Current Diabetes Reports

, Volume 12, Issue 3, pp 280–285 | Cite as

The Distinctive Nature of Atherosclerotic Vascular Disease in Diabetes: Pathophysiological and Morphological Insights

  • Rishi Puri
  • Yu Kataoka
  • Kiyoko Uno
  • Stephen J. Nicholls
Management of Macrovascular Disease in Diabetes (S Inzucchi and R Goldberg, Section Editors)


As the incidence of diabetes mellitus continues to rise, parallel increases in the rates of diabetic atherosclerotic vascular disease are projected to impart major health and socioeconomic challenges for authorities worldwide. Diabetes results in a proatherogenic phenotype, manifesting in an accelerated, diffuse, polyvascular fashion. In this review, we highlight the pathophysiological and morphological hallmarks of diabetic atherosclerosis.


Atherosclerotic vascular disease Diabetes Pathophysiological Morphological 



R. Puri is jointly supported by a Postgraduate Medical Research Scholarship from the National Health & Medical Research Council (565579), National Heart Foundation of Australia (PC0804045), and Dawes Scholarships (Hanson Institute).


Conflicts of interest: R. Puri: none; Y. Kataoka: none; K. Uno: none; S.J. Nicholls: has receives honoraria from AstraZeneca, Merck, and Takeda Roche; is a consultant to Pfizer, AstraZeneca, Merck, Takeda, Anthera, and NovoNordisk; and receives research support from AstraZeneca, Novartis, Resverlogix, Eli Lilly, and Anthera.


Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Bandyopadhyay P. Cardiovascular diseases and diabetes mellitus. Drug News Perspect. 2006;19:369–75.PubMedGoogle Scholar
  2. 2.
    Caro JJ, Ward AJ, O'Brien JA. Lifetime costs of complications resulting from type 2 diabetes in the U.S. Diabetes Care. 2002;25:476–81.PubMedCrossRefGoogle Scholar
  3. 3.
    Nandish S, Wyatt J, Bailon O, Smith M, Oliveros R, Chilton R. Implementing cardiovascular risk reduction in patients with cardiovascular disease and diabetes mellitus. Am J Cardiol. 2011;108:42B–51B.PubMedCrossRefGoogle Scholar
  4. 4.
    Hayden MR, Tyagi SC. Vasa vasorum in plaque angiogenesis, metabolic syndrome, type 2 diabetes mellitus, and atheroscleropathy: a malignant transformation. Cardiovasc Diabetol. 2004;3:1.PubMedCrossRefGoogle Scholar
  5. 5.
    Ross R, Glomset JA. Atherosclerosis and the arterial smooth muscle cell: Proliferation of smooth muscle is a key event in the genesis of the lesions of atherosclerosis. Science. 1973;180:1332–9.PubMedCrossRefGoogle Scholar
  6. 6.
    Witztum JL. The oxidation hypothesis of atherosclerosis. Lancet. 1994;344:793–5.PubMedCrossRefGoogle Scholar
  7. 7.
    Ross R. Atherosclerosis–an inflammatory disease. N Engl J Med. 1999;340:115–26.PubMedCrossRefGoogle Scholar
  8. 8.
    Galis ZS, Khatri JJ. Matrix metalloproteinases in vascular remodeling and atherogenesis: the good, the bad, and the ugly. Circ Res. 2002;90:251–62.PubMedGoogle Scholar
  9. 9.
    Kolodgie FD, Gold HK, Burke AP, et al. Intraplaque hemorrhage and progression of coronary atheroma. N Engl J Med. 2003;349:2316–25.PubMedCrossRefGoogle Scholar
  10. 10.
    Glagov S, Weisenberg E, Zarins CK, Stankunavicius R, Kolettis GJ. Compensatory enlargement of human atherosclerotic coronary arteries. N Engl J Med. 1987;316:1371–5.PubMedCrossRefGoogle Scholar
  11. 11.
    Libby P. Current concepts of the pathogenesis of the acute coronary syndromes. Circulation. 2001;104:365–72.PubMedGoogle Scholar
  12. 12.
    Celermajer DS. Endothelial dysfunction: does it matter? Is it reversible? J Am Coll Cardiol. 1997;30:325–33.PubMedCrossRefGoogle Scholar
  13. 13.
    Creager MA, Luscher TF, Cosentino F, Beckman JA. Diabetes and vascular disease: pathophysiology, clinical consequences, and medical therapy: Part I. Circulation. 2003;108:1527–32.PubMedCrossRefGoogle Scholar
  14. 14.
    Beckman JA, Goldfine AB, Gordon MB, Creager MA. Ascorbate restores endothelium-dependent vasodilation impaired by acute hyperglycemia in humans. Circulation. 2001;103:1618–23.PubMedGoogle Scholar
  15. 15.
    Nishikawa T, Edelstein D, Du XL, et al. Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature. 2000;404:787–90.PubMedCrossRefGoogle Scholar
  16. 16.
    Laursen JB, Somers M, Kurz S, et al. Endothelial regulation of vasomotion in apoE-deficient mice: implications for interactions between peroxynitrite and tetrahydrobiopterin. Circulation. 2001;103:1282–8.PubMedGoogle Scholar
  17. 17.
    Lin KY, Ito A, Asagami T, et al. Impaired nitric oxide synthase pathway in diabetes mellitus: role of asymmetric dimethylarginine and dimethylarginine dimethylaminohydrolase. Circulation. 2002;106:987–92.PubMedCrossRefGoogle Scholar
  18. 18.
    Timimi FK, Ting HH, Haley EA, Roddy MA, Ganz P, Creager MA. Vitamin C improves endothelium-dependent vasodilation in patients with insulin-dependent diabetes mellitus. J Am Coll Cardiol. 1998;31:552–7.PubMedCrossRefGoogle Scholar
  19. 19.
    Ting HH, Timimi FK, Boles KS, Creager SJ, Ganz P, Creager MA. Vitamin C improves endothelium-dependent vasodilation in patients with non-insulin-dependent diabetes mellitus. J Clin Invest. 1996;97:22–8.PubMedCrossRefGoogle Scholar
  20. 20.
    Kuboki K, Jiang ZY, Takahara N, et al. Regulation of endothelial constitutive nitric oxide synthase gene expression in endothelial cells and in vivo: a specific vascular action of insulin. Circulation. 2000;101:676–81.PubMedGoogle Scholar
  21. 21.
    Zeng G, Nystrom FH, Ravichandran LV, et al. Roles for insulin receptor, PI3-kinase, and Akt in insulin-signaling pathways related to production of nitric oxide in human vascular endothelial cells. Circulation. 2000;101:1539–45.PubMedGoogle Scholar
  22. 22.
    Laakso M, Edelman SV, Brechtel G, Baron AD. Decreased effect of insulin to stimulate skeletal muscle blood flow in obese man. A novel mechanism for insulin resistance. J Clin Invest. 1990;85:1844–52.PubMedCrossRefGoogle Scholar
  23. 23.
    Dresner A, Laurent D, Marcucci M, et al. Effects of free fatty acids on glucose transport and IRS-1-associated phosphatidylinositol 3-kinase activity. J Clin Invest. 1999;103:253–9.PubMedCrossRefGoogle Scholar
  24. 24.
    Oliver FJ, de la Rubia G, Feener EP, et al. Stimulation of endothelin-1 gene expression by insulin in endothelial cells. J Biol Chem. 1991;266:23251–6.PubMedGoogle Scholar
  25. 25.
    Ferri C, Pittoni V, Piccoli A, et al. Insulin stimulates endothelin-1 secretion from human endothelial cells and modulates its circulating levels in vivo. J Clin Endocrinol Metab. 1995;80:829–35.PubMedCrossRefGoogle Scholar
  26. 26.
    Kelley DE, Simoneau JA. Impaired free fatty acid utilization by skeletal muscle in non-insulin-dependent diabetes mellitus. J Clin Invest. 1994;94:2349–56.PubMedCrossRefGoogle Scholar
  27. 27.
    Inoguchi T, Li P, Umeda F, et al. High glucose level and free fatty acid stimulate reactive oxygen species production through protein kinase C–dependent activation of NAD(P)H oxidase in cultured vascular cells. Diabetes. 2000;49:1939–45.PubMedCrossRefGoogle Scholar
  28. 28.
    Steinberg HO, Tarshoby M, Monestel R, et al. Elevated circulating free fatty acid levels impair endothelium-dependent vasodilation. J Clin Invest. 1997;100:1230–9.PubMedCrossRefGoogle Scholar
  29. 29.
    Cummings MH, Watts GF, Umpleby AM, et al. Increased hepatic secretion of very-low-density lipoprotein apolipoprotein B-100 in NIDDM. Diabetologia. 1995;38:959–67.PubMedCrossRefGoogle Scholar
  30. 30.
    Dimitriadis E, Griffin M, Owens D, Johnson A, Collins P, Tomkin GH. Oxidation of low-density lipoprotein in NIDDM: its relationship to fatty acid composition. Diabetologia. 1995;38:1300–6.PubMedCrossRefGoogle Scholar
  31. 31.
    de Man FH, Weverling-Rijnsburger AW, van der Laarse A, Smelt AH, Jukema JW, Blauw GJ. Not acute but chronic hypertriglyceridemia is associated with impaired endothelium-dependent vasodilation: reversal after lipid-lowering therapy by atorvastatin. Arterioscler Thromb Vasc Biol. 2000;20:744–50.PubMedCrossRefGoogle Scholar
  32. 32.
    Williams SB, Cusco JA, Roddy MA, Johnstone MT, Creager MA. Impaired nitric oxide-mediated vasodilation in patients with non-insulin-dependent diabetes mellitus. J Am Coll Cardiol. 1996;27:567–74.PubMedCrossRefGoogle Scholar
  33. 33.
    Beckman JA, Creager MA, Libby P. Diabetes and atherosclerosis: epidemiology, pathophysiology, and management. JAMA: the Journal of the American Medical Association. 2002;287:2570–81.CrossRefGoogle Scholar
  34. 34.
    Fukumoto H, Naito Z, Asano G, Aramaki T. Immunohistochemical and morphometric evaluations of coronary atherosclerotic plaques associated with myocardial infarction and diabetes mellitus. J Atheroscler Thromb. 1998;5:29–35.PubMedGoogle Scholar
  35. 35.
    Uemura S, Matsushita H, Li W, et al. Diabetes mellitus enhances vascular matrix metalloproteinase activity: role of oxidative stress. Circ Res. 2001;88:1291–8.PubMedCrossRefGoogle Scholar
  36. 36.
    Vinik AI, Erbas T, Park TS, Nolan R, Pittenger GL. Platelet dysfunction in type 2 diabetes. Diabetes Care. 2001;24:1476–85.PubMedCrossRefGoogle Scholar
  37. 37.
    Assert R, Scherk G, Bumbure A, Pirags V, Schatz H, Pfeiffer AF. Regulation of protein kinase C by short term hyperglycaemia in human platelets in vivo and in vitro. Diabetologia. 2001;44:188–95.PubMedCrossRefGoogle Scholar
  38. 38.
    Alzahrani SH, Ajjan RA. Coagulation and fibrinolysis in diabetes. Diab Vasc Dis Res. 2010;7:260–73.PubMedCrossRefGoogle Scholar
  39. 39.
    McGill Jr HC. McMahan CA, Malcom GT, Oalmann MC, Strong JP. Relation of glycohemoglobin and adiposity to atherosclerosis in youth. Pathobiological Determinants of Atherosclerosis in Youth (PDAY) Research Group. Arterioscler Thromb Vasc Biol. 1995;15:431–40.PubMedCrossRefGoogle Scholar
  40. 40.
    Moreno PR, Murcia AM, Palacios IF, et al. Coronary composition and macrophage infiltration in atherectomy specimens from patients with diabetes mellitus. Circulation. 2000;102:2180–4.PubMedGoogle Scholar
  41. 41.
    •• Burke AP, Kolodgie FD, Zieske A, et al. Morphologic findings of coronary atherosclerotic plaques in diabetics: a postmortem study. Arterioscler Thromb Vasc Biol. 2004;24:1266–71. The largest, most comprehensive pathological description of diabetic coronary atherosclerosis in humans.PubMedCrossRefGoogle Scholar
  42. 42.
    Purushothaman KR, Purushothaman M, Muntner P, et al. Inflammation, neovascularization and intra-plaque hemorrhage are associated with increased reparative collagen content: implication for plaque progression in diabetic atherosclerosis. Vascular Medicine. 2011;16:103–8.PubMedCrossRefGoogle Scholar
  43. 43.
    •• Nicholls SJ, Tuzcu EM, Kalidindi S, et al. Effect of diabetes on progression of coronary atherosclerosis and arterial remodeling: a pooled analysis of 5 intravascular ultrasound trials. J Am Coll Cardiol. 2008;52:255–62. The largest serial in vivo evaluation of diabetic coronary atherosclerosis.PubMedCrossRefGoogle Scholar
  44. 44.
    Nigro J, Osman N, Dart AM, Little PJ. Insulin resistance and atherosclerosis. Endocr Rev. 2006;27:242–59.PubMedCrossRefGoogle Scholar
  45. 45.
    • Bayturan O, Kapadia S, Nicholls SJ, et al. Clinical predictors of plaque progression despite very low levels of low-density lipoprotein cholesterol. J Am Coll Cardiol. 2010;55:2736–42. An important observation profiling factors implicated in the progression of coronary atherosclerosis despite aggressive lowering of LDL cholesterol levels, with the presence of diabetes mellitus being a multivariate predictor of disease progression.PubMedCrossRefGoogle Scholar
  46. 46.
    Silva JA, Escobar A, Collins TJ, Ramee SR, White CJ. Unstable angina. A comparison of angioscopic findings between diabetic and nondiabetic patients. Circulation. 1995;92:1731–6.PubMedGoogle Scholar
  47. 47.
    Burke GL, Evans GW, Riley WA, et al. Arterial wall thickness is associated with prevalent cardiovascular disease in middle-aged adults. The Atherosclerosis Risk in Communities (ARIC) Study. Stroke; A Journal of Cerebral Circulation. 1995;26:386–91.PubMedCrossRefGoogle Scholar
  48. 48.
    O'Leary DH, Polak JF, Kronmal RA, Manolio TA, Burke GL, Wolfson Jr SK. Carotid-artery intima and media thickness as a risk factor for myocardial infarction and stroke in older adults. Cardiovascular Health Study Collaborative Research Group. N Engl J Med. 1999;340:14–22.PubMedCrossRefGoogle Scholar
  49. 49.
    Niskanen L, Rauramaa R, Miettinen H, Haffner SM, Mercuri M, Uusitupa M. Carotid artery intima-media thickness in elderly patients with NIDDM and in nondiabetic subjects. Stroke; A Journal of Cerebral Circulation. 1996;27:1986–92.PubMedCrossRefGoogle Scholar
  50. 50.
    Folsom AR, Chambless LE, Duncan BB, Gilbert AC, Pankow JS. Prediction of coronary heart disease in middle-aged adults with diabetes. Diabetes Care. 2003;26:2777–84.PubMedCrossRefGoogle Scholar
  51. 51.
    Djaberi R, Beishuizen ED, Pereira AM, et al. Non-invasive cardiac imaging techniques and vascular tools for the assessment of cardiovascular disease in type 2 diabetes mellitus. Diabetologia. 2008;51:1581–93.PubMedCrossRefGoogle Scholar
  52. 52.
    Schmermund A, Baumgart D, Gorge G, et al. Measuring the effect of risk factors on coronary atherosclerosis: coronary calcium score versus angiographic disease severity. J Am Coll Cardiol. 1998;31:1267–73.PubMedCrossRefGoogle Scholar
  53. 53.
    Hoff JA, Quinn L, Sevrukov A, et al. The prevalence of coronary artery calcium among diabetic individuals without known coronary artery disease. J Am Coll Cardiol. 2003;41:1008–12.PubMedCrossRefGoogle Scholar
  54. 54.
    Dabelea D, Kinney G, Snell-Bergeon JK, et al. Effect of type 1 diabetes on the gender difference in coronary artery calcification: a role for insulin resistance? The Coronary Artery Calcification in Type 1 Diabetes (CACTI) Study. Diabetes. 2003;52:2833–9.PubMedCrossRefGoogle Scholar
  55. 55.
    Raggi P, Shaw LJ, Berman DS, Callister TQ. Prognostic value of coronary artery calcium screening in subjects with and without diabetes. J Am Coll Cardiol. 2004;43:1663–9.PubMedCrossRefGoogle Scholar
  56. 56.
    Qu W, Le TT, Azen SP, et al. Value of coronary artery calcium scanning by computed tomography for predicting coronary heart disease in diabetic subjects. Diabetes Care. 2003;26:905–10.PubMedCrossRefGoogle Scholar
  57. 57.
    Pundziute G, Schuijf JD, Jukema JW, et al. Noninvasive assessment of plaque characteristics with multislice computed tomography coronary angiography in symptomatic diabetic patients. Diabetes Care. 2007;30:1113–9.PubMedCrossRefGoogle Scholar
  58. 58.
    Gao Y, Lu B, Sun ML, et al. Comparison of atherosclerotic plaque by computed tomography angiography in patients with and without diabetes mellitus and with known or suspected coronary artery disease. Am J Cardiol. 2011;108:809–13.PubMedCrossRefGoogle Scholar
  59. 59.
    Scholte AJ, Schuijf JD, Kharagjitsingh AV, et al. Prevalence of coronary artery disease and plaque morphology assessed by multi-slice computed tomography coronary angiography and calcium scoring in asymptomatic patients with type 2 diabetes. Heart. 2008;94:290–5.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Rishi Puri
    • 1
  • Yu Kataoka
    • 1
  • Kiyoko Uno
    • 1
  • Stephen J. Nicholls
    • 1
  1. 1.Department of Cardiovascular MedicineHeart and Vascular Institute, Cleveland ClinicClevelandUSA

Personalised recommendations