Current Diabetes Reports

, 9:113

Differentiation, expansion, and homeostasis of autoreactive T cells in type 1 diabetes mellitus

  • Paolo Monti
  • Anne-Kristin Heninger
  • Ezio Bonifacio
Article

Abstract

Autoreactive T cells play a major role in the pathogenesis of type 1 diabetes mellitus (T1DM) and are considered a major target of immunomodulatory strategies aimed at preventing or delaying the disease onset. However, the T-cell response against insulinproducing β cells is still poorly understood. T cells potentially able to recognize and destroy β cells are present in most individuals, but only in a few do they differentiate into pathogenic effectors. Recent and novel findings in T-cell biology on the dynamics of T-cell activation and memory maintenance are shedding new light on the general mechanisms of the T-cell response. In this article, we discuss how new discoveries about T-cell differentiation, expansion, and homeostasis could help to clarify mechanisms of autoimmunity that lead to T1DM.

References and Recommended Reading

  1. 1.
    Roep BO: The role of T-cells in the pathogenesis of type 1 diabetes: from cause to cure. Diabetologia 2003, 46:305–321.PubMedGoogle Scholar
  2. 2.
    Di Lorenzo TP, Peakman M, Roep BO: Translational mini-review series on type 1 diabetes: systematic analysis of T cell epitopes in autoimmune diabetes. Clin Exp Immunol 2007, 148:1–16.PubMedGoogle Scholar
  3. 3.
    Oling V, Marttila J, Ilonen J, et al.: GAD65- and proinsulinspecific CD4+ T-cells detected by MHC class II tetramers in peripheral blood of type 1 diabetes patients and at-risk subjects. J Autoimmun 2005, 25:235–243.PubMedCrossRefGoogle Scholar
  4. 4.
    Reijonen H, Mallone R, Heninger AK, et al.: GAD65-specific CD4+ T-cells with high antigen avidity are prevalent in peripheral blood of patients with type 1 diabetes. Diabetes 2004, 53:1987–1994.PubMedCrossRefGoogle Scholar
  5. 5.
    Seyfert-Margolis V, Gisler TD, Asare AL, et al.: Analysis of T-cell assays to measure autoimmune responses in subjects with type 1 diabetes: results of a blinded controlled study. Diabetes 2006, 55:2588–2594.PubMedCrossRefGoogle Scholar
  6. 6.
    Danke NA, Koelle DM, Yee C, et al.: Autoreactive T cells in healthy individuals. J Immunol 2004, 172:5967–5972.PubMedGoogle Scholar
  7. 7.
    Viglietta V, Kent SC, Orban T, Hafler DA: GAD65-reactive T cells are activated in patients with autoimmune type 1a diabetes. J Clin Invest 2002, 109:895–903.PubMedGoogle Scholar
  8. 8.
    Endl J, Rosinger S, Schwarz B, et al.: Coexpression of CD25 and OX40 (CD134) receptors delineates autoreactive T-cells in type 1 diabetes. Diabetes 2006, 55:50–60.PubMedCrossRefGoogle Scholar
  9. 9.
    Monti P, Scirpoli M, Rigamonti A, et al.: Evidence for in vivo primed and expanded autoreactive T cells as a specific feature of patients with type 1 diabetes. J Immunol 2007, 179:5785–5792.PubMedGoogle Scholar
  10. 10.
    Bingley PJ, Bonifacio E, Mueller PW: Diabetes Antibody Standardization Program: first assay proficiency evaluation. Diabetes 2003, 52:1128–1136.PubMedCrossRefGoogle Scholar
  11. 11.
    Torn C, Mueller PW, Schlosser M, et al.: Diabetes Antibody Standardization Program: evaluation of assays for autoantibodies to glutamic acid decarboxylase and islet antigen-2. Diabetologia 2008, 51:846–852.PubMedCrossRefGoogle Scholar
  12. 12.
    Martinuzzi E, Novelli G, Scotto M, et al.: The frequency and immunodominance of islet-specific CD8+ T-cell responses change after type 1 diabetes diagnosis and treatment. Diabetes 2008, 57:1312–1320.PubMedCrossRefGoogle Scholar
  13. 13.
    Schloot NC, Meierhoff G, Karlsson Faresjö M,: Comparison of cytokine ELISpot assay formats for the detection of islet antigen autoreactive T cells. Report of the third immunology of diabetes society T-cell workshop. J Autoimmun 2003, 21:365–376.PubMedCrossRefGoogle Scholar
  14. 14.
    Mannering SI, Morris JS, Stone NL, et al.: CD4+ T cell proliferation in response to GAD and proinsulin in healthy, pre-diabetic, and diabetic donors. Ann N Y Acad Sci 2004, 1037:16–21.PubMedCrossRefGoogle Scholar
  15. 15.
    Nepom GT, Buckner JH, Novak EJ, et al.: HLA class II tetramers: tools for direct analysis of antigen-specific CD4+ T cells. Arthritis Rheum 2002, 46:5–12.PubMedCrossRefGoogle Scholar
  16. 16.
    Yang J, Brook MO, Carvalho-Gaspar M, et al.: Allograft rejection mediated by memory T cells is resistant to regulation. Proc Natl Acad Sci U S A 2007, 104:19954–19959.PubMedCrossRefGoogle Scholar
  17. 17.
    Valujskikh A, Li XC: Frontiers in nephrology: T cell memory as a barrier to transplant tolerance. J Am Soc Nephrol 2007, 18:2252–2261.PubMedCrossRefGoogle Scholar
  18. 18.
    Effect of intensive therapy on residual beta-cell function in patients with type 1 diabetes in the diabetes control and complications trial. A randomized, controlled trial.iThe Diabetes Control and Complications Trial Research Group [no authors listed]. Ann Intern Med 1998, 128:517–523.Google Scholar
  19. 19.
    Bonifacio E, Scirpoli M, Kredel K, et al.: Early autoantibody responses in prediabetes are IgG1 dominated and suggest antigen-specific regulation. J Immunol 1999, 163:525–532.PubMedGoogle Scholar
  20. 20.
    von Herrath M, Sanda S, Herold K: Type 1 diabetes as a relapsing-remitting disease? Nat Rev Immunol 2007, 7:988–994.CrossRefGoogle Scholar
  21. 21.
    Schluns KS, Kieper WC, Jameson SC, Lefrancois L: Interleukin- 7 mediates the homeostasis of naive and memory CD8 T cells in vivo. Nat Immunol 2000, 1:426–432.PubMedCrossRefGoogle Scholar
  22. 22.
    Soares MV, Borthwick NJ, Maini MK, et al.: IL-7-dependent extrathymic expansion of CD45RA+ T cells enables preservation of a naive repertoire. J Immunol 1998, 161:5909–5917.PubMedGoogle Scholar
  23. 23.
    Monti P, Scirpoli M, Maffi P, et al.: Islet transplantation in patients with autoimmune diabetes induces homeostatic cytokines that expand autoreactive memory T cells. J Clin Invest 2008, 118:1806–1814.PubMedGoogle Scholar
  24. 24.
    Sportes C, Hakim FT, Memon SA, et al.: Administration of rhIL-7 in humans increases in vivo TCR repertoire diversity by preferential expansion of naive T cell subsets. J Exp Med 2008, 205:1701–1714.PubMedCrossRefGoogle Scholar
  25. 25.
    Goldrath AW, Bevan MJ: Low-affinity ligands for the TCR drive proliferation of mature CD8+ T cells in lymphopenic hosts. Immunity 1999, 11:183–190.PubMedCrossRefGoogle Scholar
  26. 26.
    King C, Ilic A, Koelsch K, Sarvetnick N: Homeostatic expansion of T cells during immune insufficiency generates autoimmunity. Cell 2004, 117:265–277.PubMedCrossRefGoogle Scholar
  27. 27.
    Santiago JL, Alizadeh BZ, Martinez A, et al.: Study of the association between the CAPSL-IL7R locus and type 1 diabetes. Diabetologia 2008, 51:1653–1658.PubMedCrossRefGoogle Scholar
  28. 28.
    Smyth DJ, Cooper JD, Bailey R, et al.: A genome-wide association study of nonsynonymous SNPs identifies a type 1 diabetes locus in the interferon-induced helicase (IFIH1) region. Nat Genet 2006, 38:617–619.PubMedCrossRefGoogle Scholar
  29. 29.
    Todd JA, Walker NM, Cooper JD, et al.: Robust associations of four new chromosome regions from genome-wide analyses of type 1 diabetes. Nat Genet 2007, 39:857–864.PubMedCrossRefGoogle Scholar
  30. 30.
    Hafler DA, Compston A, Sawcer S, et al.: Risk alleles for multiple sclerosis identified by a genomewide study. N Engl J Med 2007, 57:851–862.Google Scholar
  31. 31.
    Liu W, Putnam AL, Xu-Yu Z, et al.: CD127 expression inversely correlates with FoxP3 and suppressive function of human CD4+ T reg cells. J Exp Med 2006, 203:1701–1711.PubMedCrossRefGoogle Scholar
  32. 32.
    Maki K, Sunaga S, Komagata Y, et al.: Interleukin 7 receptor-deficient mice lack gammadelta T cells. Proc Natl Acad Sci U S A 1996, 93:7172–7177.PubMedCrossRefGoogle Scholar
  33. 33.
    von Freeden-Jeffry U, Vieira P, Lucian LA, et al.: Lymphopenia in interleukin (IL)-7 gene-deleted mice identifies IL-7 as a nonredundant cytokine. J Exp Med 1995, 181:1519–1526.CrossRefGoogle Scholar
  34. 34.
    Vrisekoop N, den Braber I, de Boer AB, et al.: Sparse production but preferential incorporation of recently produced naive T cells in the human peripheral pool. Proc Natl Acad Sci U S A 2008, 105:6115–6120.PubMedCrossRefGoogle Scholar
  35. 35.
    Vukmanovic-Stejic M, Zhang Y, Cook JE, et al.: Human CD4+ CD25hi Foxp3+ regulatory T cells are derived by rapid turnover of memory populations in vivo. J Clin Invest 2006, 16:2423–2433.CrossRefGoogle Scholar
  36. 36.
    Fearon DT, Manders P, Wagner SD: Arrested differentiation, the self-renewing memory lymphocyte, and vaccination. Science 2001, 293:248–250.PubMedCrossRefGoogle Scholar
  37. 37.
    Reiner SL, Sallusto F, Lanzavecchia A: Division of labor with a workforce of one: challenges in specifying effector and memory T cell fate. Science 2007, 317:622–625.PubMedCrossRefGoogle Scholar
  38. 38.
    Chang JT, Palanivel VR, Kinjyo I, et al.: Asymmetric T lymphocyte division in the initiation of adaptive immune responses. Science 2007, 315:1687–1691.PubMedCrossRefGoogle Scholar
  39. 39.
    Snyder CM, Cho KS, Bonnett EL, et al.: Memory inflation during chronic viral infection is maintained by continuous production of short-lived, functional T cells. Immunity 2008, 29:650–659.PubMedCrossRefGoogle Scholar
  40. 40.
    Li R, Perez N, Karumuthil-Melethil S, Vasu C: Bone marrow is a preferential homing site for autoreactive T-cells in type 1 diabetes. Diabetes 2007, 56:2251–2259.PubMedCrossRefGoogle Scholar
  41. 41.
    Dubois-Laforgue D, Hendel H, Caillat-Zucman S, et al.: A common stromal cell-derived factor-1 chemokine gene variant is associated with the early onset of type 1 diabetes. Diabetes 2001, 50:1211–1213.PubMedCrossRefGoogle Scholar
  42. 42.
    Leng Q, Nie Y, Zou Y, Chen J: Elevated CXCL12 expression in the bone marrow of NOD mice is associated with altered T cell and stem cell trafficking and diabetes development. BMC Immunol 2008, 9:51.PubMedCrossRefGoogle Scholar

Copyright information

© Current Medicine Group, LLC 2009

Authors and Affiliations

  • Paolo Monti
    • 1
  • Anne-Kristin Heninger
  • Ezio Bonifacio
  1. 1.Laboratory for Pre-clinical Approaches to Stem Cell TherapyCenter for Regenerative Therapies DresdenDresdenGermany

Personalised recommendations