Current Diabetes Reports

, Volume 12, Issue 4, pp 376–383 | Cite as

Prediabetic Neuropathy: Does It Exist?

  • Nikolaos Papanas
  • Dan Ziegler
Microvascular Complications—Neuropathy (D Ziegler, Section Editor)


It is now increasingly being appreciated that a substantial proportion of subjects with prediabetes may exhibit peripheral neuropathy and/or neuropathic pain. The reverse is also true, inasmuch as examining patients with idiopathic peripheral neuropathy will frequently reveal prediabetes. In the general population, the prevalence of neuropathy in prediabetes is intermediate between overt diabetes and subjects with normoglycemia. This prediabetic neuropathy is, generally, milder in comparison to diabetic neuropathy and mainly affects small fibers mediating sensory function. Hyperglycemia, microangiopathy, dyslipidemia and the metabolic syndrome have been implicated as pathogenic mechanisms. In practice, therapy of prediabetic neuropathy should be addressed towards normoglycemia and correction of cardiovascular risk factors. However, additional work is needed to establish the long-term results of this approach.


Diabetes mellitus Diabetic neuropathy Impaired glucose tolerance Prediabetes 



Conflicts of interest: N. Papanas: has board membership with SAB (TrigoCare International, manufacturer of Neuropad); D. Ziegler: has board membership with SAB (TrigoCare International, manufacturer of Neuropad).


Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. 1.
    Boulton AJ, Vinik AI, Arezzo JC, et al. Diabetic neuropathies: a statement by the American Diabetes Association. Diabetes Care. 2005;28:956–62.PubMedCrossRefGoogle Scholar
  2. 2.
    Vinik AI, Ziegler D. Diabetic cardiovascular autonomic neuropathy. Circulation. 2007;115:387–97.PubMedCrossRefGoogle Scholar
  3. 3.
    Fioretto P, Dodson PM, Ziegler D, Rosenson RS. Residual microvascular risk in diabetes: unmet needs and future directions. Nat Rev Endocrinol. 2010;6:19–25.PubMedCrossRefGoogle Scholar
  4. 4.
    Ziegler D. Current concepts in the management of diabetic polyneuropathy. Curr Diabetes Rev. 2011;7:208–20.PubMedCrossRefGoogle Scholar
  5. 5.
    Ziegler D. Painful diabetic neuropathy: advantage of novel drugs over old drugs? Diabetes Care. 2009;32 Suppl 2:S414–9.PubMedCrossRefGoogle Scholar
  6. 6.
    Várkonyi T, Kempler P. Diabetic neuropathy: new strategies for treatment. Diabetes Obes Metab. 2008;10:99–108.PubMedGoogle Scholar
  7. 7.
    Boulton AJ. The diabetic foot: grand overview, epidemiology and pathogenesis. Diabetes Metab Res Rev. 2008;24 Suppl 1:S3–6.PubMedCrossRefGoogle Scholar
  8. 8.
    Papanas N, Maltezos E. The diabetic foot: established and emerging treatments. Acta Clin Belg. 2007;62:230–8.PubMedGoogle Scholar
  9. 9.
    Vinik AI, Maser RE, Ziegler D. Neuropathy: the crystal ball for cardiovascular disease? Diabetes Care. 2010;33:1688–90.PubMedCrossRefGoogle Scholar
  10. 10.
    Hsu WC, Chiu SY, Yen AM, Chen LS, Fann CY, Liao CS, Chen HH. Somatic neuropathy is an independent predictor of all- and diabetes-related mortality in type 2 diabetic patients: a population-based 5-year follow-up study (KCIS No. 29). Eur J Neurol 2012; Jan 31. [Epub ahead of print].Google Scholar
  11. 11.
    Dyck PJ, Dyck PJ, Klein CJ, Weigand SD. Does impaired glucose metabolism cause polyneuropathy? Review of previous studies and design of a prospective controlled population-based study. Muscle Nerve. 2007;36:536–41.PubMedCrossRefGoogle Scholar
  12. 12.
    Papanas N, Vinik AI, Ziegler D. Neuropathy in prediabetes: does the clock start ticking early? Nat Rev Endocrinol. 2011;7:682–90.PubMedCrossRefGoogle Scholar
  13. 13.
    • Ziegler D, Rathmann W, Dickhaus T, et al. Prevalence of polyneuropathy in pre-diabetes and diabetes is associated with abdominal obesity and macroangiopathy: the MONICA/KORA Augsburg Surveys S2 and S3. Diabetes Care 2008;31:464–9. Evidence of peripheral neuropathy in subjects with prediabetes from the general population.Google Scholar
  14. 14.
    • Ziegler D, Rathmann W, Dickhaus T, et al. Neuropathic pain in diabetes, prediabetes and normal glucose tolerance: the MONICA/KORA Augsburg Surveys S2 and S3. Pain Med 2009;10:393–400. Evidence that neuropathic pain may be encountered in subjects with prediabetes from the general population.Google Scholar
  15. 15.
    Ziegler D, Rathmann W, Meisinger C, et al. Prevalence and risk factors of neuropathic pain in survivors of myocardial infarction with pre-diabetes and diabetes. The KORA Myocardial Infarction Registry. Eur J Pain. 2009;13:582–7.PubMedCrossRefGoogle Scholar
  16. 16.
    Isak B, Oflazoglu B, Tanridag T, et al. Evaluation of peripheral and autonomic neuropathy among patients with newly diagnosed impaired glucose tolerance. Diabetes Metab Res Rev. 2008;24:563–9.PubMedCrossRefGoogle Scholar
  17. 17.
    Smith AG, Singleton JR. Impaired glucose tolerance and neuropathy. Neurologist. 2008;14:23–9.PubMedCrossRefGoogle Scholar
  18. 18.
    Novella SP, Inzucchi SE, Goldstein JM. The frequency of undiagnosed diabetes and impaired glucose tolerance in patients with idiopathic sensory neuropathy. Muscle Nerve. 2001;24:1229–31.PubMedCrossRefGoogle Scholar
  19. 19.
    Singleton JR, Smith AG, Bromberg MB. Painful sensory polyneuropathy associated with impaired glucose tolerance. Muscle Nerve. 2001;24:1225–8.PubMedCrossRefGoogle Scholar
  20. 20.
    Sumner CJ, Sheth S, Griffin JW, et al. The spectrum of neuropathy in diabetes and impaired glucose tolerance. Neurology. 2003;60:108–11.PubMedCrossRefGoogle Scholar
  21. 21.
    Smith AG, Singleton JR. The diagnostic yield of a standardized approach to idiopathic sensory-predominant neuropathy. Arch Intern Med. 2004;164:1021–5.PubMedCrossRefGoogle Scholar
  22. 22.
    Singleton JR, Smith AG, Bromberg MB. Increased prevalence of impaired glucose tolerance in patients with painful sensory neuropathy. Diabetes Care. 2001;24:1448–53.PubMedCrossRefGoogle Scholar
  23. 23.
    Hoffman-Snyder C, Smith BE, Ross MA, et al. Value of the oral glucose tolerance test in the evaluation of chronic idiopathic axonal polyneuropathy. Arch Neurol. 2006;63:1075–9.PubMedCrossRefGoogle Scholar
  24. 24.
    American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care. 2006;29 Suppl 1:S43–8.Google Scholar
  25. 25.
    American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care. 2012;35 Suppl 1:S64–71.CrossRefGoogle Scholar
  26. 26.
    Report of a WHO/IDF Consultation. Definition and diagnosis of diabetes mellitus and intermediate hyperglycemia.
  27. 27.
    Ziegler D, Papanas N, Heier M, et al. Evaluation of the Neuropad sudomotor function test as a screening tool for polyneuropathy in the elderly population with diabetes and prediabetes. The KORA F4 survey. Diabetologia 2011;54:suppl 1:A 177.Google Scholar
  28. 28.
    Smith AG, Russell J, Feldman EL, et al. Lifestyle intervention for pre-diabetic neuropathy. Diabetes Care. 2006;29:1294–9.PubMedCrossRefGoogle Scholar
  29. 29.
    Yagihashi S, Mizukami H, Sugimoto K. Mechanism of diabetic neuropathy: where are we now and where to go? J Diabetes Invest. 2011;2:18–32.CrossRefGoogle Scholar
  30. 30.
    • Putz Z, Tabák AG, Tóth N, et al. Noninvasive evaluation of neural impairment in subjects with impaired glucose tolerance. Diabetes Care 2009;32:181–3. Study on the reliable diagnosis of prediabetic neuropathy by clinical examination with emphasis on small fiber function.Google Scholar
  31. 31.
    Smith AG, Ramachandran P, Tripp S, Singleton JR. Epidermal nerve innervation in impaired glucose tolerance and diabetes-associated neuropathy. Neurology. 2001;57:1701–4.PubMedCrossRefGoogle Scholar
  32. 32.
    Haanpää ML, Backonja MM, Bennett MI, et al. Assessment of neuropathic pain in primary care. Am J Med. 2009;122(10 suppl):S13–21.PubMedCrossRefGoogle Scholar
  33. 33.
    Tesfaye S, Boulton AJ, Dyck PJ, et al. Diabetic neuropathies: update on definitions, diagnostic criteria, estimation of severity, and treatments. Diabetes Care. 2010;33:2285–93.PubMedCrossRefGoogle Scholar
  34. 34.
    Hays AP. Utility of skin biopsy to evaluate peripheral neuropathy. Curr Neurol Neurosci Rep. 2010;10:101–7.PubMedCrossRefGoogle Scholar
  35. 35.
    • Lauria G, Bakkers M, Schmitz C, et al. Intraepidermal nerve fiber density at the distal leg: a worldwide normative reference study. J Peripher Nerv Syst 2010;15:202–7. Large series providing reference values of intraepidermal nerve fiber density to diagnose neuropathy.Google Scholar
  36. 36.
    Peltier A, Smith AG, Russell JW, et al. Reliability of quantitative sudomotor axon reflex testing and quantitative sensory testing in neuropathy of impaired glucose regulation. Muscle Nerve. 2009;39:529–35.PubMedCrossRefGoogle Scholar
  37. 37.
    Tavakoli M, Marshall A, Pitceathly R, et al. Corneal confocal microscopy: a novel means to detect nerve fibre damage in idiopathic small fibre neuropathy. Exp Neurol. 2010;223:245–50.PubMedCrossRefGoogle Scholar
  38. 38.
    Papanas N, Papatheodorou K, Christakidis D, et al. Evaluation of a new indicator test for sudomotor function (Neuropad®) in the diagnosis of peripheral neuropathy in type 2 diabetic patients. Exp Clin Endocrinol Diabetes. 2005;113:195–8.PubMedCrossRefGoogle Scholar
  39. 39.
    Spallone V, Ziegler D, Freeman R, et al. Cardiovascular autonomic neuropathy in diabetes: clinical impact, assessment, diagnosis, and management. Diabetes Metab Res Rev 2011 Jun 22; [Epub ahead of print].Google Scholar
  40. 40.
    Kempler P, Amarenco G, Freeman R, et al. Gastrointestinal autonomic neuropathy, erectile-,bladder- and sudomotor dysfunction in patients with diabetes mellitus: clinical impact, assessment, diagnosis and management. Diabetes Metab Res Rev 2011; Jul 11. [Epub ahead of print].Google Scholar
  41. 41.
    Dobretsov M, Romanovsky D, Stimers JR. Early diabetic neuropathy: triggers and mechanisms. World J Gastroenterol. 2007;13:175–91.PubMedGoogle Scholar
  42. 42.
    Russell JW, Sullivan KA, Windebank AJ, et al. Neurons undergo apoptosis in animal and cell culture models of diabetes. Neurobiol Dis. 1999;6:347–63.PubMedCrossRefGoogle Scholar
  43. 43.
    Edwards JL, Quattrini A, Lentz SI, et al. Diabetes regulates mitochondrial biogenesis and fission in mouse neurons. Diabetologia. 2010;53:160–9.PubMedCrossRefGoogle Scholar
  44. 44.
    Vincent AM, Edwards JL, McLean LL, et al. Mitochondrial biogenesis and fission in axons in cell culture and animal models of diabetic neuropathy. Acta Neuropathol. 2010;120:477–89.PubMedCrossRefGoogle Scholar
  45. 45.
    Heine RJ, Balkau B, Ceriello A, et al. What does postprandial hyperglycaemia mean? Diabet Med. 2004;21:208–13.PubMedCrossRefGoogle Scholar
  46. 46.
    Vincent AM, Hayes JM, McLean LL, et al. Dyslipidemia-induced neuropathy in mice: the role of oxLDL/LOX-1. Diabetes. 2009;58:2376–85.PubMedCrossRefGoogle Scholar
  47. 47.
    Caballero AE, Arora S, Saouaf R, et al. Microvascular and macrovascular reactivity is reduced in subjects at risk for type 2 diabetes. Diabetes. 1999;48:1856–62.PubMedCrossRefGoogle Scholar
  48. 48.
    Green AQ, Krishnan S, Finucane FM, Rayman G. Altered C-fiber function as an indicator of early peripheral neuropathy in individuals with impaired glucose tolerance. Diabetes Care. 2010;33:174–6.PubMedCrossRefGoogle Scholar
  49. 49.
    Thrainsdottir S, Malik RA, Dahlin LB, et al. Endoneurial capillary abnormalities presage deterioration of glucose tolerance and accompany peripheral neuropathy in man. Diabetes. 2003;52:2615–22.PubMedCrossRefGoogle Scholar
  50. 50.
    Herman RM, Brower JB, Stoddard DG, et al. Prevalence of somatic small fiber neuropathy in obesity. Int J Obes (Lond). 2007;31:226–35.CrossRefGoogle Scholar
  51. 51.
    Smith AG, Rose K, Singleton JR. Idiopathic neuropathy patients are at high risk for metabolic syndrome. J Neurol Sci. 2008;273:25–8.PubMedCrossRefGoogle Scholar
  52. 52.
    Pittenger GL, Mehrabyan A, Simmons K, et al. Small fiber neuropathy is associated with the metabolic syndrome. Metab Syndr Relat Disord. 2005;3:113–21.PubMedCrossRefGoogle Scholar
  53. 53.
    Vincent AM, Hinder LM, Pop-Busui R, Feldman EL. Hyperlipidemia: a new therapeutic target for diabetic neuropathy. J Peripher Nerv Syst. 2009;14:257–67.PubMedCrossRefGoogle Scholar
  54. 54.
    Rota E, Quadri R, Fanti E, et al. Clinical and electrophysiological correlations in type 2 diabetes mellitus at diagnosis. Diabetes Res Clin Pract. 2007;76:152–4.PubMedCrossRefGoogle Scholar
  55. 55.
    Smith AG, Bromberg MB. A rational diagnostic approach to peripheral neuropathy. J Clin Neuromuscul Dis. 2003;4:190–8.PubMedCrossRefGoogle Scholar
  56. 56.
    Hughes RA, Umapathi T, Gray IA, et al. A controlled investigation of the cause of chronic idiopathic axonal polyneuropathy. Brain. 2004;127:1723–30.PubMedCrossRefGoogle Scholar
  57. 57.
    Harris MI, Flegal KM, Cowie CC, et al. Prevalence of diabetes, impaired fasting glucose, and impaired glucose tolerance in U.S. adults. The Third National Health and Nutrition Examination Survey, 1988–1994. Diabetes Care. 1998;21:518–24.PubMedCrossRefGoogle Scholar
  58. 58.
    Kissel JT. Peripheral neuropathy with impaired glucose tolerance: a sweet smell of success? Arch Neurol. 2006;63:1055–6.PubMedCrossRefGoogle Scholar
  59. 59.
    Franklin GM, Kahn LB, Baxter J, et al. Sensory neuropathy in non-insulin-dependent diabetes mellitus. The San Luis Valley Diabetes Study. Am J Epidemiol. 1990;131:633–43.PubMedGoogle Scholar
  60. 60.
    Feldman EL, Stevens MJ, Thomas PK, et al. A practical two-step quantitative clinical and electrophysiological assessment for the diagnosis and staging of diabetic neuropathy. Diabetes Care. 1994;17:1281–9.PubMedCrossRefGoogle Scholar
  61. 61.
    Moghtaderi A, Bakhshipour A, Rashidi H. Validation of Michigan neuropathy screening instrument for diabetic peripheral neuropathy. Clin Neurol Neurosurg. 2006;108:477–81.PubMedCrossRefGoogle Scholar
  62. 62.
    de Neeling JN, Beks PJ, Bertelsmann FW, et al. Peripheral somatic nerve function in relation to glucose tolerance in an elderly Caucasian population: the Hoorn study. Diabet Med. 1996;13:960–6.PubMedCrossRefGoogle Scholar
  63. 63.
    Fujimoto WY, Leonetti DL, Kinyoun JL, et al. Prevalence of complications among second-generation Japanese-American men with diabetes, impaired glucose tolerance, or normal glucose tolerance. Diabetes. 1987;36:730–9.PubMedCrossRefGoogle Scholar
  64. 64.
    Shaw JE, Hodge AM, de Courten M, et al. Diabetic neuropathy in Mauritius: prevalence and risk factors. Diabetes Res Clin Pract. 1998;42:131–9.PubMedCrossRefGoogle Scholar
  65. 65.
    Eriksson KF, Nilsson H, Lindgärde F, et al. Diabetes mellitus but not impaired glucose tolerance is associated with dysfunction in peripheral nerves. Diabet Med. 1994;11:279–85.PubMedCrossRefGoogle Scholar
  66. 66.
    Dyck PJ, Clark VM, Overland CJ, et al. Impaired glycemia and diabetic polyneuropathy: the OC IG survey. Diabetes Care. 2012;35:584–91.PubMedCrossRefGoogle Scholar
  67. 67.
    Barr EL, Wong TY, Tapp RJ, et al. Is peripheral neuropathy associated with retinopathy and albuminuria in individuals with impaired glucose metabolism? The 1999–2000 AusDiab. Diabetes Care. 2006;29:1114–6.PubMedCrossRefGoogle Scholar
  68. 68.
    Grandinetti A, Chow DC, Sletten DM, et al. Impaired glucose tolerance is associated with postganglionic sudomotor impairment. Clin Auton Res. 2007;17:231–3.PubMedCrossRefGoogle Scholar
  69. 69.
    Gerritsen J, Dekker JM, TenVoorde BJ, et al. Glucose tolerance and other determinants of cardiovascular autonomic function: the Hoorn Study. Diabetologia. 2000;43:561–70.PubMedCrossRefGoogle Scholar
  70. 70.
    Singh JP, Larson MG, O'Donnell CJ, et al. Association of hyperglycemia with reduced heart rate variability: the Framingham Heart Study. Am J Cardiol. 2000;86:309–12.PubMedCrossRefGoogle Scholar
  71. 71.
    Schroeder EB, Chambless LE, Liao D, et al. Diabetes, glucose, insulin, and heart rate variability: the Atherosclerosis Risk in Communities (ARIC) study. Diabetes Care. 2005;28:668–74.PubMedCrossRefGoogle Scholar
  72. 72.
    Wu JS, Yang YC, Lin TS, et al. Epidemiological evidence of altered cardiac autonomic function in subjects with impaired glucose tolerance but not isolated impaired fasting glucose. J Clin Endocrinol Metab. 2007;92:3885–9.PubMedCrossRefGoogle Scholar
  73. 73.
    Wu JS, Lu FH, Yang YC, et al. Epidemiological evidence of altered cardiac autonomic function in overweight but not underweight subjects. Int J Obes (Lond). 2008;32:788–94.CrossRefGoogle Scholar
  74. 74.
    Stein PK, Barzilay JI, Domitrovich PP, et al. The relationship of heart rate and heart rate variability to non-diabetic fasting glucose levels and the metabolic syndrome: the Cardiovascular Health Study. Diabet Med. 2007;24:855–63.PubMedCrossRefGoogle Scholar
  75. 75.
    Perciaccante A, Fiorentini A, Paris A, et al. Circadian rhythm of the autonomic nervous system in insulin resistant subjects with normoglycemia, impaired fasting glycemia, impaired glucose tolerance, type 2 diabetes mellitus. BMC Cardiovasc Disord. 2006;6:19.PubMedCrossRefGoogle Scholar
  76. 76.
    Singleton JR, Bixby B, Feldman EL, et al. Diet and exercise counseling alone does not prevent long term neuropathy progression in IGTN. [Abstract]. Neurology. 2007;68:A410.Google Scholar
  77. 77.
    • Gong Q, Gregg EW, Wang J, et al. Long-term effects of a randomised trial of a 6-year lifestyle intervention in impaired glucose tolerance on diabetes-related microvascular complications: the China Da Qing Diabetes Prevention Outcome Study. Diabetologia 2011;54:300–7. Long-term follow-up of subjects with IGT to determine the effect of lifestyle intervention on the development of microvascular complications.Google Scholar
  78. 78.
    Gaede P, Vedel P, Larsen N, et al. Multifactorial intervention and cardiovascular disease in patients with type 2 diabetes. N Engl J Med. 2003;348:383–93.PubMedCrossRefGoogle Scholar
  79. 79.
    Ziegler D, Zentai CP, Perz S, et al. Prediction of mortality using measures of cardiac autonomic dysfunction in the diabetic and nondiabetic population: the MONICA/KORA Augsburg Cohort Study. Diabetes Care. 2008;31:556–61.PubMedCrossRefGoogle Scholar
  80. 80.
    Beijers HJ, Ferreira I, Bravenboer B, et al. Microalbuminuria and cardiovascular autonomic dysfunction are independently associated with cardiovascular mortality: evidence for distinct pathways: the Hoorn Study. Diabetes Care. 2009;32:1698–703.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Institute for Clinical Diabetology, German Diabetes Center at the Heinrich Heine UniversityLeibniz Center for Diabetes ResearchDüsseldorfGermany
  2. 2.Department of Metabolic DiseasesUniversity HospitalDüsseldorfGermany

Personalised recommendations