Current Diabetes Reports

, Volume 9, Issue 1, pp 87–94 | Cite as

Potential of glucose-lowering drugs to reduce cardiovascular events



Although a clear relationship exists between glycosylated hemoglobin and cardiovascular (CV) disease in individuals with type 2 diabetes mellitus (T2DM) in epidemiologic studies, data from prospective studies are less clear. Earlier prospective studies examining intensive glucose lowering suffered from a lack of statistical power to show CV event reduction, as well as a lack of durable glycemic control and relatively poor control of associated CV risk factors. Although recent CV outcome trials comparing intensive glycemic compared with standard glycemic control have been disappointing, CV event rates appear to be declining substantially in T2DM individuals in the setting of aggressive global CV risk factor modification. No single hypoglycemic agent or combination of agents was associated with increased CV events or mortality. A comprehensive strategy of multifactorial intervention including aggressive and durable glycemic blood pressure, and lipid lowering, aspirin usage, and lifestyle modifications is beneficial in reducing macrovascular and microvascular events in T2DM individuals.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and Recommended Reading

  1. 1.
    Danaei G, Lawes CM, Vander Hoorn S, et al.: Global and regional mortality from ischaemic heart disease and stroke attributable to higher-than-optimum blood glucose concentration: comparative risk assessment. Lancet 2006, 368:1651–1659.PubMedCrossRefGoogle Scholar
  2. 2.
    Stamler J, Vaccaro O, Neaton JD, Wentworth D: Diabetes, other risk factors and 12-year cardiovascular mortality for men screened in the Multiple Risk Factor Invention Trial. Diabetes Care 1993, 16:434–444.PubMedCrossRefGoogle Scholar
  3. 3.
    Mak KH, Moliterno DJ, Gragner CB, et al.: Influence of diabetes mellitus on clinical outcome in the thrombolytic era of acute myocardial infarction. J Am Coll Cardiol 1997, 30:171–179.PubMedCrossRefGoogle Scholar
  4. 4.
    Haffner SM, Lehto S, Ronnemaa T, et al.: Mortality from coronary heart disease in subjects with type 2 diabetes and in nondiabetic subjects with and without prior myocardial infarction. N Engl J Med 1998, 339:229–234.PubMedCrossRefGoogle Scholar
  5. 5.
    Wild S, Roglic G, Green A, et al.: Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care 2004, 27:1047–1053.PubMedCrossRefGoogle Scholar
  6. 6.
    Buse J, Ginsberg H, Bakris, G et al.: Primary prevention of cardiovascular disease in people with diabetes mellitus: a scientific statement from the American Heart Association and the American Diabetes Association. Circulation 2007, 115:114–126.PubMedCrossRefGoogle Scholar
  7. 7.
    Bierman EL: George Lyman Duff Memorial Lecture. Atherogenesis in diabetes. Atheroscler Thromb 1992, 12:647–656.Google Scholar
  8. 8.
    Haffner SM, Miettinen H, Gaskill SP, Stern MP: Decreased insulin secretion and increased insulin resistance and independently related to the 7-year risk of NIDDM in Mexican-Americans. Diabetes 1995, 44:1386–1391.PubMedCrossRefGoogle Scholar
  9. 9.
    Libby P, Plutzky J: Diabetic macrovascular disease: the glucose paradox? Circulation 2002, 106:2760–2763.PubMedCrossRefGoogle Scholar
  10. 10.
    Selvin E, Marinopolous S, Berkenblit G, et al.: Meta-analysis: glycosylated hemoglobin and cardiovascular disease in diabetics. Ann Intern Med 2004, 141:421–431.PubMedGoogle Scholar
  11. 11.
    Intensive blood glucose control with sulfonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS33). UK Prospective Diabetes Study (UKPDS) Group [no authors listed]. Lancet 1998, 352:837–853. (Published erratum appears in Lancet 1999, 354:602).Google Scholar
  12. 12.
    Stratton I, Adler A, Neil H, et al.: Association of glycaemia with microvascular and macrovascular complications of type 2 diabetes (UKPDS 35): prospective observational study. BMJ 2000, 321:405–412.PubMedCrossRefGoogle Scholar
  13. 13.
    Schwartz TB, Meinert CL: The UGDP controversy: thirtyfour years of contentious ambiguity laid to rest. Perspect Biol Med 2004, 47:564–574. UK Prospective Diabetes StudyPubMedCrossRefGoogle Scholar
  14. 14.
    Cleveland J, Meldrum D, Brian S, et al.: Oral sulfonylurea hypoglycemic agents prevent ischemic preconditioning in human myocardium: two paradoxes revisited. Circulation 1997, 96:29–32.PubMedGoogle Scholar
  15. 15.
    Flynn D, Smith A, Treadway J, et al.: The sulfonylurea glipizide does not inhibit ischemic preconditioning in anesthetized rats. Cardiovasc Drug Ther 2005, 19:337–346.CrossRefGoogle Scholar
  16. 16.
    Mocanu M, Maddox H, Baxter G, et al.: Glimepiride, a novel sulfonylurea, does not abolish myocardial protection afforded by either ischemic preconditioning or diazoxide. Circulation 2001, 103:3111–3116.PubMedGoogle Scholar
  17. 17.
    Quast U, Stephen D, Bieger R, et al.: The impact of ATP sensitive K+ channel subtype selectivity in insulin secretagogues for the coronary vasculature and myocardium. Diabetes 2004, 53(Suppl 3):S156–S164.PubMedCrossRefGoogle Scholar
  18. 18.
    Garratt K, Brady PA, Hassinger NL, et al.: Sulfonylurea drugs increase early mortality in patients with diabetes mellitus after direct angioplasty for acute myocardial infarction. J Am Coll Cardiol 1999, 33:119–124.PubMedCrossRefGoogle Scholar
  19. 19.
    Klamman A, Sarfert P, Launhardt V, et al.: Myocardial infarction in diabetic vs non-diabetic patients: survival and infarct size following therapy with sulfonylureas. Eur Heart J 2000, 21:220–229.CrossRefGoogle Scholar
  20. 20.
    Johnsen SP, Monster TB, Olsen ML, et al.: Risk and shortterm prognosis of myocardial infarction among users of antidiabetic drugs. Am J Ther 2006, 13:134–140.PubMedCrossRefGoogle Scholar
  21. 21.
    Effect of intensive blood glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS34). UK Prospective Diabetes Study (UKPDS) Group [no authors listed]. Lancet 1998, 352:854–865. (Published erratum appears in Lancet 1998, 352:1557.)Google Scholar
  22. 22.
    Inzucchi S, Masoudi F, Wang Y, et al.: Insulin-sensitizing hypoglycemic drugs and mortality after acute myocardial infarction. Diabetes Care 2005, 28:1680–1689.PubMedCrossRefGoogle Scholar
  23. 23.
    Letter: Mary H. Clark, FDA, to David Silberstein, Bristol-Myers Squibb, dated November 1, 2006. Available at,021202s015ltr.pdf. Accessed September 2008.
  24. 24.
    Eurich D, Majumbar S, McAlister F, et al.: Improved clinical outcomes associated with metformin in patients with diabetes and heart failure. Diabetes Care 2005, 28:2345–2351.PubMedCrossRefGoogle Scholar
  25. 25.
    Masoudi F, Inzucchi S, Wang Y, et al.: Thiazolidinediones, metformin, and outcomes in older patients with diabetes and heart failure. Circulation 2005, 111:583–590.PubMedCrossRefGoogle Scholar
  26. 26.
    Parulkar AA, Pendergrass ML, Granda-Ayala R, et al.: Nonhypoglycemic effects of thiazolidinediones. Ann Intern Med 2001, 134:61–71.PubMedGoogle Scholar
  27. 27.
    Yue T, Chen J, Boa W, et al.: In vivo myocardial protection from ischemia/reperfusion injury by the peroxisome proliferator-activated receptor-agonist rosiglitazone. Circulation 2001, 104:2588–2594.CrossRefGoogle Scholar
  28. 28.
    Sauer WH, Berlin JA, Kimmel SE: Thiazolidinediones and prevention of myocardial infarction with type 2 diabetes [abstract]. Circulation 2002, 106:II-562.Google Scholar
  29. 29.
    Takagi T, Yakmamuro A, Tamita K, et al.: Pioglitazone reduces neointimal tissue proliferation after coronary stent implantation in patients with type 2 diabetes mellitus: an intravascular ultrasound scanning study. Am Heart J 2003, 146:E5.PubMedCrossRefGoogle Scholar
  30. 30.
    Choi D, Kim SK, Choi SH, et al.: Preventative effects of rosiglitazone on restenosis after coronary stent implantation in patients with type 2 diabetes. Diabetes Care 2004, 27:2654–2660.PubMedCrossRefGoogle Scholar
  31. 31.
    Langenfeld MR, Forst T, Hohberg C, et al.: Pioglitazone decreases carotid intima-media thickness independently of glycemic control in patients with type 2 diabetes mellitus: results from a controlled randomized study. Circulation 2005, 111:2525–2531.PubMedCrossRefGoogle Scholar
  32. 32.
    Mazzone T, Meyer PM, Feinstein SB, et al.: Effect of pioglitazone compared with glimepiride on carotid intima-media thickness in type 2 diabetes: a randomized trial. JAMA 2006, 296:2572–2581.PubMedCrossRefGoogle Scholar
  33. 33.
    Sidhu JS, Kaposzta Z, Markus HS, Kaski JC: Effect of rosiglitazone on common carotid intima-media thickness progression in coronary artery disease patients without diabetes mellitus. Arteriscler Thromb Vasc Biol 2004, 24:930–934.CrossRefGoogle Scholar
  34. 34.
    Lonn E: Effects of ramipril and rosiglitazone on atherosclerosis: the study of atherosclerosis with ramipril and rosiglitazone. Presented at the American College of Cardiology 56th Annual Scientific Session. New Orleans, LA; March 24–27, 2007.Google Scholar
  35. 35.
    Nissen S, Nicholls S, Wolski K: Comparison of pioglitazone vs glimepiride on progression of atherosclerosis in patients with type 2 diabetes: the PERISCOPE randomized trial. JAMA 2008, 299:1561–1573.PubMedCrossRefGoogle Scholar
  36. 36.
    Nesto RW: Assessment on the Prevention of Progression by Rosiglitazone on Atherosclerosis in Type 2 Diabetes Patients with Cardiovascular History (APPROACH). Presented at the American Heart Association 2008 Scientific Sessions. Late Breaking Clinical Trials Session 4. New Orleans, LA; November 8–12, 2008.Google Scholar
  37. 37.
    Charbonnel B, Dormamdy J, Erdmann E, et al.: The prospective pioglitazone clinical trial in macrovascular events (PROactive): can pioglitazone reduce cardiovascular events in diabetes? Study design and baseline characteristics of 5238 patients. Diabetes Care 2004, 27:1647–1653.PubMedCrossRefGoogle Scholar
  38. 38.
    Betteridge DJ, DeFronzo RA, Chilton RJ: PROactive: time for a critical appraisal. Eur Heart J 2008, 29:969–983.PubMedCrossRefGoogle Scholar
  39. 39.
    Lago, RM, Singh PP, Nesto RW: Congestive heart failure and cardiovascular death in patients with prediabetes and type 2 diabetes given thiazolidinediones: a meta-analysis of randomized clinical trials. Lancet 2007, 370:1129–1136.PubMedCrossRefGoogle Scholar
  40. 40.
    Eurich DT, McAlister FA, Blackburn DF, et al.: Benefits and harms of antidiabetic agents in patients with diabetes and heart failure: systematic review. BMJ 2007, 335:497.PubMedCrossRefGoogle Scholar
  41. 41.
    Dargie H, Hildebrandt P, Riegger G, et al.: A randomized placebo-controlled trial assessing the effects of rosiglitazone on echocardiographic function and cardiac status in type 2 diabetic patients with NYHA functional class I or II heart failure. J Am Coll Cardiol 2007, 49:1705–1707.CrossRefGoogle Scholar
  42. 42.
    Nissen SE, Wolski K: Effect of rosiglitazone on the risk of myocardial infarction and death from cardiovascular causes. N Engl J Med 2007, 356:2457–2471.PubMedCrossRefGoogle Scholar
  43. 43.
    Diamond GA, Bax L, Kaul S: Uncertain effects of rosiglitazone on the risk for myocardial infarction and cardiovascular death. Ann Intern Med 2007, 147:578–581.PubMedGoogle Scholar
  44. 44.
    Singh S, Loke YK, Furberg CD: Long-term risk of cardiovascular events with rosiglitazone. A Meta-analysis. JAMA 2007, 298:1189–1195.PubMedCrossRefGoogle Scholar
  45. 45.
    Lincoff AM, Wolski K, Nicholls SJ, Nissen SE: Pioglitazone and risk of cardiovascular events in patients with type 2 diabetes mellitus: a meta-analysis of randomized trials. JAMA 2007, 298:1180–1188.PubMedCrossRefGoogle Scholar
  46. 46.
    Goldberg RB, Kendall DM, Deeg MA, et al.: A comparison of lipid and glycemic effects of pioglitazone and rosiglitazone in patients with type 2 diabetes and dyslipidemia. Diabetes Care 2005, 28:1547–1554.PubMedCrossRefGoogle Scholar
  47. 47.
    Lewin AJ, Kipnes MS, Memeghini LF, et al.: Effects of simvastatin on the lipid profile and attainment of low-density lipoprotein cholesterol goals when added to thiazolidinedione therapy in patients with type 2 diabetes mellitus: a multicenter, randomized, double-blind, placebo-controlled trial. Clin Ther 2004, 26:379–389.PubMedCrossRefGoogle Scholar
  48. 48.
    Freed MI, Ratner R, Marcovina SM, et al.: Effects of rosiglitazone alone and in combination with atorvastatin on the metabolic abnormalities in type 2 diabetes mellitus. Am J Cardiol 2002, 90:379–389.CrossRefGoogle Scholar
  49. 49.
    Home PD, Pocock SJ, Beck-Nielsen H, et al.: Rosiglitazone Evaluated for Cardiac Outcomes and Regulation of Gycaemia in Diabetes (RECORD): study design and protocol. Diabetologia 2005, 48:1726–1735.PubMedCrossRefGoogle Scholar
  50. 50.
    Avandia [package insert]. Research Triangle Park, NC: GlaxoSmithKline; 2008.Google Scholar
  51. 51.
    Abraira C, Duckworth W, Moritz T: Glycaemic separation and risk factor control in the Veteran Affairs Diabetes Trial: an interim report. Diabetes Obes Metab 2008 Jul 29 (Epub ahead of print).Google Scholar
  52. 52.
    The Action to Control Cardiovascular Risk in Diabetes Study Group: Effects of intensive blood glucose lowering in type 2 diabetes. N Engl J Med 2008, 358:2545–2559.CrossRefGoogle Scholar
  53. 53.
    Holman RR, Retnakaran R, Farmer A, Stevens R: PROactive study. Lancet 2006, 367:25–26.PubMedCrossRefGoogle Scholar
  54. 54.
    Kahn SE, Haffner SM, Heise MA, et al.: Glycemic durability of rosiglitazone, metformin, or glyburide monotherapy. N Engl J Med 2007, 356:2457–2471.CrossRefGoogle Scholar
  55. 55.
    Chaisson JL, Josse RG, Gomis R, et al.: Acarbose treatment and the risk of cardiovascular disease and hypertension in patients with impaired glucose tolerance: the STOPNIDDM trial. JAMA 2003, 290:486–494.CrossRefGoogle Scholar
  56. 56.
    Bullock BP, Heller RS, Habener JF: Tissue distribution of messenger ribonucleic acid encoding the rat glucagons-like peptide-1 receptor. Endocrinology 1996, 137:2968–2978.PubMedCrossRefGoogle Scholar
  57. 57.
    Ban K, Noyan-Ashraf H, Hoefer J, et al.: Cardioprotective and vasodilatory actions of glucagons-like peptide 1 receptor are mediated through both glucagons-like peptide 1 receptor-dependent and independent pathways. Circulation 2008, 117:2340–2350.PubMedCrossRefGoogle Scholar
  58. 58.
    Dandona P, Mohanty P, Chaudhuri A, et al.: Insulin infusion in acute illness. J Clin Invest 2005, 115:2069–2072.PubMedCrossRefGoogle Scholar
  59. 59.
    Malmberg K: Prospective randomized study of intensive insulin treatment on long term survival after acute myocardial infarction in patients with diabetes mellitus. BMJ 1997, 34:187–220.Google Scholar
  60. 60.
    Nathan D, Cleary P, Backlund J, et al.: Intensive diabetes treatment and cardiovascular disease in patients with type 1 diabetes mellitus. N Engl J Med 2005, 353:2643–2653.PubMedCrossRefGoogle Scholar
  61. 61.
    Anselmino M, Ohrvik J, Malmberg K, et al.: Glucose lowering treatment in patients with coronary artery disease is prognostically important not only in established but also in newly detected diabetes mellitus: a report from the Euro Heart Survey on Diabetes and the Heart. Eur Heart J 2008, 29:177–184.PubMedCrossRefGoogle Scholar
  62. 62.
    Mellvin LG, Malmberg K, Norhammar A, et al.: The impact of glucose lowering treatment on long-term prognosis in patients with type 2 diabetes and myocardial infarction: a report from the DIGAMI 2 trial. Eur Heart J 2008, 29:166–176.CrossRefGoogle Scholar
  63. 63.
    Gerstein H, Yusuf S, Riddle MC, et al.: Rationale, design, and baseline characteristics for a large international trial of cardiovascular disease prevention in people with dysglycemia: the ORIGIN Trial (Outcome Reduction with an Initial Glargine Intervention). Am Heart J 2008, 155:26–32.PubMedCrossRefGoogle Scholar
  64. 64.
    The ADVANCE Collaborative Group: Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes mellitus. N Engl J Med 2008, 358:2560–2572.CrossRefGoogle Scholar
  65. 65.
    Statement from the American Diabetes Association related to the ADVANCE Study Announcement [press release]. Alexandria, VA: American Diabetes Association; February 13, 2008. Available at Accessed November 7, 2008.
  66. 66.
    Holman R, Paul S, Bethel A, et al.: 10-year follow up of intensive glucose control in type 2 diabetes. N Engl J Med 2008, 359:1577–1589.PubMedCrossRefGoogle Scholar
  67. 67.
    Gaede P, Lund-Andersen H, Parving H, et al.: Effect of a multifactorial intervention on mortality in type 2 diabetes. N Engl J Med 2008, 358:580–591.PubMedCrossRefGoogle Scholar
  68. 68.
    Gaede P, Vedel P, Larsen N, et al.: Multifactorial intervention and cardiovascular disease in patients with type 2 diabetes. N Engl J Med 2003, 348:383–393.PubMedCrossRefGoogle Scholar
  69. 69.
    Gaede P, Pederen O: Intensive integrated therapy of type 2 diabetes: implications for long term prognosis. Diabetes 2004, 53(Suppl 3):S39–S47.CrossRefGoogle Scholar
  70. 70.
    Howard BV, Roman MJ, Devereux RB, et al.: Effect of lower targets for blood pressure and LDL cholesterol on atherosclerosis in diabetes. The SANDS Randomized Trial. JAMA 2008, 299:1678–1689.PubMedCrossRefGoogle Scholar
  71. 71.
    Glagow R, McCaul K, Schafer L, et al.: Barriers to regimen adherence in patients with insulin-dependent diabetes. J Behav Med 1986, 9:65–77.CrossRefGoogle Scholar
  72. 72.
    Victor RG, Haley RW, Willett DL, et al.: The Dallas Heart Study: a population based probability sample for the multidisciplinary study of ethnic differences in cardiovascular health. Am J Cardiol 2004, 93:1473–1480.PubMedCrossRefGoogle Scholar

Copyright information

© Current Medicine Group LLC 2009

Authors and Affiliations

  1. 1.Division of Cardiovascular MedicineBridgeport HospitalBridgeportUSA

Personalised recommendations