vera MP, Richter J, Franke A, et al. Microbial exposure during early life has persistent effects on natural killer T cell function. Science. 2012;336:489–93. The first evidence that education of gut mucosal immune cells is associated with protection from immune-mediated diseases.PubMedCrossRefGoogle Scholar
  23. 23.
    Surana NK, Kasper DL. The yin yang of bacterial polysaccharides: lessons learned from B. fragilis PSA. Immunol Rev. 2012;245:13–26.PubMedCrossRefGoogle Scholar
  24. 24.
    de St Groth BF. Regulatory T-cell abnormalities and the global epidemic of immuno-inflammatory disease. Immunol Cell Biol. 2012;90:256–9.PubMedCrossRefGoogle Scholar
  25. 25.
    • Mazmanian SK, Round JL, Kasper DL. A microbial symbiosis factor prevents intestinal inflammatory disease. Nature. 2008;453:620–5. Evidence that a microbial polysaccharide can influence gut immune regulation.PubMedCrossRefGoogle Scholar
  26. 26.
    Pfeiffer JK, Sonnenburg JL. The intestinal microbiota and viral susceptibility. Front Microbiol. 2011;2:92.PubMedGoogle Scholar
  27. 27.
    Foxman EF, Iwasaki A. Genome-virome interactions: examining the role of common viral infections in complex disease. Nat Rev Microbiol. 2011;9:254–64.PubMedCrossRefGoogle Scholar
  28. 28.
    Gill SR, Pop M, Deboy RT, Eckburg PB, Turnbaugh PJ, Samuel BS, et al. Metagenomic analysis of the human distal gut microbiome. Science. 2006;312:1355–9.PubMedCrossRefGoogle Scholar
  29. 29.
    •• Turnbaugh PJ, Hamady M, Yatsunenko T, Cantarel BL, Duncan A, Ley RE, et al. A core gut microbiome in obese and lean twins. Nature. 2009;457:480–4. This paper illustrates the deviations from a core microbiome, at a functional level, are associated with physiology deviations from normality.PubMedCrossRefGoogle Scholar
  30. 30.
    Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature. 2010;464:59–65.PubMedCrossRefGoogle Scholar
  31. 31.
    Wang Z, Klipfell E, Bennett BJ, Koeth R, Levison BS, Dugar B, et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature. 2011;472:57–63.PubMedCrossRefGoogle Scholar
  32. 32.
    Turnbaugh PJ, Ley RE, Hamady M, Fraser-Liggett CM, Knight R, Gordon JI. The human microbiome project. Nature. 2007;449:804–10.PubMedCrossRefGoogle Scholar
  33. 33.
    •• Costello EK, Lauber CL, Hamady M, Fierer N, Gordon JI, Knight R. Bacterial community variation in human body habitats across space and time. Science. 2009;326:1694–7. Gut microbiota, although personalized, varies across body habitats and time.PubMedCrossRefGoogle Scholar
  34. 34.
    Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature. 2006;444:1027–31.PubMedCrossRefGoogle Scholar
  35. 35.
    Greenblum S, Turnbaugh PJ, Borenstein E. Metagenomic systems biology of the human gut microbiome reveals topological shifts associated with obesity and inflammatory bowel disease. Proc Natl Acad Sci U S A. 2012;109:594–9.PubMedCrossRefGoogle Scholar
  36. 36.
    Vijay-Kumar M, Carvalho FA, Aitken JD, Fifadara NH, Gewirtz AT. TLR5 or NLRC4 is necessary and sufficient for promotion of humoral immunity by flagellin. Eur J Immunol. 2010;40:3528–34.PubMedCrossRefGoogle Scholar
  37. 37.
    •• Wen L, Ley RE, Volchkov PY, Stranges PB, Avanesyan L, Stonebraker AC, et al. Innate immunity and intestinal microbiota in the development of Type 1 diabetes. Nature. 2008;455:1109–13. The first evidence that changes in the innate immune response, mediated by the gut microbiome, prevents autoimmune diabetes.PubMedCrossRefGoogle Scholar
  38. 38.
    Young VB, Kahn SA, Schmidt TM, Chang EB. Studying the Enteric Microbiome in Inflammatory Bowel Diseases: Getting through the Growing Pains and Moving Forward. Front Microbiol. 2011;2:144.PubMedGoogle Scholar
  39. 39.
    Smyth DJ, Plagnol V, Walker NM, Cooper JD, Downes K, Yang JH, et al. Shared and distinct genetic variants in type 1 diabetes and celiac disease. N Engl J Med. 2008;359:2767–77.PubMedCrossRefGoogle Scholar
  40. 40.
    Vaarala O. Is the origin of type 1 diabetes in the gut? Immunol Cell Biol. 2012;90:271–6.PubMedCrossRefGoogle Scholar
  41. 41.
    •• Mathis D, Benoist C. The influence of the microbiota on type-1 diabetes: on the threshold of a leap forward in our understanding. Immunol Rev. 2012;245:239–49. Comprehensive review of the immune response in the context of the gut microbiota.PubMedCrossRefGoogle Scholar
  42. 42.
    Boerner BP, Sarvetnick NE. Type 1 diabetes: role of intestinal microbiome in humans and mice. Ann N Y Acad Sci. 2011;1243:103–18.PubMedCrossRefGoogle Scholar
  43. 43.
    Giongo A, Gano KA, Crabb DB, Mukherjee N, Novelo LL, Casella G, et al. Toward defining the autoimmune microbiome for type 1 diabetes. ISME J. 2011;5:82–91.PubMedCrossRefGoogle Scholar
  44. 44.
    Brown CT, Davis-Richardson AG, Giongo A, Gano KA, Crabb DB, Mukherjee N, et al. Gut microbiome metagenomics analysis suggests a functional model for the development of autoimmunity for type 1 diabetes. PLoS One. 2011;6:e25792.PubMedCrossRefGoogle Scholar
  45. 45.
    Oikarinen M, Tauriainen S, Oikarinen S, Honkanen T, Collin P, Rantala I, et al. Type 1 diabetes is associated with enterovirus infection in gut mucosa. Diabetes. 2012;61:687–91.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Blizard Institute, Barts and The London School of Medicine and DentistryQueen Mary University of LondonLondonUK
  2. 2.Department of Internal MedicineYale University School of MedicineNew HavenUSA

Personalised recommendations