Current Diabetes Reports

, Volume 8, Issue 4, pp 257–262 | Cite as

Genetic susceptibility of diabetic retinopathy

  • Shrena Patel
  • Haoyu Chen
  • Nicholas H. Tinkham
  • Kang Zhang


Diabetes continues to be a major source of morbidity and mortality among working-age adults nationally and internationally. The microvascular complications of diabetes, including diabetic retinopathy, account for a major proportion of disease-associated morbidity and likely contribute to macrovascular complications. Although glycemic control contributes to susceptibility for diabetic complications, some people with strict control develop these complications, whereas others with poor control remain complication free. This suggests a genetic contribution to disease development. Although many genes and proteins of vascular growth have been studied in association with diabetic retinopathy, no definitive major predisposing genes or functional consequences of genetic variants have been identified for microvascular complications of the disease. In this article, we review the studies done on candidate genes.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and Recommended Reading

  1. 1.
    Varma R, Macias GL, Torres M, et al.: Biologic risk factors associated with diabetic retinopathy: the Los Angeles Latino Eye Study. Ophthalmology 2007, 114:1332–1340.PubMedCrossRefGoogle Scholar
  2. 2.
    Reich DE, Lander ES: On the allelic spectrum of human disease. Trends Genet 2001, 17:502–510.PubMedCrossRefGoogle Scholar
  3. 3.
    Yang Z, Camp NJ, Sun H, et al.: A variant of the HTRA1 gene increases susceptibility to age-related macular degeneration. Science 2006, 314:992–993.PubMedCrossRefGoogle Scholar
  4. 4.
    Dewan A, Liu M, Hartman S, et al.: HTRA1 promoter polymorphism in wet age-related macular degeneration. Science 2006, 314:989–992.PubMedCrossRefGoogle Scholar
  5. 5.
    Klein RJ, Zeiss C, Chew EY, et al.: Complement factor H polymorphism in age-related macular degeneration. Science 2005, 308:385–389.PubMedCrossRefGoogle Scholar
  6. 6.
    Grant SF, Thorleifsson G, Reynisdottir I, et al.: Variant of transcription factor 7-like 2 (TCF7L2) gene confers risk of type 2 diabetes. Nat Genet 2006, 38:320–323.PubMedCrossRefGoogle Scholar
  7. 7.
    International HapMap Consortium: A haplotype map of the human genome. Nature 2005, 437:1299–1320.CrossRefGoogle Scholar
  8. 8.
    Pritchard JK: Are rare variants responsible for susceptibility to complex diseases? Am J Hum Genet 2001, 69:124–137.PubMedCrossRefGoogle Scholar
  9. 9.
    Garcia CK, Wilund K, Arca M, et al.: Autosomal recessive hypercholesterolemia caused by mutations in a putative LDL receptor adaptor protein. Science 2001, 292:1394–1398.PubMedCrossRefGoogle Scholar
  10. 10.
    Harris MI, Klein R, Cowie CC, et al.: Is the risk of diabetic retinopathy greater in non-Hispanic blacks and Mexican Americans than in non-Hispanic whites with type 2 diabetes? A U.S. population study. Diabetes Care 1998, 21:1230–1235.PubMedCrossRefGoogle Scholar
  11. 11.
    Warpeha KM, Chakravarthy U: Molecular genetics of microvascular disease in diabetic retinopathy. Eye 2003, 17:305–311.PubMedCrossRefGoogle Scholar
  12. 12.
    Wellcome Trust Case Control Consortium: Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 2007, 447:661–678.CrossRefGoogle Scholar
  13. 13.
    Saxena R, Voight BF, Lyssenko V, et al.: Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels. Science 2007, 316:1331–1336.PubMedCrossRefGoogle Scholar
  14. 14.
    Scott LJ, Mohlke KL, Bonnycastle LL, et al.: A genome-wide association study of type 2 diabetes in Finns detects multiple susceptibility variants. Science 2007, 316:1341–1345.PubMedCrossRefGoogle Scholar
  15. 15.
    Sladek R, Rocheleau G, Rung J, et al.: A genome-wide association study identifies novel risk loci for type 2 diabetes. Nature 2007, 445:881–885.PubMedCrossRefGoogle Scholar
  16. 16.
    Zeggini E, Weedon MN, Lindgren CM, et al.: Replication of genome-wide association signals in UK samples reveals risk loci for type 2 diabetes. Science 2007, 316:1336–1341.PubMedCrossRefGoogle Scholar
  17. 17.
    Field LL: Genetic linkage and association studies of type I diabetes: challenges and rewards. Diabetologia 2002, 45:21–35.PubMedCrossRefGoogle Scholar
  18. 18.
    Hanis CL, Hallman D: Genetics of diabetic retinopathy. Curr Diab Rep 2006, 6:155–161.PubMedCrossRefGoogle Scholar
  19. 19.
    Aiello LP: Angiogenic pathways in diabetic retinopathy. N Engl J Med 2005, 353:839–841.PubMedCrossRefGoogle Scholar
  20. 20.
    Watanabe D, Suzuma K, Matsui S, et al.: Erythropoietin as a retinal angiogenic factor in proliferative diabetic retinopathy. N Engl J Med 2005, 353:782–792.PubMedCrossRefGoogle Scholar
  21. 21.
    Aiello LP, Avery RL, Arrigg PG, et al.: Vascular endothelial growth factor in ocular fluid of patients with diabetic retinopathy and other retinal disorders. N Engl J Med 1994, 331:1480–1487.PubMedCrossRefGoogle Scholar
  22. 22.
    Enge M, Bjarnegard M, Gerhardt H, et al.: Endothelium-specific platelet-derived growth factor-B ablation mimics diabetic retinopathy. EMBO J 2002, 21:4307–4316.PubMedCrossRefGoogle Scholar
  23. 23.
    Ladomery MR, Harper SJ, Bates DO: Alternative splicing in angiogenesis: the vascular endothelial growth factor paradigm. Cancer Lett 2007, 249:133–142.PubMedCrossRefGoogle Scholar
  24. 24.
    Robinson CJ, Stringer SE: The splice variants of vascular endothelial growth factor (VEGF) and their receptors. J Cell Sci 2001, 114:853–865.PubMedGoogle Scholar
  25. 25.
    Buraczynska M, Ksiazek P, Baranowicz-Gaszczyk I, Jozwiak L: Association of the VEGF gene polymorphism with diabetic retinopathy in type 2 diabetes patients. Nephrol Dial Transplant 2007, 22:827–832.PubMedCrossRefGoogle Scholar
  26. 26.
    Suganthalakshmi B, Anand R, Kim R, et al.: Association of VEGF and eNOS gene polymorphisms in type 2 diabetic retinopathy. Mol Vis 2006, 12:336–341.PubMedGoogle Scholar
  27. 27.
    Yang B, Cross DF, Ollerenshaw M, et al.: Polymorphisms of the vascular endothelial growth factor and susceptibility to diabetic microvascular complications in patients with type 1 diabetes mellitus. J Diabetes Complications 2003, 17:1–6.PubMedCrossRefGoogle Scholar
  28. 28.
    Awata T, Inoue K, Kurihara S, et al.: A common polymorphism in the 5′-untranslated region of the VEGF gene is associated with diabetic retinopathy in type 2 diabetes. Diabetes 2002, 51:1635–1639.PubMedCrossRefGoogle Scholar
  29. 29.
    Lip PL, Chatterjee S, Caine GJ, et al.: Plasma vascular endothelial growth factor, angiopoietin-2, and soluble angiopoietin receptor tie-2 in diabetic retinopathy: effects of laser photocoagulation and angiotensin receptor blockade. Br J Ophthalmol 2004, 88:1543–1546.PubMedCrossRefGoogle Scholar
  30. 30.
    Watanabe D, Suzuma K, Suzuma I, et al.: Vitreous levels of angiopoietin 2 and vascular endothelial growth factor in patients with proliferative diabetic retinopathy. Am J Ophthalmol 2005, 139:476–481.PubMedCrossRefGoogle Scholar
  31. 31.
    Clarke M, Dodson PM: PKC inhibition and diabetic micro-vascular complications. Best Pract Res Clin Endocrinol Metab 2007, 21:573–586.PubMedCrossRefGoogle Scholar
  32. 32.
    Chen J, Connor KM, Aderman CM, Smith LE: Erythropoietin deficiency decreases vascular stability in mice. J Clin Invest 2008, 118:526–533.PubMedGoogle Scholar
  33. 33.
    Tong Z, Yang Z, Patel S, et al.: Promoter polymorphism of the erythropoietin gene in severe diabetic eye and kidney complications. Proc Natl Acad Sci U S A 2008, 106:6998–7004.CrossRefGoogle Scholar
  34. 34.
    Fukumura D, Gohongi T, Kadambi A, et al.: Predominant role of endothelial nitric oxide synthase in vascular endothelial growth factor-induced angiogenesis and vascular permeability. Proc Natl Acad Sci U S A 2001, 98:2604–2609.PubMedCrossRefGoogle Scholar
  35. 35.
    Chen Y, Huang H, Zhou J, et al.: Polymorphism of the endothelial nitric oxide synthase gene is associated with diabetic retinopathy in a cohort of West Africans. Mol Vis 2007, 13:2142–2147.PubMedGoogle Scholar
  36. 36.
    Abiko T, Abiko A, Clermont AC, et al.: Characterization of retinal leukostasis and hemodynamics in insulin resistance and diabetes: role of oxidants and protein kinase-C activation. Diabetes 2003, 52:829–837.PubMedCrossRefGoogle Scholar
  37. 37.
    Ceriello A: New insights on oxidative stress and diabetic complications may lead to a “causal” antioxidant therapy. Diabetes Care 2003, 26:1589–1596.PubMedCrossRefGoogle Scholar
  38. 38.
    Sozmen EY, Sozmen B, Delen Y, Onat T: Catalase/superoxide dismutase (SOD) and catalase/paraoxonase (PON) ratios may implicate poor glycemic control. Arch Med Res 2001, 32:283–287.PubMedCrossRefGoogle Scholar
  39. 39.
    Hudson BI, Hofmann MA, Bucciarelli L, et al.: Glycation and diabetes: The RAGE connection. Curr Sci 2002, 83:1515–1521.Google Scholar
  40. 40.
    Ramprasad S, Radha V, Mathias RA, et al.: Rage gene promoter polymorphisms and diabetic retinopathy in a clinic-based population from South India. Eye 2007, 21:395–401.PubMedCrossRefGoogle Scholar
  41. 41.
    Gardiner TA, Anderson HR, Stitt AW: Inhibition of advanced glycation end-products protects against retinal capillary basement membrane expansion during long-term diabetes. J Pathol 2003, 201:328–333.PubMedCrossRefGoogle Scholar
  42. 42.
    Barile GR, Pachydaki SI, Tari SR, et al.: The RAGE axis in early diabetic retinopathy. Invest Ophthalmol Vis Sci 2005, 46:2916–2924.PubMedCrossRefGoogle Scholar
  43. 43.
    Richeti F, Noronha RM, Waetge RT, et al.: Evaluation of AC(n) and C(-106)T polymorphisms of the aldose reductase gene in Brazilian patients with DM1 and susceptibility to diabetic retinopathy. Mol Vis 2007, 13:740–745.PubMedGoogle Scholar
  44. 44.
    Demaine A, Cross D, Millward A: Polymorphisms of the aldose reductase gene and susceptibility to retinopathy in type 1 diabetes mellitus. Invest Ophthalmol Vis Sci 2000, 41:4064–4068.PubMedGoogle Scholar
  45. 45.
    Kao YL, Donaghue K, Chan A, et al.: An aldose reductase intragenic polymorphism associated with diabetic retinopathy. Diabetes Res Clin Pract 1999, 46:155–160.PubMedCrossRefGoogle Scholar
  46. 46.
    Girach A, Vignati L: Diabetic microvascular complications—can the presence of one predict the development of another? J Diabetes Complications 2006, 20:228–237.PubMedCrossRefGoogle Scholar
  47. 47.
    Klein R, Klein BE: Relation of glycemic control to diabetic complications and health outcomes. Diabetes Care 1998, 21(Suppl 3):C39–C43.PubMedGoogle Scholar
  48. 48.
    El-Asrar AM, Al-Rubeaan KA, Al-Amro SA, et al.: Retinopathy as a predictor of other diabetic complications. Int Ophthalmol 2001, 24:1–11.PubMedCrossRefGoogle Scholar
  49. 49.
    Trevisan R, Vedovato M, Mazzon C, et al.: Concomitance of diabetic retinopathy and proteinuria accelerates the rate of decline of kidney function in type 2 diabetic patients. Diabetes Care 2002, 25:2026–2031.PubMedCrossRefGoogle Scholar
  50. 50.
    Parving HH, Mauer M, Ritz E: Diabetic nephropathy. In The Kidney. Edited by Brenner BM. Philadelphia: Elsevier; 2004:1777–1818.Google Scholar

Copyright information

© Current Medicine Group LLC 2008

Authors and Affiliations

  • Shrena Patel
  • Haoyu Chen
  • Nicholas H. Tinkham
  • Kang Zhang
    • 1
  1. 1.Department of Ophthalmology and Visual Sciences, Moran Eye CenterUniversity of Utah School of MedicineSalt Lake CityUSA

Personalised recommendations