Advertisement

Current Diabetes Reports

, Volume 12, Issue 5, pp 471–480 | Cite as

The Role of Hyaluronan and the Extracellular Matrix in Islet Inflammation and Immune Regulation

  • Paul L. BollykyEmail author
  • Marika Bogdani
  • Jennifer B. Bollyky
  • Rebecca L. Hull
  • Thomas N. Wight
Pathogenesis of Type 1 Diabetes (AG Ziegler, Section Editor)

Abstract

Type 1 diabetes (T1D) is a disease that in most individuals results from autoimmune attack of a single tissue type, the pancreatic islet. A fundamental, unanswered question in T1D pathogenesis is how the islet tissue environment influences immune regulation. This crosstalk is likely to be communicated through the extracellular matrix (ECM). Here, we review what is known about the ECM in insulitis and examine how the tissue environment is synchronized with immune regulation. In particular, we focus on the role of hyaluronan (HA) and its interactions with Foxp3+ regulatory T-cells (Treg). We propose that HA is a “keystone molecule” in the inflammatory milieu and that HA, together with its associated binding proteins and receptors, is an appropriate point of entry for investigations into how ECM influences immune regulation in the islet.

Keywords

Hyaluronan TSG-6 CD44 TLR2 TLR4 Toll-like receptors Foxp3 Regulatory T-cells TR1 Treg IL-10 TGF-β Extracellular matrix Diabetes Islets Islet inflammation Immune regulation 

Notes

Acknowledgments

This work was supported by National Institutes of Health grants DK046635 (to G.T.N.); DK080178, DK089128 and U01AI101984 (to P.L.B.); and HL018645 and a BIRT supplement AR037296 (to T.N.W.). This work was also supported by grants from the Juvenile Diabetes Research Foundation (nPOD 25-2010-648 (to T.N.W.), and The Center for Translational Research at BRI (to G.T.N.).

Disclosure

No potential conflicts of interest relevant to this article were reported.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance•• Of major importance

  1. 1.
    Andre I, Gonzalez A, Wang B, Katz J, Benoist C, Mathis D. Checkpoints in the progression of autoimmune disease: lessons from diabetes models. Proc Natl Acad Sci U S A. 1996;3:2260–3.CrossRefGoogle Scholar
  2. 2.
    Capitan JA, Cuesta JA. Species assembly in model ecosystems, I: analysis of the population model and the invasion dynamics. J Theor Biol. 2011;269:330–43.PubMedCrossRefGoogle Scholar
  3. 3.
    Jiang D, Liang J, Noble PW. Hyaluronan in tissue injury and repair. Annu Rev Cell Dev Biol. 2007;23:435–61.PubMedCrossRefGoogle Scholar
  4. 4.
    Day AJ, Prestwich GD. Hyaluronan-binding proteins: tying up the giant. J Biol Chem. 2002;277:4585–8.PubMedCrossRefGoogle Scholar
  5. 5.
    Edelstam GA, Laurent UB, Lundkvist OE, Fraser JR, Laurent TC. Concentration and turnover of intraperitoneal hyaluronan during inflammation. Inflammation. 1992;16:459–69.PubMedCrossRefGoogle Scholar
  6. 6.
    Laurent TC, Fraser JR. Hyaluronan. FASEB J. 1992;6:2397–404.PubMedGoogle Scholar
  7. 7.
    Denis MC, Mahmood U, Benoist C, Mathis D, Weissleder R. Imaging inflammation of the pancreatic islets in type 1 diabetes. Proc Natl Acad Sci U S A. 2004;101:12634–9.PubMedCrossRefGoogle Scholar
  8. 8.
    Stern R, Jedrzejas MJ. Hyaluronidases. their genomics, structures, and mechanisms of action. Chem Rev. 2006;106:818–39.PubMedCrossRefGoogle Scholar
  9. 9.
    Stern R, Asari AA, Sugahara KN. Hyaluronan fragments: an information-rich system. Eur J Cell Biol. 2006;85:699–715.PubMedCrossRefGoogle Scholar
  10. 10.
    •• Jiang D, Liang J, Noble PW. Hyaluronan as an immune regulator in human diseases. Physiol Rev. 2011;91:221–64. This review is a comprehensive and accessible resource for anyone interested in hyaluronan studies. PubMedCrossRefGoogle Scholar
  11. 11.
    Hull RL, Johnson PY, Braun KR, Day AJ, Wight TN. Hyaluronan and hyaluronan binding proteins are normal components of mouse pancreatic islets and are differentially expressed by islet endocrine cell types. J Histochem Cytochem. 2012;in press.Google Scholar
  12. 12.
    Powell JD, Horton MR. Threat matrix. Low-molecular-weight hyaluronan (HA) as a danger signal. Immunol Res. 2005;31:207–18.PubMedCrossRefGoogle Scholar
  13. 13.
    Newton K, Dixit VM. Signaling in innate immunity and inflammation. Cold Spring Harb Perspect Biol. 2012;4:a006049.PubMedCrossRefGoogle Scholar
  14. 14.
    Termeer C, Benedix F, Sleeman J, Fieber C, Voith U, Ahrens T, et al. Oligosaccharides of Hyaluronan activate dendritic cells via toll-like receptor 4. J Exp Med. 2002;195:99–111.PubMedCrossRefGoogle Scholar
  15. 15.
    Jiang D, Liang J, Fan J, Yu S, Chen S, Luo Y, et al. Regulation of lung injury and repair by Toll-like receptors and hyaluronan. Nat Med. 2005;11:1173–9.PubMedCrossRefGoogle Scholar
  16. 16.
    Tesar BM, Jiang D, Liang J, Palmer SM, Noble PW, Goldstein DR. The role of hyaluronan degradation products as innate alloimmune agonists. Am J Transplant. 2006;6:2622–35.PubMedCrossRefGoogle Scholar
  17. 17.
    Scheibner KA, Lutz MA, Boodoo S, Fenton MJ, Powell JD, Horton MR. Hyaluronan fragments act as an endogenous danger signal by engaging TLR2. J Immunol. 2006;177:1272–81.PubMedGoogle Scholar
  18. 18.
    del Fresco C, Otero K, Gomez-Garcia L, Gonzalez-Leon MC, Soler-Ranger L, Fuentes-Prior P, et al. Tumor cells deactivate human monocytes by up-regulating IL-1 receptor associated kinase-M expression via CD44 and TLR4. J Immunol. 2005;174:3032–40.Google Scholar
  19. 19.
    Teder P, Vandivier RW, Jiang D, Liang J, Cohn L, Pure E, et al. Resolution of lung inflammation by CD44. Science. 2002;296:155–8.PubMedCrossRefGoogle Scholar
  20. 20.
    Bollyky PL, Bice JB, Sweet IR, Falk BA, Gebe JA, Clark AE, et al. The toll-like receptor signaling molecule Myd88 contributes to pancreatic β-cell homeostasis in response to injury. PLoS One. 2009;4:e5063.PubMedCrossRefGoogle Scholar
  21. 21.
    Gao F, Yang CX, Mo W, Liu YW, He YQ. Hyaluronan oligosaccharides are potential stimulators to angiogenesis via RHAMM mediated signal pathway in wound healing. Clin Invest Med. 2008;31:E106–16.PubMedGoogle Scholar
  22. 22.
    Wei L, Xiong H, Li B, Gong Z, Li J, Cai H, et al. Change of HA molecular size and boundary lubrication in synovial fluid of patients with temporomandibular disorders. J Oral Rehabil. 2010;37:271–7.PubMedCrossRefGoogle Scholar
  23. 23.
    • Liang J, Jiang D, Jung Y, Xie T, Ingram J, Church T, et al. Role of hyaluronan and hyaluronan‐binding proteins in human asthma. J Allergy Clin Immunol. 2011;128:403–11. These studies are a good introduction into how HA size and HA binding partners can influence inflammation.Google Scholar
  24. 24.
    Mummert ME. Immunologic roles of hyaluronan. Immunol Res. 2005;31:189–206.PubMedCrossRefGoogle Scholar
  25. 25.
    Taylor KR, Gallo RL. Glycosaminoglycans and their proteoglycans: host-associated molecular patterns for initiation and modulation of inflammation. FASEB J. 2006;20:9–22.PubMedCrossRefGoogle Scholar
  26. 26.
    Termeer C, Sleeman JP, Simon JC. Hyaluronan–magic glue for the regulation of the immune response? Trends Immunol. 2003;24:112–4.PubMedCrossRefGoogle Scholar
  27. 27.
    Jiang D, Liang J, Noble PW. Hyaluronan as an immune regulator in human diseases. Physiol Rev. 2011;1:221–64.CrossRefGoogle Scholar
  28. 28.
    Campo GM, Avenoso A, Nastasi G, Micali A, Prestipino V, Vaccaro M, et al. Hyaluronan reduces inflammation in experimental arthritis by modulating TLR-2 and TLR-4 cartilage expression. Biochim Biophys Acta. 2011;1812:1170–81.PubMedCrossRefGoogle Scholar
  29. 29.
    • Nagy N, Freudenberger T, Melchior-Becker A, Rock K, Ter BM, Jastrow H, et al. Inhibition of hyaluronan synthesis accelerates murine atherosclerosis: novel insights into the role of hyaluronan synthesis. Circulation. 2010;122:2313–22. This work is notable in part because it is one of the first to examine the impact of loss of HA synthesis in an inflammatory disease. PubMedCrossRefGoogle Scholar
  30. 30.
    Bollyky PL, Falk BA, Long SA, Preisinger A, Braun KR, Wu RP, et al. CD44 costimulation promotes FoxP3+ regulatory T cell persistence and function via production of IL-2, IL-10, and TGF-β. J Immunol. 2009;183:2232–41.PubMedCrossRefGoogle Scholar
  31. 31.
    Liang J, Jiang D, Griffith J, Yu S, Fan J, Zhao X, et al. CD44 is a negative regulator of acute pulmonary inflammation and lipopolysaccharide-TLR signaling in mouse macrophages. J Immunol. 2007;178:2469–75.PubMedGoogle Scholar
  32. 32.
    van der Windt GJ, Hoogendijk AJ, de Vos AF, Kerver ME, Florquin S, van der Poll T. The role of CD44 in the acute and resolution phase of the host response during pneumococcal pneumonia. Lab Invest. 2011;91:588–97.Google Scholar
  33. 33.
    Schmits R, Filmus J, Gerwin N, Senaldi G, Kiefer F, Kundig T, et al. CD44 regulates hematopoietic progenitor distribution, granuloma formation, and tumorigenicity. Blood. 1997;90:2217–33.PubMedGoogle Scholar
  34. 34.
    Kimura K, Nagaki M, Kakimi K, Saio M, Saeki T, Okuda Y, et al. Critical role of CD44 in hepatotoxin-mediated liver injury. J Hepatol. 2008;48:952–61.PubMedCrossRefGoogle Scholar
  35. 35.
    Chen D, McKallip RJ, Zeytun A, Do Y, Lombard C, Robertson JL, et al. CD44-deficient mice exhibit enhanced hepatitis after concanavalin A injection: evidence for involvement of CD44 in activation-induced cell death. J Immunol. 2001;166:5889–97.PubMedGoogle Scholar
  36. 36.
    Huebener P, Abou-Khamis T, Zymek P, Bujak M, Ying X, Chatila K, et al. CD44 is critically involved in infarct healing by regulating the inflammatory and fibrotic response. J Immunol. 2008;180:2625–33.PubMedGoogle Scholar
  37. 37.
    Mylona E, Jones KA, Mills ST, Pavlath GK. CD44 regulates myoblast migration and differentiation. J Cell Physiol. 2006;209:314–21.PubMedCrossRefGoogle Scholar
  38. 38.
    • Wolny PM, Banerji S, Gounou C, Brisson AR, Day AJ, Jackson DG, et al. Analysis of CD44-hyaluronan interactions in an artificial membrane system: insights into the distinct binding properties of high and low molecular weight hyaluronan. J Biol Chem. 2010;285:30170–80. This is an excellent study of the mechanisms underlying the binding interactions between CD44 and LMW-HA and HMW-HA. PubMedCrossRefGoogle Scholar
  39. 39.
    Bollyky PL, Falk BA, Wu RP, Buckner JH, Wight TN, Nepom GT. Intact extracellular matrix and the maintenance of immune tolerance: high molecular weight hyaluronan promotes persistence of induced CD4 + CD25+ regulatory T cells. J Leukoc Biol. 2009;86:567–72.PubMedCrossRefGoogle Scholar
  40. 40.
    Bollyky PL, Wu RP, Falk BA, Lord JD, Long SA, Preisinger A, et al. ECM components guide IL-10 producing regulatory T-cell (TR1) induction from effector memory T-cell precursors. Proc Natl Acad Sci U S A. 2011;108:7938–43.PubMedCrossRefGoogle Scholar
  41. 41.
    Peng ST, Su CH, Kuo CC, Shaw CF, Wang HS. CD44 crosslinking-mediated matrix metalloproteinase-9 relocation in breast tumor cells leads to enhanced metastasis. Int J Oncol. 2007;31:1119–26.PubMedGoogle Scholar
  42. 42.
    Oertli B, Fan X, Wuthrich RP. Characterization of CD44-mediated hyaluronan binding by renal tubular epithelial cells. Nephrol Dial Transplant. 1998;13:271–8.PubMedCrossRefGoogle Scholar
  43. 43.
    Fujii Y, Fujii K, Nakano K, Tanaka Y. Crosslinking of CD44 on human osteoblastic cells upregulates ICAM-1 and VCAM-1. FEBS Lett. 2003;539:45–50.PubMedCrossRefGoogle Scholar
  44. 44.
    Gottschalk RA, Corse E, Allison JP. TCR ligand density and affinity determine peripheral induction of Foxp3 in vivo. J Exp Med. 2010;207:1701–11.PubMedCrossRefGoogle Scholar
  45. 45.
    Turner MS, Kane LP, Morel PA. Dominant role of antigen dose in CD4 + Foxp3+ regulatory T cell induction and expansion. J Immunol. 2009;183:4895–903.PubMedCrossRefGoogle Scholar
  46. 46.
    Long SA, Rieck M, Tatum M, Bollyky PL, Wu RP, Muller I, Ho JC, Shilling HG, Buckner JH. Low-dose antigen promotes induction of FOXP3 in human CD4+ T Cells. J Immunol. 2011.Google Scholar
  47. 47.
    Roncarolo MG, Levings MK, Traversari C. Differentiation of T regulatory cells by immature dendritic cells. J Exp Med. 2001;193:F5–9.PubMedCrossRefGoogle Scholar
  48. 48.
    Bollyky PL, Evanko SP, Wu RP, Potter-Perigo S, Long SA, Kinsella B, et al. Th1 cytokines promote T-cell binding to antigen-presenting cells via enhanced hyaluronan production and accumulation at the immune synapse. Cell Mol Immunol. 2010;7:211–20.PubMedCrossRefGoogle Scholar
  49. 49.
    Acharya PS, Majumdar S, Jacob M, Hayden J, Mrass P, Weninger W, Assoian RK, Pure E. Fibroblast migration is mediated by CD44-dependent TGF β activation. J Cell Sci. 2008;121:1393–402.PubMedCrossRefGoogle Scholar
  50. 50.
    David-Raoudi M, Tranchepain F, Deschrevel B, Vincent JC, Bogdanowicz P, Boumediene K, et al. Differential effects of hyaluronan and its fragments on fibroblasts: relation to wound healing. Wound Repair Regen. 2008;16:274–87.PubMedCrossRefGoogle Scholar
  51. 51.
    Kawana H, Karaki H, Higashi M, Miyazaki M, Hilberg F, Kitagawa M, et al. CD44 suppresses TLR-mediated inflammation. J Immunol. 2008;180:4235–45.PubMedGoogle Scholar
  52. 52.
    Day AJ, de la Motte CA. Hyaluronan cross-linking: a protective mechanism in inflammation? Trends Immunol. 2005;26:637–43.PubMedCrossRefGoogle Scholar
  53. 53.
    Mio K, Stern R. Inhibitors of the hyaluronidases. Matrix Biol. 2002;21:31–7.PubMedCrossRefGoogle Scholar
  54. 54.
    Kvezereli M, Michie SA, Yu T, Creusot RJ, Fontaine MJ. TSG-6 protein expression in the pancreatic islets of NOD mice. J Mol Histol. 2008;39:585–93.PubMedCrossRefGoogle Scholar
  55. 55.
    Bardos T, Kamath RV, Mikecz K, Glant TT. Anti-inflammatory and chondroprotective effect of TSG-6 (tumor necrosis factor-alpha-stimulated gene-6) in murine models of experimental arthritis. Am J Pathol. 2001;159:1711–21.PubMedCrossRefGoogle Scholar
  56. 56.
    Wight TN. Versican: a versatile extracellular matrix proteoglycan in cell biology. Curr Opin Cell Biol. 2002;14:617–23.PubMedCrossRefGoogle Scholar
  57. 57.
    Evanko SP, Potter-Perigo S, Bollyky PL, Nepom GT, Wight TN. Hyaluronan and versican in the control of human T-lymphocyte adhesion and migration. Matrix Biol. 2012;31:90–100.Google Scholar
  58. 58.
    Sainio A, Jokela T, Tammi MI, Jarvelainen H. Hyperglycemic conditions modulate connective tissue reorganization by human vascular smooth muscle cells through stimulation of hyaluronan synthesis. Glycobiology. 2010;20:1117–26.PubMedCrossRefGoogle Scholar
  59. 59.
    Deguine V, Menasche M, Ferrari P, Fraisse L, Pouliquen Y, Robert L. Free radical depolymerization of hyaluronan by Maillard reaction products: role in liquefaction of aging vitreous. Int J Biol Macromol. 1998;22:17–22.PubMedCrossRefGoogle Scholar
  60. 60.
    Wheeler-Jones CP, Farrar CE, Pitsillides AA. Targeting hyaluronan of the endothelial glycocalyx for therapeutic intervention. Curr Opin Investig Drugs. 2010;11:997–1006.PubMedGoogle Scholar
  61. 61.
    Sakaguchi S, Setoguchi R, Yagi H, Nomura T. Naturally arising Foxp3-expressing CD25 + CD4+ regulatory T cells in self-tolerance and autoimmune disease. Curr Top Microbiol Immunol. 2006;305:51–66.PubMedCrossRefGoogle Scholar
  62. 62.
    • Willcox A, Richardson SJ, Bone AJ, Foulis AK, Morgan NG. Analysis of islet inflammation in human type 1 diabetes. Clin Exp Immunol. 2009;155:173–81. This study demonstrates some of the challenges and the potential of examining insulitis in human cadaveric specimens. Similar studies examining the ECM and other components of the islet inflammatory milieu are underway. PubMedCrossRefGoogle Scholar
  63. 63.
    Badami E, Sorini C, Coccia M, Usuelli V, Molteni L, Bolla AM, et al. Defective differentiation of regulatory FoxP3+ T cells by small-intestinal dendritic cells in patients with type 1 diabetes. Diabetes. 2011;60:2120–4.PubMedCrossRefGoogle Scholar
  64. 64.
    Herrath J, Muller M, Amoudruz P, Janson P, Michaelsson J, Larsson PT, et al. The inflammatory milieu in the rheumatic joint reduces regulatory T-cell function. Eur J Immunol. 2011;41:2279–90.PubMedCrossRefGoogle Scholar
  65. 65.
    • Wesley JD, Sather BD, Perdue NR, Ziegler SF, Campbell DJ. Cellular requirements for diabetes induction in DO11.10xRIPmOVA mice. J Immunol. 2010;185:4760–8. This study demonstrates the presence of Foxp3+ regulatory T-cells in autoimmune insulitis and shows that these Treg function well ex vivo, implicating a role for the tissue environment in their evident dysfunction in vivo. PubMedCrossRefGoogle Scholar
  66. 66.
    Tang Q, Adams JY, Penaranda C, Melli K, Piaggio E, Sgouroudis E, et al. Central role of defective interleukin-2 production in the triggering of islet autoimmune destruction. Immunity. 2008;28:687–97.PubMedCrossRefGoogle Scholar
  67. 67.
    Long SA, Cerosaletti K, Bollyky PL, Tatum M, Shilling H, Zhang S, et al. Defects in IL-2R signaling contribute to diminished maintenance of FOXP3 expression in CD4(+)CD25(+) regulatory T-cells of type 1 diabetic subjects. Diabetes. 2010;59:407–15.PubMedCrossRefGoogle Scholar
  68. 68.
    Vukmanovic-Stejic M, Zhang Y, Akbar AN, Macallan DC. Measurement of proliferation and disappearance of regulatory T cells in human studies using deuterium-labeled glucose. Methods Mol Biol. 2011;707:243–61.PubMedCrossRefGoogle Scholar
  69. 69.
    • Oberg HH, Ly TT, Ussat S, Meyer T, Kabelitz D, Wesch D. Differential but direct abolishment of human regulatory T cell suppressive capacity by various TLR2 ligands. J Immunol. 2010;184:4733–40. This study and others reporting the same finding with human Treg offers a possible mechanism for how sterile injury could lead to Treg dysfunction. PubMedCrossRefGoogle Scholar
  70. 70.
    Firan M, Dhillon S, Estess P, Siegelman MH. Suppressor activity and potency among regulatory T cells is discriminated by functionally active CD44. Blood. 2006;107:619–27.PubMedCrossRefGoogle Scholar
  71. 71.
    Bollyky PL, Lord JD, Masewicz SA, Evanko SP, Buckner JH, Wight TN, et al. Cutting edge: high molecular weight hyaluronan promotes the suppressive effects of CD4 + CD25+ regulatory T cells. J Immunol. 2007;179:744–7.PubMedGoogle Scholar
  72. 72.
    Liu T, Soong L, Liu G, Konig R, Chopra AK. CD44 expression positively correlates with Foxp3 expression and suppressive function of CD4+ Treg cells. Biol Direct. 2009;4:40.PubMedCrossRefGoogle Scholar
  73. 73.
    Asari A, Kanemitsu T, Kurihara H. Oral administration of high molecular weight hyaluronan (900 kDa) controls immune system via Toll-like receptor 4 in the intestinal epithelium. J Biol Chem. 2010;285:24751–8.PubMedCrossRefGoogle Scholar
  74. 74.
    Huang TL, Hsu HC, Yang KC, Lin FH. Hyaluronan up-regulates IL-10 expression in fibroblast-like synoviocytes from patients with tibia plateau fracture. J Orthop Res. 2011;29:495–500.PubMedCrossRefGoogle Scholar
  75. 75.
    Larkin J, Renukaradhya GJ, Sriram V, Du W, Gervay-Hague J, Brutkiewicz RR. CD44 differentially activates mouse NK T cells and conventional T cells. J Immunol. 2006;177:268–79.PubMedGoogle Scholar
  76. 76.
    Vernon RB, Preisinger A, Gooden MD, D'Amico LA, Yue BB, Bollyky PL, et al. Reversal of diabetes in mice with a bioengineered islet implant incorporating a Type I collagen hydrogel and sustained release of vascular endothelial growth factor. Cell Transplant. 2012. doi: 10.3727/096368911X636786.
  77. 77.
    Parnaud G, Hammar E, Ribaux P, Donath MY, Berney T, Halban PA. Signaling pathways implicated in the stimulation of β-cell proliferation by extracellular matrix. Mol Endocrinol. 2009;23:1264–71.PubMedCrossRefGoogle Scholar
  78. 78.
    • Stendahl JC, Kaufman DB, Stupp SI. Extracellular matrix in pancreatic islets: relevance to scaffold design and transplantation. Cell Transplant. 2009;18:1–12. This review is a good introduction to what is known about the ECM in healthy islets. PubMedCrossRefGoogle Scholar
  79. 79.
    Cheng JY, Raghunath M, Whitelock J, Poole-Warren L. Matrix components and scaffolds for sustained islet function. Tissue Eng B Rev. 2011;17:235–47.CrossRefGoogle Scholar
  80. 80.
    Kaido T, Yebra M, Cirulli V, Rhodes C, Diaferia G, Montgomery AM. Impact of defined matrix interactions on insulin production by cultured human β-cells: effect on insulin content, secretion, and gene transcription. Diabetes. 2006;55:2723–9.PubMedCrossRefGoogle Scholar
  81. 81.
    Wang RN, Rosenberg L. Maintenance of β-cell function and survival following islet isolation requires re-establishment of the islet-matrix relationship. J Endocrinol. 1999;163:181–90.PubMedCrossRefGoogle Scholar
  82. 82.
    Van Deijnen JH, van Suylichem PT, Wolters GH, van Schilfgaarde R. Distribution of collagens type I, type III and type V in the pancreas of rat, dog, pig and man. Cell Tissue Res. 1994;277:115–21.PubMedCrossRefGoogle Scholar
  83. 83.
    Kragl M, Lammert E. Basement membrane in pancreatic islet function. Adv Exp Med Biol. 2010;654:217–34.PubMedCrossRefGoogle Scholar
  84. 84.
    Irving-Rodgers HF, Ziolkowski AF, Parish CR, Sado Y, Ninomiya Y, Simeonovic CJ, et al. Molecular composition of the peri-islet basement membrane in NOD mice: a barrier against destructive insulitis. Diabetologia. 2008;51:1680–8.PubMedCrossRefGoogle Scholar
  85. 85.
    Daoud J, Petropavlovskaia M, Rosenberg L, Tabrizian M. The effect of extracellular matrix components on the preservation of human islet function in vitro. Biomaterials. 2010;31:1676–82.PubMedCrossRefGoogle Scholar
  86. 86.
    Jalili RB, Moeen RA, Hosseini-Tabatabaei A, Ao Z, Warnock GL, Ghahary A. Fibroblast populated collagen matrix promotes islet survival and reduces the number of islets required for diabetes reversal. J Cell Physiol. 2011;226:1813–9.PubMedCrossRefGoogle Scholar
  87. 87.
    Takahashi I, Noguchi N, Nata K, Yamada S, Kaneiwa T, Mizumoto S, et al. Important role of heparan sulfate in postnatal islet growth and insulin secretion. Biochem Biophys Res Commun. 2009;383:113–8.PubMedCrossRefGoogle Scholar
  88. 88.
    • Ziolkowski AF, Popp SK, Freeman C, Parish CR, Simeonovic CJ. Heparan sulfate and heparanase play key roles in mouse β cell survival and autoimmune diabetes. J Clin Invest. 2012;122:132–41. This is a well done study that raising intriguing possibilities regarding the rolw of ECM in islet homeostasis. PubMedCrossRefGoogle Scholar
  89. 89.
    Otonkoski T, Banerjee M, Korsgren O, Thornell LE, Virtanen I. Unique basement membrane structure of human pancreatic islets: implications for β-cell growth and differentiation. Diabetes Obes Metab. 2008;10 Suppl 4:119–27.PubMedCrossRefGoogle Scholar
  90. 90.
    Weiss L, Slavin S, Reich S, Cohen P, Shuster S, Stern R, et al. Induction of resistance to diabetes in non-obese diabetic mice by targeting CD44 with a specific monoclonal antibody. Proc Natl Acad Sci U S A. 2000;97:285–90.PubMedCrossRefGoogle Scholar
  91. 91.
    Midwood KS, Williams LV, Schwarzbauer JE. Tissue repair and the dynamics of the extracellular matrix. Int J Biochem Cell Biol. 2004;36:1031–7.PubMedCrossRefGoogle Scholar
  92. 92.
    Scanzello CR, Plaas A, Crow MK. Innate immune system activation in osteoarthritis: is osteoarthritis a chronic wound? Curr Opin Rheumatol. 2008;20(5):565–72.Google Scholar
  93. 93.
    Frangogiannis NG. Regulation of the inflammatory response in cardiac repair. Circ Res. 2012;110:159–73.PubMedCrossRefGoogle Scholar
  94. 94.
    Debussche X, Lormeau B, Boitard C, Toublanc M, Assan R. Course of pancreatic β-cell destruction in prediabetic NOD mice: a histomorphometric evaluation. Diabete Metab. 1994;20:282–90.PubMedGoogle Scholar
  95. 95.
    Calafiore R, Pietropaolo M, Basta G, Falorni A, Picchio ML, Brunetti P. Pancreatic β-cell destruction in non-obese diabetic mice. Metabolism. 1993;42:854–9.PubMedCrossRefGoogle Scholar
  96. 96.
    Reddy S, Bradley J. Immunohistochemical demonstration of nitrotyrosine, a biomarker of oxidative stress, in islet cells of the NOD mouse. Ann N Y Acad Sci. 2004;1037:199–202.PubMedCrossRefGoogle Scholar
  97. 97.
    Estella E, McKenzie MD, Catterall T, Sutton VR, Bird PI, Trapani JA, et al. Granzyme B-mediated death of pancreatic β-cells requires the proapoptotic BH3-only molecule bid. Diabetes. 2006;55:2212–9.PubMedCrossRefGoogle Scholar
  98. 98.
    Papaccio G, Linn T, Federlin K, Volkman A, Esposito V, Mezzogiorno V. Further morphological and biochemical observations on early low dose streptozocin diabetes in mice. Pancreas. 1991;6:659–67.PubMedCrossRefGoogle Scholar
  99. 99.
    Rakus JF, Mahal LK. New technologies for glycomic analysis: toward a systematic understanding of the glycome. Annu Rev Anal Chem (Palo Alto Calif). 2011;4:367–92.CrossRefGoogle Scholar
  100. 100.
    •• Naba A, Clauser KR, Hoersch S, Liu H, Carr SA, Hynes RO. The matrisome: in silico definition and in vivo characterization by proteomics of normal and tumor extracellular matrices. Mol Cell Proteomics. 2012;11:M111. These authors outline a novel and comprehensive approach to characterization of the ECM in different tissues that will be useful in T1D studies. PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Paul L. Bollyky
    • 1
    Email author
  • Marika Bogdani
    • 2
  • Jennifer B. Bollyky
    • 1
  • Rebecca L. Hull
    • 3
  • Thomas N. Wight
    • 1
  1. 1.Benaroya Research Institute at Virginia MasonSeattleUSA
  2. 2.Pacific Northwest Diabetes Research InstituteSeattleUSA
  3. 3.Division of Metabolism, Endocrinology, and NutritionVA Puget Sound Health Care System and University of WashingtonSeattleUSA

Personalised recommendations