Advertisement

Current Diabetes Reports

, Volume 11, Issue 2, pp 142–148 | Cite as

Nutritional Supplements and Their Effect on Glucose Control

  • Tanya Lee
  • Jean-Jacques Dugoua
Article

Abstract

Type 2 diabetes is a growing health concern. The use of nutritional supplements by patients with type 2 diabetes is estimated at somewhere between 8% to 49%. The objective of this review was to search the scientific literature for advances in the treatment and prevention of type 2 diabetes with nutritional supplements. Twelve databases were searched with a focus on extracting studies published in the past 3 years. The following nutritional supplements were identified as potentially beneficial for type 2 diabetes treatment or prevention: vitamins C and E, α-lipoic acid, melatonin, red mold, emodin from Aloe vera and Rheum officinale, astragalus, and cassia cinnamon. Beta-carotene was shown to be ineffective in the prevention of type 2 diabetes. Ranging from preclinical to clinical, there is evidence that nutritional supplements may be beneficial in the treatment or prevention of type 2 diabetes. Health providers should investigate drug-nutritional supplement interactions prior to treatment.

Keywords

Diabetes Diabetes mellitus Non-insulin-dependent diabetes T2D DM Nutrition Nutritional supplements Dietary supplements Natural health products NHP CAM Complementary in alternative medicine α-Lipoic acid ALA Coenzyme Q10 Vitamin E Chromium Cinnamon Emodin Red mold Astragalus 

Notes

Disclosure

Conflicts of interest: T. Lee: none; J-J Dugoua: has received grant support from New Chapter, has received honoraria from Celt Naturals, and has stock in Newtopia, Inc.

References

Papers of particular interest, published recently, have been highlighted as: •• Of major importance

  1. 1.
    WHO. Fact Sheet #312: Diabetes. 2009.Google Scholar
  2. 2.
    Ford ES, Giles WH, Dietz WH. Prevalence of the metabolic syndrome among US adults: findings from the third National Health and Nutrition Examination Survey. JAMA 2002;287(3):356–9.PubMedCrossRefGoogle Scholar
  3. 3.
    Bell RA, Suerken CK, Grzywacz JG, Lang W, Quandt SA, Arcury TA. Complementary and alternative medicine use among adults with diabetes in the United States. Altern Ther Health Med 2006;12(5):16–22.PubMedGoogle Scholar
  4. 4.
    Egede LE, Ye X, Zheng D, Silverstein MD. The prevalence and pattern of complementary and alternative medicine use in individuals with diabetes. Diabetes Care 2002;25(2):324–9.PubMedCrossRefGoogle Scholar
  5. 5.
    Kim C, Kwok YS. Navajo use of native healers. Arch Intern Med 1998;158(20):2245–9.PubMedCrossRefGoogle Scholar
  6. 6.
    Mull DS, Nguyen N, Mull JD. Vietnamese diabetic patients and their physicians: what ethnography can teach us. West J Med 2001;175(5):307–11.PubMedCrossRefGoogle Scholar
  7. 7.
    Noel PH, Larme AC, Meyer J, Marsh G, Correa A, Pugh JA. Patient choice in diabetes education curriculum. Nutritional versus standard content for type 2 diabetes. Diabetes Care 1998;21(6):896–901.PubMedCrossRefGoogle Scholar
  8. 8.
    Yeh GY, Eisenberg DM, Davis RB, Phillips RS. Use of complementary and alternative medicine among persons with diabetes mellitus: results of a national survey. Am J Public Health 2002;92(10):1648–52.PubMedCrossRefGoogle Scholar
  9. 9.
    Whiting PH, Kalansooriya A, Holbrook I, Haddad F, Jennings PE. The relationship between chronic glycaemic control and oxidative stress in type 2 diabetes mellitus. Br J Biomed Sci 2008;65(2):71–4.PubMedGoogle Scholar
  10. 10.
    Chang YC, Chuang LM. The role of oxidative stress in the pathogenesis of type 2 diabetes: from molecular mechanism to clinical implication. Am J Transl Res;2(3):316–31.Google Scholar
  11. 11.
    El Midaoui A, de Champlain J. Effects of glucose and insulin on the development of oxidative stress and hypertension in animal models of type 1 and type 2 diabetes. J Hypertens 2005;23(3):581–8.PubMedCrossRefGoogle Scholar
  12. 12.
    Maiese K, Chong ZZ, Shang YC. Mechanistic insights into diabetes mellitus and oxidative stress. Curr Med Chem 2007;14(16):1729–38.PubMedCrossRefGoogle Scholar
  13. 13.
    Flekac M, Skrha J, Hilgertova J, Lacinova Z, Jarolimkova M. Gene polymorphisms of superoxide dismutases and catalase in diabetes mellitus. BMC Med Genet 2008;9:30.PubMedCrossRefGoogle Scholar
  14. 14.
    Hammes HP. Pathophysiological mechanisms of diabetic angiopathy. J Diabetes Complications 2003;17(2 Suppl):16–9.PubMedCrossRefGoogle Scholar
  15. 15.
    Hoeldtke RD, Bryner KD, Vandyke K. Oxidative stress and autonomic nerve function in early type 1 diabetes. Clin Auton Res 2010 Sep 25. [Epub ahead of print].Google Scholar
  16. 16.
    Song Y, Cook NR, Albert CM, Van Denburgh M, Manson JE. Effects of vitamins C and E and beta-carotene on the risk of type 2 diabetes in women at high risk of cardiovascular disease: a randomized controlled trial. Am J Clin Nutr 2009;90(2):429–37.PubMedCrossRefGoogle Scholar
  17. 17.
    Palacka P, Kucharska J, Murin J, Dostalova K, Okkelova A, Cizova M, et al. Complementary therapy in diabetic patients with chronic complications: a pilot study. Bratisl Lek Listy 2010;111(4):205–11.PubMedGoogle Scholar
  18. 18.
    Afkhami-Ardekani M, Shojaoddiny-Ardekani A. Effect of vitamin C on blood glucose, serum lipids & serum insulin in type 2 diabetes patients. Indian J Med Res 2007;126(5):471–4.*PubMedGoogle Scholar
  19. 19.
    Berger MM. Vitamin C requirements in parenteral nutrition. Gastroenterology 2009;137(5 Suppl):S70–8.PubMedCrossRefGoogle Scholar
  20. 20.
    Sena CM, Nunes E, Gomes A, Santos MS, Proenca T, Martins MI, et al. Supplementation of coenzyme Q10 and alpha-tocopherol lowers glycated hemoglobin level and lipid peroxidation in pancreas of diabetic rats. Nutr Res 2008;28(2):113–21.PubMedCrossRefGoogle Scholar
  21. 21.
    Roldi LP, Pereira RV, Tronchini EA, Rizo GV, Scoaris CR, Zanoni JN, et al. Vitamin E (alpha-tocopherol) supplementation in diabetic rats: effects on the proximal colon. BMC Gastroenterol 2009;9:88.PubMedCrossRefGoogle Scholar
  22. 22.
    Biesalski HK. Vitamin E requirements in parenteral nutrition. Gastroenterology 2009;137(5 Suppl):S92–104.PubMedCrossRefGoogle Scholar
  23. 23.
    Perry JR, Ferrucci L, Bandinelli S, Guralnik J, Semba RD, Rice N, et al. Circulating beta-carotene levels and type 2 diabetes-cause or effect? Diabetologia 2009;52(10):2117–21.PubMedCrossRefGoogle Scholar
  24. 24.
    Kataja-Tuomola MK, Kontto JP, Mannisto S, Albanes D, Virtamo JR. Effect of alpha-tocopherol and beta-carotene supplementation on macrovascular complications and total mortality from diabetes: results of the ATBC Study. Ann Med 2010;42(3):178–86.PubMedCrossRefGoogle Scholar
  25. 25.
    •• Heinisch BB, Francesconi M, Mittermayer F, Schaller G, Gouya G, Wolzt M, et al. Alpha-lipoic acid improves vascular endothelial function in patients with type 2 diabetes: a placebo-controlled randomized trial. Eur J Clin Invest 2010;40(2):148–54. This new RCT trial is another step toward the promise of ALA as a staple treatment for T2D. The positive effects of ALA on vascular blood flow highlights yet another mechanism by which ALA reduces the risk of cardiovascular events related to complications caused by T2D.PubMedCrossRefGoogle Scholar
  26. 26.
    Singh U, Jialal I. Alpha-lipoic acid supplementation and diabetes. Nutr Rev 2008;66(11):646–57.PubMedCrossRefGoogle Scholar
  27. 27.
    Najm W, Lie D. Herbals used for diabetes, obesity, and metabolic syndrome. Prim Care 2010;37(2):237–54.PubMedGoogle Scholar
  28. 28.
    Yi X, Nickeleit V, James LR, Maeda N. alpha-Lipoic acid protects diabetic apolipoprotein E-deficient mice from nephropathy. J Diabetes Complications 2010 Aug 26. [Epub ahead of print].Google Scholar
  29. 29.
    Cummings BP, Stanhope KL, Graham JL, Evans JL, Baskin DG, Griffen SC, et al. Dietary fructose accelerates the development of diabetes in UCD-T2DM rats: amelioration by the antioxidant, alpha-lipoic acid. Am J Physiol Regul Integr Comp Physiol 2010;298(5):R1343–50.PubMedGoogle Scholar
  30. 30.
    Ziegler D, Ametov A, Barinov A, Dyck PJ, Gurieva I, Low PA, et al. Oral treatment with alpha-lipoic acid improves symptomatic diabetic polyneuropathy: the SYDNEY 2 trial. Diabetes Care 2006;29(11):2365–70.PubMedCrossRefGoogle Scholar
  31. 31.
    Kedziora-Kornatowska K, Szewczyk-Golec K, Kozakiewicz M, Pawluk H, Czuczejko J, Kornatowski T, et al. Melatonin improves oxidative stress parameters measured in the blood of elderly type 2 diabetic patients. J Pineal Res 2009;46(3):333–7.*PubMedCrossRefGoogle Scholar
  32. 32.
    Korkmaz A, Topal T, Tan DX, Reiter RJ. Role of melatonin in metabolic regulation. Rev Endocr Metab Disord 2009;10(4):261–70.PubMedCrossRefGoogle Scholar
  33. 33.
    Mulder H, Nagorny CL, Lyssenko V, Groop L. Melatonin receptors in pancreatic islets: good morning to a novel type 2 diabetes gene. Diabetologia 2009;52(7):1240–9.PubMedCrossRefGoogle Scholar
  34. 34.
    Shieh JM, Wu HT, Cheng KC, Cheng JT. Melatonin ameliorates high fat diet-induced diabetes and stimulates glycogen synthesis via a PKCzeta-Akt-GSK3beta pathway in hepatic cells. J Pineal Res 2009;47(4):339–44.PubMedCrossRefGoogle Scholar
  35. 35.
    Peschke E, Frese T, Chankiewitz E, Peschke D, Preiss U, Schneyer U, et al. Diabetic Goto Kakizaki rats as well as type 2 diabetic patients show a decreased diurnal serum melatonin level and an increased pancreatic melatonin-receptor status. J Pineal Res 2006;40(2):135–43.PubMedCrossRefGoogle Scholar
  36. 36.
    •• Contreras-Alcantara S, Baba K, Tosini G. Removal of melatonin receptor type 1 induces insulin resistance in the mouse. Obesity (Silver Spring) 2010;18(9):1861–3. This preclinical study showed promising results for the future use of melatonin in the treatment of T2D. Imbalanced circadian rhythms should be considered an important factor in the development of T2D considering insulin is known to be highly influenced by these hormones, specifically growth hormone, and this study now outlines that melatonin may also be a potential regulator of insulin levels.CrossRefGoogle Scholar
  37. 37.
    Reiter RJ, Tan DX, Paredes SD, Fuentes-Broto L. Beneficial effects of melatonin in cardiovascular disease. Ann Med 2010;42(4):276–85.PubMedCrossRefGoogle Scholar
  38. 38.
    Reiter RJ, Tan DX, Fuentes-Broto L. Melatonin: a multitasking molecule. Prog Brain Res 2010;181:127–51.PubMedCrossRefGoogle Scholar
  39. 39.
    Liu M, Wu K, Mao X, Wu Y, Ouyang J. Astragalus polysaccharide improves insulin sensitivity in KKAy mice: regulation of PKB/GLUT4 signaling in skeletal muscle. J Ethnopharmacol 2010;127(1):32–7.PubMedCrossRefGoogle Scholar
  40. 40.
    Zou F, Mao XQ, Wang N, Liu J, Ou-Yang JP. Astragalus polysaccharides alleviates glucose toxicity and restores glucose homeostasis in diabetic states via activation of AMPK. Acta Pharmacol Sin 2009;30(12):1607–15.*PubMedCrossRefGoogle Scholar
  41. 41.
    Motomura K, Fujiwara Y, Kiyota N, Tsurushima K, Takeya M, Nohara T, et al. Astragalosides isolated from the root of astragalus radix inhibit the formation of advanced glycation end products. J Agric Food Chem 2009;57(17):7666–72.PubMedCrossRefGoogle Scholar
  42. 42.
    Zee-Cheng RK. Shi-quan-da-bu-tang (ten significant tonic decoction), SQT. A potent Chinese biological response modifier in cancer immunotherapy, potentiation and detoxification of anticancer drugs. Methods Find Exp Clin Pharmacol 1992;14(9):725–36.PubMedGoogle Scholar
  43. 43.
    Shi YC, Pan TM. Anti-diabetic effects of Monascus purpureus NTU 568 fermented products on streptozotocin-induced diabetic rats. J Agric Food Chem 2010;58(13):7634–40.PubMedCrossRefGoogle Scholar
  44. 44.
    Bogsrud MP, Ose L, Langslet G, Ottestad I, Strom EC, Hagve TA, et al. HypoCol (red yeast rice) lowers plasma cholesterol—a randomized placebo controlled study. Scand Cardiovasc J 2010;44(4):197–200.PubMedCrossRefGoogle Scholar
  45. 45.
    Venero CV, Venero JV, Wortham DC, Thompson PD. Lipid-lowering efficacy of red yeast rice in a population intolerant to statins. Am J Cardiol 2010;105(5):664–6.*PubMedCrossRefGoogle Scholar
  46. 46.
    Shi YC, Pan TM. Antioxidant and pancreas-protective effect of red mold fermented products on streptozotocin-induced diabetic rats. J Sci Food Agric 2010 Aug 24. [Epub ahead of print].Google Scholar
  47. 47.
    Lee CH, Lee CL, Pan TM. A 90-d toxicity study of monascus-fermented products including high citrinin level. J Food Sci 2010;75(5):T91–7.PubMedCrossRefGoogle Scholar
  48. 48.
    Perez YY, Jimenez-Ferrer E, Zamilpa A, Hernandez-Valencia M, Alarcon-Aguilar FJ, Tortoriello J, et al. Effect of a polyphenol-rich extract from Aloe vera gel on experimentally induced insulin resistance in mice. Am J Chin Med 2007;35(6):1037–46.PubMedCrossRefGoogle Scholar
  49. 49.
    Zhao XY, Qiao GF, Li BX, Chai LM, Li Z, Lu YJ, et al. Hypoglycaemic and hypolipidaemic effects of emodin and its effect on L-type calcium channels in dyslipidaemic-diabetic rats. Clin Exp Pharmacol Physiol 2009;36(1):29–34.PubMedCrossRefGoogle Scholar
  50. 50.
    Xue J, Ding W, Liu Y. Anti-diabetic effects of emodin involved in the activation of PPARgamma on high-fat diet-fed and low dose of streptozotocin-induced diabetic mice. Fitoterapia 2010;81(3):173–7.PubMedCrossRefGoogle Scholar
  51. 51.
    Feng Y, Huang SL, Dou W, Zhang S, Chen JH, Shen Y, et al. Emodin, a natural product, selectively inhibits 11beta-hydroxysteroid dehydrogenase type 1 and ameliorates metabolic disorder in diet-induced obese mice. Br J Pharmacol 2010;161(1):113–26.PubMedCrossRefGoogle Scholar
  52. 52.
    Srinivas G, Babykutty S, Sathiadevan PP, Srinivas P. Molecular mechanism of emodin action: transition from laxative ingredient to an antitumor agent. Med Res Rev 2007;27(5):591–608.PubMedCrossRefGoogle Scholar
  53. 53.
    Khan A, Safdar M, Ali Khan MM, Khattak KN, Anderson RA. Cinnamon improves glucose and lipids of people with type 2 diabetes. Diabetes Care 2003;26(12):3215–8.PubMedCrossRefGoogle Scholar
  54. 54.
    Mang B, M. Wolters, B. Schmitt, K. Kelb, R. Lichtinghagen, Stichtenoth DO, et al. Effects of a cinnamon extract on plasma glucose, HbA1c, and serum lipids in diabetes mellitus type 2. European Journal of Clinical Investigation 2006;36(5):1365–2362.CrossRefGoogle Scholar
  55. 55.
    Vanschoonbeek K, Thomassen BJ, Senden JM, Wodzig WK, van Loon LJ. Cinnamon supplementation does not improve glycemic control in postmenopausal type 2 diabetes patients. J Nutr 2006;136(4):977–80.PubMedGoogle Scholar
  56. 56.
    Suppapitiporn S, Kanpaksi N, Suppapitiporn S. The effect of cinnamon cassia powder in type 2 diabetes mellitus. J Med Assoc Thai 2006;89 Suppl 3:S200–5.PubMedGoogle Scholar
  57. 57.
    •• Crawford P. Effectiveness of cinnamon for lowering hemoglobin A1C in patients with type 2 diabetes: a randomized, controlled trial. J Am Board Fam Med 2009;22(5):507–12. This RCT is the first clinical study to demonstrate that cassia cinnamon can reduce glycosylated HbA 1c . Measurements between baseline and end point were taken at 90 days, which is the minimum time needed to observe a clinical change in HbA 1c.PubMedCrossRefGoogle Scholar
  58. 58.
    Baskaran K, Kizar Ahamath B, Radha Shanmugasundaram K, Shanmugasundaram ER. Antidiabetic effect of a leaf extract from Gymnema sylvestre in non-insulin-dependent diabetes mellitus patients. J Ethnopharmacol 1990;30(3):295–300.PubMedCrossRefGoogle Scholar
  59. 59.
    Huseini HF, Larijani B, Heshmat R, Fakhrzadeh H, Radjabipour B, Toliat T, et al. The efficacy of Silybum marianum (L.) Gaertn. (silymarin) in the treatment of type II diabetes: a randomized, double-blind, placebo-controlled, clinical trial. Phytother Res 2006;20(12):1036–9.PubMedCrossRefGoogle Scholar
  60. 60.
    Althuis MD, Jordan NE, Ludington EA, Wittes JT. Glucose and insulin responses to dietary chromium supplements: a meta-analysis. Am J Clin Nutr 2002;76(1):148–55.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.The Canadian College of Naturopathic MedicineMiltonCanada
  2. 2.Graduate Department of Pharmaceutical Sciences, Leslie Dan Faculty of PharmacyUniversity of TorontoTorontoCanada

Personalised recommendations