Current Diabetes Reports

, Volume 8, Issue 3, pp 231–232

Increased insulin resistance in young adults born with very low birth weight

  • Guenther Boden
Clinical Trials Report


  1. 1.
    Hofman PL, Regan F, Jackson WE, et al.: Premature birth and later insulin resistance. N Engl J Med 2004, 351:2179–2186.PubMedCrossRefGoogle Scholar
  2. 2.
    Hovi P, Andersson S, Eriksson JG, et al.: Glucose regulation in young adults with very lower birth weight. N Engl J Med 2007, 356:2053–2063.PubMedCrossRefGoogle Scholar
  3. 3.
    Barker DJ, Hales CN, Fall CH, et al.: Type 2 (non-insulin-dependent) diabetes mellitus, hypertension and hyperlipidaemia (syndrome X): relation to reduced fetal growth. Diabetologia 1993, 36:62–67.PubMedCrossRefGoogle Scholar
  4. 4.
    Phillips DIW, Barker DJP, Hales CN, et al.: Thinness at birth and insulin resistance in adult life. Diabetologia 1994, 37:150–154.PubMedCrossRefGoogle Scholar
  5. 5.
    Valdez R, Athens MA, Thompson GH, et al.: Birthweight and adult health outcomes in a biethnic population in the USA. Diabetologia 1994, 37:624–631.PubMedCrossRefGoogle Scholar
  6. 6.
    Neel JV: Diabetes mellitus: a thrifty genotype rendered detrimental by ‘progress’? Am J Hum Genet 1962, 14:353–362.PubMedGoogle Scholar
  7. 7.
    Hales CN, Barker DJP: Type 2 (non-insulin dependent) diabetes mellitus: the thrifty phenotype hypothesis. Diabetologia 1992, 35:595–601.PubMedCrossRefGoogle Scholar
  8. 8.
    McCance DR, Pettitt DJ, Hanson RL, et al.: Birth weight and non-insulin dependent diabetes: thrifty genotype, thrifty phenotype, or surviving small baby genotype? BMJ 1994, 308:942–945.PubMedGoogle Scholar
  9. 9.
    Wei JN, Sung FC, Li CY, et al.: Low birth weight and high birth weight infants are both at an increased risk to have type 2 diabetes among school children in Taiwan. Diabetes Care 2003, 26:343–348.PubMedCrossRefGoogle Scholar
  10. 10.
    Waterland RA, Garza C: Potential mechanisms of metabolic imprinting that lead to chronic disease. Am J Clin Nutr 1999, 69:179–197.PubMedGoogle Scholar
  11. 11.
    Waterland RA, Jirtle RL: Transposable elements: targets for early nutritional effects on epigenetic gene regulation. Mol Cell Biol 2003, 23:5293–5300.PubMedCrossRefGoogle Scholar
  12. 12.
    Lillycrop KA, Phillips ES, Jackson AA, et al.: Dietary protein restriction of pregnant rats induces and folic acid supple-mentation prevents epigenetic modification of hepatic gene expression in the offspring. J Nutr 2005, 135:1382–1386.PubMedGoogle Scholar
  13. 13.
    Weaver IC, Cervoni N, Champagne FA, et al.: Epigenetic programming by maternal behavior. Nat Neurosci 2004, 7:847–854.PubMedCrossRefGoogle Scholar
  14. 14.
    Sandovici I, Naumova AK, Leppert M, et al.: A longitudinal study of X-inactivation ratio in human females. Hum Genet 2004, 115:387–392.PubMedCrossRefGoogle Scholar
  15. 15.
    Sandovici I, Kassovska-Bratinova S, Loredo-Osti JC, et al.: Interindividual variability and parent of origin DNA methylation differences at specific human Alu elements. Hum Mol Genet 2005, 14:2135–2143.PubMedCrossRefGoogle Scholar
  16. 16.
    Reaven GM: The role of insulin resistance in human disease. Diabetes 1988, 37:1595–1607.PubMedCrossRefGoogle Scholar
  17. 17.
    Tuomilehto J, Lindstrom J, Eriksson JG, et al.: Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance. N Engl J Med 2001, 344:1343–1350.PubMedCrossRefGoogle Scholar
  18. 18.
    Knowler WC, Barrett-Connor E, Fowler SE, et al.: Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med 2002, 346:393–403.PubMedCrossRefGoogle Scholar

Copyright information

© Current Medicine Group LLC 2008

Authors and Affiliations

  • Guenther Boden

There are no affiliations available

Personalised recommendations