Current Diabetes Reports

, Volume 9, Issue 1, pp 79–86 | Cite as

The failing diabetic heart: Focus on diastolic left ventricular dysfunction

  • Loek van Heerebeek
  • Aernout Somsen
  • Walter J. Paulus


Diabetes mellitus (DM) is highly prevalent and is an important risk factor for congestive heart failure (HF). Increased left ventricular (LV) diastolic stiffness is recognized as the earliest manifestation of DM-induced LV dysfunction, but its pathophysiology remains incompletely understood. Mechanisms whereby DM increases LV diastolic stiffness differ between HF with normal LV ejection fraction (EF) (HFNEF) and HF with reduced LVEF (HFREF). In diabetic HFREF, fibrosis and deposition of advanced glycation end products (AGEs) are the most important contributors to high LV diastolic stiffness, whereas in diabetic HFNEF, elevated resting tension of hypertrophied cardiomyocytes is the most important contributor to high LV diastolic stiffness. As HF mortality remains high in DM despite proven efficacy of current treatments, better understanding of the pathophysiology of high LV diastolic stiffness could be beneficial for novel therapeutic strategies.


Diabetic Cardiomyopathy Nesiritide Diabetic Heart Diastolic Heart Failure High Left Ventricular 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and Recommended Reading

  1. 1.
    Wild S, Roglic G, Green A, et al.: Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care 2004, 27:1047–1053.PubMedCrossRefGoogle Scholar
  2. 2.
    Bertoni AG, Hundley WG, Massing MW, et al.: Heart failure prevalence, incidence, and mortality in the elderly with diabetes. Diabetes Care 2004, 27:699–703.PubMedCrossRefGoogle Scholar
  3. 3.
    Sobel BE: Optimizing cardiovascular outcome in diabetes mellitus. Am J Med 2007, 120:S3–S11.PubMedCrossRefGoogle Scholar
  4. 4.
    Redfield MM, Jacobsen SJ, Burnett JC Jr, et al.: Burden of systolic and diastolic ventricular dysfunction in the community: appreciating the scope of the heart failure epidemic. JAMA 2003, 289:194–202.PubMedCrossRefGoogle Scholar
  5. 5.
    Klapholz M, Maurer M, Lowe AM, et al.: Hospitalization for heart failure in the presence of a normal left ventricular ejection fraction: results of the New York Heart Failure Registry. J Am Coll Cardiol 2004, 43:1432–1438.PubMedCrossRefGoogle Scholar
  6. 6.
    Owen TE, Redfield MM: Epidemiology of diastolic heart failure. Prog Cardiovasc Dis 2005, 47:320–332.CrossRefGoogle Scholar
  7. 7.
    van Heerebeek L, Hamdani N, Handoko ML, et al.: Diastolic stiffness of the failing diabetic heart: importance of fibrosis, advanced glycation end products, and myocyte resting tension. Circulation 2008, 117:43–51.PubMedCrossRefGoogle Scholar
  8. 8.
    de las Fuentes L, Brown AL, Mathews SJ, et al.: Metabolic syndrome is associated with abnormal left ventricular diastolic function independent of left ventricular mass. Eur Heart J 2007, 28:553–559.PubMedCrossRefGoogle Scholar
  9. 9.
    Boudina S, Abel ED: Diabetic cardiomyopathy revisited. Circulation 2007, 115:3213–3223.PubMedCrossRefGoogle Scholar
  10. 10.
    Zarich SW, Arbuckle BE, Cohen LR, et al.: Diastolic abnormalities in young asymptomatic diabetic patients assessed by pulsed Doppler echocardiography. J Am Coll Cardiol 1988, 12:114–120.PubMedCrossRefGoogle Scholar
  11. 11.
    Boyer JK, Thanigaraj S, Schechtman KB, et al.: Prevalence of ventricular diastolic dysfunction in asymptomatic, normotensive patients with diabetes mellitus. Am J Cardiol 2004, 93:870–875.PubMedCrossRefGoogle Scholar
  12. 12.
    Asbun J, Villarreal FJ: The pathogenesis of myocardial fibrosis in the setting of diabetic cardiomyopathy. J Am Coll Cardiol 2006, 47:693–700.PubMedCrossRefGoogle Scholar
  13. 13.
    Hartog JW, Voors AA, Bakker SJ, et al.: Advanced glycation end-products (AGEs) and heart failure: pathophysiology and clinical implications. Eur J Heart Fail 2007, 9:1146–1155.PubMedCrossRefGoogle Scholar
  14. 14.
    Goldin A, Beckman JA, Schmidt AM, et al.: Advanced glycation end products: sparking the development of diabetic vascular injury. Circulation 2006, 114:597–605.PubMedCrossRefGoogle Scholar
  15. 15.
    Witteles RM, Fowler MB: Insulin-resistant cardiomyopathy clinical evidence, mechanisms and treatment options. J Am Coll Cardiol 2008, 51:93–102.PubMedCrossRefGoogle Scholar
  16. 16.
    Diamant M, Lamb HJ, Groeneveld Y, et al.: Diastolic dysfunction is associated with altered myocardial metabolism in asymptomatic normotensive patients with well-controlled type 2 diabetes mellitus. J Am Coll Cardiol 2003, 42:328–335.PubMedCrossRefGoogle Scholar
  17. 17.
    Hartge MM, Unger T, Kintscher U: The endothelium and vascular inflammation in diabetes. Diab Vasc Dis Res 2007, 4:84–88.PubMedCrossRefGoogle Scholar
  18. 18.
    Fischer D, Rossa S, Landmesser U, et al.: Endothelial dysfunction in patients with chronic heart failure is independently associated with increased incidence of hospitalization, cardiac transplantation or death. Eur Heart J 2005, 26:65–69.PubMedCrossRefGoogle Scholar
  19. 19.
    Jay D, Hitomi H, Griendling KK: Oxidative stress and diabetic vascular complications. Free Radic Biol Med 2006, 40:183–192.PubMedCrossRefGoogle Scholar
  20. 20.
    Hare JM, Stamler JS: NO/redox disequilibrium in the failing heart and cardiovascular system. J Clin Invest 2005, 115:509–517.PubMedGoogle Scholar
  21. 21.
    Pacher P, Szabo C: Role of peroxynitrite in the pathogenesis of cardiovascular complications in diabetes. Curr Opin Pharmacol 2006, 6:136–141.PubMedCrossRefGoogle Scholar
  22. 22.
    Föstermann U, Münzel T: Endothelial nitric oxide synthase in vascular disease: from marvel to menace. Circulation 2006, 113:1708–1714.CrossRefGoogle Scholar
  23. 23.
    Paulus WJ, Bronzwaer JG: Nitric oxide’s role in the heart: control of beating or breathing? Am J Physiol Heart Circ Physiol 2004, 287:H8–H13.PubMedCrossRefGoogle Scholar
  24. 24.
    Kass DA, Takimoto E, Nagayama T, et al.: Phosphodiesterase regulation of nitric oxide signaling. Cardiovasc Res 2007, 75:303–314.PubMedCrossRefGoogle Scholar
  25. 25.
    McKinsey TA, Kass DA: Small-molecule therapies for cardiac hypertrophy: moving beneath the cell surface. Nat Rev Drug Discov 2007, 6:617–635.PubMedCrossRefGoogle Scholar
  26. 26.
    Nagendran J, Archer SL, Soliman D, et al.: Phosphodiesterase type 5 is highly expressed in the hypertrophied human right ventricle, and acute inhibition of phosphodiesterase type 5 improves contractility. Circulation 2007, 116:238–248.PubMedCrossRefGoogle Scholar
  27. 27.
    Liu S, Ma X, Gong M, et al.: Glucose down-regulation of cGMP-dependent protein kinase I expression in vascular smooth muscle cells involves NAD(P) oxidase-derived reactive oxygen species. Free Radic Biol Med 2007, 42:852–863.PubMedCrossRefGoogle Scholar
  28. 28.
    Oelze M, Mollnau H, Hoffmann N, et al.: Vasodilator-stimulated phosphoprotein serine 239 phosphorylation as a sensitive monitor of defective nitric oxide/cGMP signaling and endothelial dysfunction. Circ Res 2000, 87:999–1005.PubMedGoogle Scholar
  29. 29.
    Su J, Zhang Q, Moalem J, et al.: Functional effects of C-type natriuretic peptide and nitric oxide are attenuated in hypertrophic myocytes from pressure-overloaded mouse hearts. Am J Physiol Heart Circ Physiol 2005, 288:H1367–H1373.PubMedCrossRefGoogle Scholar
  30. 30.
    Borbely A, van der Velden J, Papp Z, et al.: Cardiomyocyte stiffness in diastolic heart failure. Circulation 2005, 111:774–781.PubMedCrossRefGoogle Scholar
  31. 31.
    van Heerebeek L, Borbely A, Niessen HW, et al.: Myocardial structure and function differ in systolic and diastolic heart failure. Circulation 2006, 113:1966–1973.PubMedCrossRefGoogle Scholar
  32. 32.
    Linke WA: Sense and stretchability: the role of titin and titin-associated proteins in myocardial stress-sensing and mechanical dysfunction. Cardiovasc Res 2008, 77:637–648.PubMedGoogle Scholar
  33. 33.
    Hamdani N, Borbely A, Boontje N, et al.: Protein kinase G corrects high cardiomyocyte resting tension in diastolic heart failure. Circulation 2007, 116:II–708.Google Scholar
  34. 34.
    Krüger M, dos Remedios C, Linke WA: Titin phosphorylation by protein kinases A and G in normal and failing human hearts decreases myocardial passive stiffness. Circulation 2007, 116:II–301.Google Scholar
  35. 35.
    Rubler S, Dlugash J, Yuceoglu YZ, et al.: New type of cardiomyopathy associated with diabetic glomerulosclerosis. Am J Cardiol 1972, 30:595–602.PubMedCrossRefGoogle Scholar
  36. 36.
    Bertoni AG, Tsai A, Kasper EK, et al.: Diabetes and idiopathic cardiomyopathy: a nationwide case-control study. Diabetes Care 2003, 26:2791–2795.PubMedCrossRefGoogle Scholar
  37. 37.
    McFarlane SI, Kumar A, Sowers JR: Mechanisms by which angiotensin-converting enzyme inhibitors prevent diabetes and cardiovascular disease. Am J Cardiol 2003, 91:30H–37H.PubMedCrossRefGoogle Scholar
  38. 38.
    Nickenig G: Should angiotensin II receptor blockers and statins be combined? Circulation 2004, 110:1013–1020.PubMedCrossRefGoogle Scholar
  39. 39.
    Gonzalez A, Lopez B, Querejeta R, et al.: Cardiac reninangiotensin aldosterone system: regulation of myocardial fibrillar collagen by angiotensin II. A role in hypertensive heart disease? J Mol Cell Cardiol 2002, 34:1585–1593.PubMedCrossRefGoogle Scholar
  40. 40.
    Kawasaki D, Kosugi K, Waki H: Role of activated renin-angiotensin system in myocardial fibrosis and left ventricular diastolic dysfunction in diabetic patients-reversal by chronic angiotensin II type 1A receptor blockade. Circ J 2007, 71:524–529.PubMedCrossRefGoogle Scholar
  41. 41.
    Kalidindi SR, Tang WH, Francis GS: Drug insight: aldosterone-receptor antagonists in heart failure-the journey continues. Nat Clin Pract Cardiovasc Med 2007, 4:368–378.PubMedCrossRefGoogle Scholar
  42. 42.
    Lipinski MJ, Abbate A, Fuster V, et al.: Drug insight: statins for nonischemic heart failure-evidence and potential mechanisms. Nat Clin Pract Cardiovasc Med 2007, 4:196–205.PubMedCrossRefGoogle Scholar
  43. 43.
    Libby P, Plutzky J: Inflammation in diabetes mellitus: role of peroxisome proliferator-activated receptor-alpha and peroxisome proliferator-activated receptor-gamma agonists. Am J Cardiol 2007, 99:27B–40B.PubMedCrossRefGoogle Scholar
  44. 44.
    McGuire DK, Inzucchi SE: New drugs for the treatment of diabetes mellitus: part 1: Thiazolidinediones and their evolving cardiovascular implications. Circulation 2008, 117:440–449.PubMedCrossRefGoogle Scholar
  45. 45.
    Taylor AL, Ziesche S, Yancy CW, et al.: Early and sustained benefit on event-free survival and heart failure hospitalization from fixed-dose combination of isosorbide dinitrate/hydralazine: Consistency across subgroups in the African-American Heart Failure Trial. Circulation 2007, 115:1747–1753.PubMedCrossRefGoogle Scholar
  46. 46.
    de Lemos JA, McGuire DK, Drazner MH: B-type natriuretic peptide in cardiovascular disease. Lancet 2003, 362:316–322.PubMedCrossRefGoogle Scholar
  47. 47.
    Yancy CW, Krum H, Massie BM, et al.: Safety and efficacy of outpatient nesiritide in patients with advanced heart failure; results of the second Follow-Up Serial Infusions of Nesiritide (FUSION II) trial. Circ Heart Fail 2008, 1:9–16.CrossRefPubMedGoogle Scholar
  48. 48.
    Kass DA, Champion HC, Beavo JA: Phosphodiesterase type 5: expanding roles in cardiovascular regulation. Circ Res 2007, 101:1084–1095.PubMedCrossRefGoogle Scholar
  49. 49.
    Palumbo PJ: Metabolic risk factors, endothelial dysfunction and erectile dysfunction in men with diabetes. Am J Med Sci 2007, 334:466–480.PubMedCrossRefGoogle Scholar

Copyright information

© Current Medicine Group LLC 2009

Authors and Affiliations

  • Loek van Heerebeek
  • Aernout Somsen
  • Walter J. Paulus
    • 1
  1. 1.Laboratory of PhysiologyVU University Medical CenterAmsterdamThe Netherlands

Personalised recommendations