Current Diabetes Reports

, Volume 8, Issue 5, pp 345–352

Cardiometabolic risk management in type 2 diabetes and obesity



Type 2 diabetes has become an epidemic in the United States, mainly due to an increase in obesity and sedentary lifestyle. Diabetes is considered a cardiovascular risk equivalent, and cardiovascular death remains the most common cause of death in this population. The cardiovascular complications of diabetes, beginning as early as 10 years before the development of frank hyperglycemia, are strongly linked to the development of insulin resistance and the ensuing metabolic disarray often referred to as the metabolic syndrome. To provide proper therapy for cardiovascular prevention, the down-stream effects of insulin resistance must be understood. The most important aspect of treating patients with the metabolic syndrome is the realization that treatment must begin before the development of frank hyperglycemia, particularly if cardiovascular events are to be avoided. Thus, in addition to managing the hyperglycemia that develops with the onset of diabetes, insulin resistance, dyslipidemia, and hypertension must also be properly addressed.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and Recommended Reading

  1. 1.
    Engelgau MM, Geiss LS, Saaddine JB, et al.: The evolving diabetes burden in the United States. Ann Intern Med 2004, 140:945–950.PubMedGoogle Scholar
  2. 2.
    Bonow RO, Gheorghiade M: The diabetes epidemic: a national and global crisis. Am J Med 2004, 116(Suppl 5A):2S–10S.PubMedCrossRefGoogle Scholar
  3. 3.
    Kramer D, Raji A, Plutzky J: Prediabetes mellitus and its links to atherosclerosis. Curr Diab Rep 2003, 3:11–18.PubMedCrossRefGoogle Scholar
  4. 4.
    The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. The Diabetes Control and Complications Trial Research Group [no authors listed]. N Engl J Med 1993, 329:977–986.Google Scholar
  5. 5.
    Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). UK Prospective Diabetes Study (UKPDS) Group [no authors listed]. Lancet 1998, 352:837–853.Google Scholar
  6. 6.
    Haffner SM, Lehto S, Ronnemaa T, et al.: Mortality from coronary heart disease in subjects with type 2 diabetes and in nondiabetic subjects with and without prior myocardial infarction. N Engl J Med 1998, 339:229–234.PubMedCrossRefGoogle Scholar
  7. 7.
    Wingard DL, Barrett-Connor E: Heart disease and diabetes. In Diabetes in America. Edited by National Diabetes Data Group. Washington, D.C.: National Institutes of Health, NIDDK, NIH publication no. 95-1468; 1995:429–448.Google Scholar
  8. 8.
    Haffner SM, Stern NP, Hazuda HP: Cardiovascular risk factors in confirmed prediabetic individuals: does the clock for coronary heart disease start ticking before the onset of clinical diabetes? JAMA 1990, 263:2893–2898.PubMedCrossRefGoogle Scholar
  9. 9.
    Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults: executive summary of the third report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III) [no authors listed]. JAMA 2001, 285:2486–2497.Google Scholar
  10. 10.
    Ford ES, Giles WH, Dietz WH: Prevalence of the metabolic syndrome among US adults: findings from the third National Health and Nutrition Examination Survey. JAMA 2002, 287:356–359.PubMedCrossRefGoogle Scholar
  11. 11.
    Fontbonne AM, Eschwege EM: Insulin and cardiovascular disease. Paris Prospective Study. Diabetes Care 1991, 14:461–469.PubMedCrossRefGoogle Scholar
  12. 12.
    Stratton IM, Adler AI, Neil HA, et al.: Association of glycaemia with macrovascular and microvascular complications of type 2 diabetes (UKPDS 35): prospective observational study. BMJ 2000, 321:405–412.PubMedCrossRefGoogle Scholar
  13. 13.
    Malmberg K, Norhammar A, Wedel H, et al.: Glycometabolic state at admission: important risk marker of mortality in conventionally treated patients with diabetes mellitus and acute myocardial infarction: long-term results from the Diabetes and Insulin-Glucose Infusion in Acute Myocardial Infarction (DIGAMI) study. Circulation 1999, 99:2626–2632.PubMedGoogle Scholar
  14. 14.
    Ceriello A: Impaired glucose tolerance and cardiovascular disease: the possible role of post-prandial hyperglycemia. Am Heart J 2004, 147:803–807.PubMedCrossRefGoogle Scholar
  15. 15.
    Singh AT, Rainwater DL, Haffner SM, et al.: Effect of diabetes on lipoprotein size. Arterioscler Thromb Vasc Biol 1995, 15:1805–1811.PubMedGoogle Scholar
  16. 16.
    Siegel RD, Cupples A, Schaefer EJ, et al.: Lipoproteins, apolipoproteins, and low-density lipoprotein size among diabetics in the Framingham offspring study. Metab Clin Exp 1996, 45:1267–1272.PubMedGoogle Scholar
  17. 17.
    Reaven GM, Chen YD, Jeppesen J, et al.: Insulin resistance and hyperinsulinemia in individuals with small, dense low density lipoprotein particles. J Clin Invest 1993, 92:141–146.PubMedCrossRefGoogle Scholar
  18. 18.
    Lehto S, Ronnemaa T, Haffner SM, et al.: Dyslipidemia and hyperglycemia predict coronary heart disease events in middle-aged patients with NIDDM. Diabetes 1997, 46:1354–1359.PubMedCrossRefGoogle Scholar
  19. 19.
    Rosenson RS: Assessing risk across the spectrum of patients with the metabolic syndrome. Am J Cardiol 2005, 96(4A):8E–10E.PubMedCrossRefGoogle Scholar
  20. 20.
    Lamarche B, Tchernof A, Moorjani S, et al.: Small, dense, low-density lipoprotein particles as a predictor of the risk of ischemia heart disease in men. Prospective results from the Quebec Cardiovascular Study. Circulation 1997, 95:69–75.PubMedGoogle Scholar
  21. 21.
    Miller BD, Alderman EL, Haskell WL, et al.: Predominance of dense low-density lipoprotein particles predicts angiographic benefit of therapy in the Stanford Coronary Risk Intervention Project. Circulation 1996, 94:2146–2153.PubMedGoogle Scholar
  22. 22.
    Adler AI, Stratton IM, Neil HA, et al.: Association of systolic blood pressure with macrovascular and microvascular complications of type 2 diabetes (UKPDS 36): prospective observational study. BMJ 2000, 321:412–419.PubMedCrossRefGoogle Scholar
  23. 23.
    Kannel WB, Wilson PW, Zhang TJ: The epidemiology of impaired glucose tolerance and hypertension. Am Heart J 1991, 121(4 Pt 2):1268–1273.PubMedCrossRefGoogle Scholar
  24. 24.
    Plutzky J: Inflammatory pathways in atherosclerosis and acute coronary syndromes. Am J Cardiol 2001, 88:10K–15K.PubMedCrossRefGoogle Scholar
  25. 25.
    Pickup JC: Inflammation and activated innate immunity in the pathogenesis of type 2 diabetes. Diabetes Care 2004, 27:813–823.PubMedCrossRefGoogle Scholar
  26. 26.
    Lee YH, Pratley RE: The evolving role of inflammation in obesity and the metabolic syndrome. Curr Diab Rep 2005, 5:70–75.PubMedCrossRefGoogle Scholar
  27. 27.
    Guerre-Millo M: Adipose tissue and adipokines: for better or worse. Diabetes Metab 2004, 30:13–19.PubMedCrossRefGoogle Scholar
  28. 28.
    Greenfield JR, Campbell LV: Relationship between inflammation, insulin resistance and type 2 diabetes: ‘cause or effect’? Curr Diabetes Rev 2006, 2:195–211.PubMedCrossRefGoogle Scholar
  29. 29.
    Grant PJ: Diabetes mellitus as a prothrombotic condition. J Intern Med 2007, 262:157–172.PubMedCrossRefGoogle Scholar
  30. 30.
    Caballero AE, Arora S, Saouaf R, et al.: Microvascular and macrovascular reactivity is reduced in subjects at risk for type 2 diabetes. Diabetes 1999, 48:1856–1862.PubMedCrossRefGoogle Scholar
  31. 31.
    Fein FS, Sonneblick EH: Diabetic cardiomyopathy. Prog Cardiovasc Dis 1985, 27:255–270.PubMedCrossRefGoogle Scholar
  32. 32.
    Yokoyama I, Yonekura K, Ohtake T, et al.: Coronary microangiopathy in type 2 diabetic patients: relation to glycemic control, sex, and microvascular angina rather than to coronary artery disease. J Nucl Med 2000, 41:978–985.PubMedGoogle Scholar
  33. 33.
    Gonzalez MA, Selwyn AP: Endothelial function, inflammation, and prognosis in cardiovascular disease. Am J Med 2003, 115(Suppl 8A):99S–106S.PubMedCrossRefGoogle Scholar
  34. 34.
    Makimattila S, Liu ML, Vakkilainen J, et al.: Impaired endothelium-dependent vasodilation in type 2 diabetes. Relation to LDL size, oxidized LDL, and antioxidants. Diabetes Care 1999, 22:973–981.PubMedCrossRefGoogle Scholar
  35. 35.
    Ceriello A, Taboga C, Tonutti L, et al.: Evidence for an independent and cumulative effect of postprandial hypertriglyceridemia and hyperglycemia on endothelial dysfunction and oxidative stress generation: effects of short-and long-term simvastatin treatment. Circulation 2002, 106:1211–1218.PubMedCrossRefGoogle Scholar
  36. 36.
    Rim SJ, Leong-Poi H, Lindner JR, et al.: Decrease in coronary blood flow reserve during hyperlipidemia is secondary to an increase in blood viscosity. Circulation 2001, 104:2704–2709.PubMedCrossRefGoogle Scholar
  37. 37.
    Rosenson RS, Lowe GD: Effects of lipids and lipoproteins on thrombosis and rheology. Atherosclerosis 1998, 140:271–280.PubMedCrossRefGoogle Scholar
  38. 38.
    Kohno M, Murakawa K, Yasunari K, et al.: Improvement of erythrocyte deformability by cholesterol-lowering therapy with pravastatin in hypercholesterolemic patients. Metab Clin Exp 1997, 46:287–291.PubMedGoogle Scholar
  39. 39.
    Scognamiglio R, Negut C, Vigli de Kreutzenberg S, et al.: Postprandial myocardial perfusion in healthy subjects and in type 2 diabetic patients. Circulation 2005, 112:179–184.PubMedCrossRefGoogle Scholar
  40. 40.
    Kawano H, Motoyama T, Hirashima O, et al.: Hyperglycemia rapidly suppresses flow-mediated endothelium dependent vasodilation of brachial artery. J Am Coll Cardiol 1999, 43:146–154.CrossRefGoogle Scholar
  41. 41.
    Scognamiglio R, Negut C, Vigli de Kreutzenberg S, et al.: Effects of different insulin regimens on postprandial perfusion defects on type 2 diabetic patients. Diabetes Care 2006, 29:95–100.PubMedCrossRefGoogle Scholar
  42. 42.
    Bolad I, Delafontaine P: Endothelial dysfunction: its role in hypertensive coronary disease. Curr Opin Cardiol 2005, 20:270–274.PubMedCrossRefGoogle Scholar
  43. 43.
    Svensson AM, McGuire DK, Abrahamsson P, et al.: Association between hyper-and hypoglycemia and 2 year all-cause mortality risk in diabetic patients with acute coronary events. Eur Heart J 2005, 26:1255–1261.PubMedCrossRefGoogle Scholar
  44. 44.
    Meier JJ, Deifuss S, Klamann A, et al.: Plasma glucose at hospital admission and previous metabolic control determine myocardial infarct size and survival in patients with and without type 2 diabetes: the Langendreer Myocardial Infarction and Blood Glucose in Diabetic Patients Assessment (LAMBDA). Diabetes Care 2005, 28:2551–2553.PubMedCrossRefGoogle Scholar
  45. 45.
    Chaudhuri A, Janicke D, Wilson MF, et al.: Anti-inflammatory and profibrinolytic effect of insulin in acute ST-segment-elevation myocardial infarction. Circulation 2004, 109:849–854.PubMedCrossRefGoogle Scholar
  46. 46.
    Malmberg K, Ryden L, Wedel H, et al.: Intense metabolic control by means of insulin in patients with diabetes mellitus and acute myocardial infarction (DIGAMI 2): effects on mortality and morbidity. Eur Heart J 2005, 26:650–661.PubMedCrossRefGoogle Scholar
  47. 47.
    Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). UK Prospective Diabetes Study (UKPDS) Group [no authors listed]. Lancet 1998, 352:854–865.Google Scholar
  48. 48.
    Effect of intensive glucose lowering in type 2 diabetes. The Action to Control Cardiovascular Risk in Diabetes Study Group [no authors listed]. N Engl J Med 2008, 358:2545–2559.Google Scholar
  49. 49.
    Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes. The ADVANCE Collaborative Group [no authors listed]. N Engl J Med 2008, 358:2560–2572.Google Scholar
  50. 50.
    Collins R, Armitage J, Parish S, et al.: MRC/BHF Heart Protection Study of cholesterol-lowering with simvastatin in 5963 people with diabetes: a randomised placebo-controlled trial. Lancet 2003, 361:2005–2016.PubMedCrossRefGoogle Scholar
  51. 51.
    Goldberg RB, Mellies MJ, Sacks FM, et al.: Cardiovascular events and their reduction with pravastatin in diabetic and glucose-intolerant myocardial infarction survivors with average cholesterol levels: subgroup analyses in the cholesterol and recurrent events (CARE) trial. The Care Investigators. Circulation 1998, 98:2513–2519.PubMedGoogle Scholar
  52. 52.
    Colhoun HM, Betteridge DJ, Durrington PN, et al.: Primary prevention of cardiovascular disease with atorvastatin in type 2 diabetes in the Collaborative Atorvastatin Diabetes Study (CARDS): multicentre randomised placebo-controlled trial. Lancet 2004, 364:685–696.PubMedCrossRefGoogle Scholar
  53. 53.
    Schaefer EJ, McNamara JR, Shah PK, et al.: Elevated remnant-like particle cholesterol and triglyceride levels in diabetic men and women in the Framingham Offspring Study. Diabetes Care 2002, 25:989–994.PubMedCrossRefGoogle Scholar
  54. 54.
    Brown BG, Zhao XQ, Chait A, et al.: Simvastatin and niacin, antioxidant vitamins, or the combination for the prevention of coronary disease. N Engl J Med 2001, 345:1583–1592.PubMedCrossRefGoogle Scholar
  55. 55.
    Yusuf S, Sleight P, Pogue J, et al.: Effects of an angiotensin-converting-enzyme inhibitor, ramipril, on cardiovascular events in high-risk patients. The Heart Outcomes Prevention Evaluation Study Investigators. N Engl J Med 2000, 342:145–153.PubMedCrossRefGoogle Scholar
  56. 56.
    Gustafsson I, Torp-Pedersen C, Kober L, et al.: Effect of the angiotensin-converting enzyme inhibitor trandolapril on mortality and morbidity in diabetic patients with left ventricular dysfunction after acute myocardial infarction. J Am Coll Cardiol 1999, 34:83–89.PubMedCrossRefGoogle Scholar
  57. 57.
    Telmisartan, ramipril, or both in patients at high risk for vascular events. The ONTARGET Investigators [no authors listed]. N Engl J Med 2008, 358:1547–1559.Google Scholar
  58. 58.
    Chobanian AV, Bakris GL, Black HR, et al.: The seventh report of the joint national committee on prevention, detection, evaluation, and treatment of high blood pressure: the JNC 7 report. JAMA 2003, 289:2560–2572.PubMedCrossRefGoogle Scholar
  59. 59.
    Gaede P, Vedel P, Larsen N, et al.: Multifactorial intervention and cardiovascular disease in patients with type 2 diabetes. N Engl J Med 2003, 348:383–393.PubMedCrossRefGoogle Scholar
  60. 60.
    Krolewski KS, Warren JH, Valsania P, et al.: Evolving natural history of coronary artery disease in diabetes mellitus. Am J Med 1991, 90:56S–61S.PubMedCrossRefGoogle Scholar
  61. 61.
    Daly C, Clemens F, Lopez Sendon JL, et al.: Gender differences in the management and clinical outcomes of stable angina. Circulation 2006, 113:490–498.PubMedCrossRefGoogle Scholar
  62. 62.
    Shaw LJ, Merz CNB, Pepine CJ, et al.: Insights from the NHLBI-sponsored women’s ischemia syndrome evaluation (WISE) study: part 1: gender differences in traditional and novel risk factors, symptom evaluation, and gender-optimized diagnostic strategies. J Am Coll Cardiol 2006, 47:4S–20S.CrossRefGoogle Scholar

Copyright information

© Current Medicine Group LLC 2008

Authors and Affiliations

  1. 1.Division of Cardiovascular MedicineUniversity of VirginiaCharlottesvilleUSA

Personalised recommendations