Current Diabetes Reports

, Volume 8, Issue 1, pp 51–59 | Cite as

Why is HDL functionally deficient in type 2 diabetes?

  • Anatol KontushEmail author
  • M. John Chapman


High-lipoprotein (HDL) particles exert a spectrum of atheroprotective activities that can be deficient in type 2 diabetes. Key mechanisms leading to the formation of functionally deficient HDL involve 1) HDL enrichment in triglycerides and depletion in cholesteryl esters with conformational alterations of apolipoprotein A-I; 2) glycation of apolipoproteins and/or HDL-associated enzymes; and 3) oxidative modification of HDL lipids, apolipoproteins, and/or enzymes. Available data identify hypertriglyceridemia, with concomitant compositional modification of the HDL lipid core and conformational change of apolipoprotein A-I, as a driving force in functional alteration of HDL particles in type 2 diabetes. Therapeutic options for correcting HDL functional deficiency should target hypertriglyceridemia by normalizing circulating levels of triglyceride-rich lipoproteins.


Cholesteryl Ester Transfer Protein Arterioscler Thromb Vasc Biol PON1 Activity Cholesteryl Ester Transfer Protein Inhibitor Human Acute Monocytic Leukemia Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and Recommended Reading

  1. 1.
    Assmann G, Nofer JR: Atheroprotective effects of high-density lipoproteins. Annu Rev Med 2003, 54:321–341.PubMedCrossRefGoogle Scholar
  2. 2.
    Kontush A, Chapman MJ: Functionally defective HDL: a new therapeutic target at the crossroads of dyslipidemia, inflammation and atherosclerosis. Pharmacol Rev 2006, 3:342–374.CrossRefGoogle Scholar
  3. 3.
    Kontush A, Chapman MJ: Antiatherogenic small, dense HDL—guardian angel of the arterial wall? Nat Clin Pract Cardiovasc Med 2006, 3:144–153.PubMedCrossRefGoogle Scholar
  4. 4.
    Nobecourt E, Jacqueminet S, Hansel B, et al.: Defective antioxidative activity of small, dense HDL particles in type 2 diabetes: relationship to elevated oxidative stress and hyperglycemia. Diabetologia 2005, 48:529–538.PubMedCrossRefGoogle Scholar
  5. 5.
    Hansel B, Giral P, Nobecourt E, et al.: Metabolic syndrome is associated with elevated oxidative stress and dysfunctional dense high-density lipoprotein particles displaying impaired antioxidative activity. J Clin Endocrinol Metab 2004, 89:4963–4971.PubMedCrossRefGoogle Scholar
  6. 6.
    Lewis GF, Rader DJ: New insights into the regulation of HDL metabolism and reverse cholesterol transport. Circ Res 2005, 96:1221–1232.PubMedCrossRefGoogle Scholar
  7. 7.
    Le Goff W, Guerin M, Chapman MJ: Pharmacological modulation of cholesteryl ester transfer protein, a new therapeutic target in atherogenic dyslipidemia. Pharmacol Ther 2004, 101:17–38.PubMedCrossRefGoogle Scholar
  8. 8.
    Khovidhunkit W, Kim MS, Memon RA, et al.: Effects of infection and inflammation on lipid and lipoprotein metabolism: mechanisms and consequences to the host. J Lipid Res 2004, 45:1169–1196.PubMedCrossRefGoogle Scholar
  9. 9.
    O’Brien KD, Chait A: Serum amyloid A: the “other” inflammatory protein. Curr Atheroscler Rep 2006, 8:62–68.PubMedCrossRefGoogle Scholar
  10. 10.
    Ridker PM, Hennekens CH, Buring JE, Rifai N: C-reactive protein and other markers of inflammation in the prediction of cardiovascular disease in women. N Engl J Med 2000, 342:836–843.PubMedCrossRefGoogle Scholar
  11. 11.
    Choudhury RP, Leyva F: C-Reactive protein, serum amyloid A protein, and coronary events. Circulation 1999, 100:e65–e66.PubMedGoogle Scholar
  12. 12.
    Ceriello A, Motz E: Is oxidative stress the pathogenic mechanism underlying insulin resistance, diabetes, and cardiovascular disease? The common soil hypothesis revisited. Arterioscler Thromb Vasc Biol 2004, 24:816–823.PubMedCrossRefGoogle Scholar
  13. 13.
    Shao B, Oda MN, Oram JF, Heinecke JW: Myeloperoxidase: an inflammatory enzyme for generating dysfunctional high density lipoprotein. Curr Opin Cardiol 2006, 21:322–328.PubMedCrossRefGoogle Scholar
  14. 14.
    Hermo R, Mier C, Mazzotta M, et al.: Circulating levels of nitrated apolipoprotein A-I are increased in type 2 diabetic patients. Clin Chem Lab Med 2005, 43:601–606.PubMedCrossRefGoogle Scholar
  15. 15.
    Calvo C, Ponsin G, Berthezene F: Characterization of the non enzymatic glycation of high density lipoprotein in diabetic patients. Diabet Metab 1988, 14:264–269.Google Scholar
  16. 16.
    Dayal B, Ertel NH: ProteinChip technology: a new and facile method for the identification and measurement of high-density lipoproteins apoA-I and apoA-II and their glycosylated products in patients with diabetes and cardiovascular disease. J Proteome Res 2002, 1:375–380.PubMedCrossRefGoogle Scholar
  17. 17.
    Igau B, Castro G, Clavey V, et al.: In vivo glucosylated LpA-I subfraction: evidence for structural and functional alterations. Arterioscler Thromb Vasc Biol 1997, 17:2830–2836.PubMedGoogle Scholar
  18. 18.
    Durrington PN, Mackness B, Mackness MI: Paraoxonase and atherosclerosis. Arterioscler Thromb Vasc Biol 2001, 21:473–480.PubMedGoogle Scholar
  19. 19.
    Boemi M, Leviev I, Sirolla C, et al.: Serum paraoxonase is reduced in type 1 diabetic patients compared to non-diabetic, first degree relatives: influence on the ability of HDL to protect LDL from oxidation. Atherosclerosis 2001, 155:229–235.PubMedCrossRefGoogle Scholar
  20. 20.
    Ferretti G, Bacchetti T, Busni D, et al.: Protective effect of paraoxonase activity in high-density lipoproteins against erythrocyte membranes peroxidation: a comparison between healthy subjects and type 1 diabetic patients. J Clin Endocrinol Metab 2004, 89:2957–2962.PubMedCrossRefGoogle Scholar
  21. 21.
    Karabina SA, Lehner AN, Frank E, et al.: Oxidative inactivation of paraoxonase-implications in diabetes mellitus and atherosclerosis. Biochim Biophys Acta 2005, 1725:213–221.PubMedGoogle Scholar
  22. 22.
    Hedrick CC, Thorpe SR, Fu MX, et al.: Glycation impairs high-density lipoprotein function. Diabetologia 2000, 43:312–320.PubMedCrossRefGoogle Scholar
  23. 23.
    Ferretti G, Bacchetti T, Marchionni C, et al.: Effect of glycation of high density lipoproteins on their physicochemical properties and on paraoxonase activity. Acta Diabetol 2001, 38:163–169.PubMedCrossRefGoogle Scholar
  24. 24.
    Van Lenten BJ, Navab M, Shih D, et al.: The role of high-density lipoproteins in oxidation and inflammation. Trends Cardiovasc Med 2001, 11:155–161.PubMedCrossRefGoogle Scholar
  25. 25.
    Borggreve SE, De Vries R, Dullaart RP: Alterations in high-density lipoprotein metabolism and reverse cholesterol transport in insulin resistance and type 2 diabetes mellitus: role of lipolytic enzymes, lecithin:cholesterol acyltransferase and lipid transfer proteins. Eur J Clin Invest 2003, 33:1051–1069.PubMedCrossRefGoogle Scholar
  26. 26.
    Bagdade JD, Buchanan WE, Kuusi T, Taskinen MR: Persistent abnormalities in lipoprotein composition in non-insulin-dependent diabetes after intensive insulin therapy. Arteriosclerosis 1990, 10:232–239.PubMedGoogle Scholar
  27. 27.
    Pruzanski W, Stefanski E, de Beer FC, et al.: Comparative analysis of lipid composition of normal and acute-phase high density lipoproteins. J Lipid Res 2000, 41:1035–1047.PubMedGoogle Scholar
  28. 28.
    Iwase M, Sonoki K, Sasaki N, et al.: Lysophosphatidylcholine contents in plasma LDL in patients with type 2 diabetes mellitus: Relation with lipoprotein-associated phospholipase A(2) and effects of simvastatin treatment. Atherosclerosis 2007, [Epub ahead of print.]Google Scholar
  29. 29.
    Watala C, Winocour PD: The relationship of chemical modification of membrane proteins and plasma lipoproteins to reduced membrane fluidity of erythrocytes from diabetic subjects. Eur J Clin Chem Clin Biochem 1992, 30:513–519.PubMedGoogle Scholar
  30. 30.
    Ansell BJ, Navab M, Hama S, et al.: Inflammatory/anti-inflammatory properties of high-density lipoprotein distinguish patients from control subjects better than high-density lipoprotein cholesterol levels and are favorably affected by simvastatin treatment. Circulation 2003, 108:2751–2756.PubMedCrossRefGoogle Scholar
  31. 31.
    Cavallero E, Brites F, Delfly B, et al.: Abnormal reverse cholesterol transport in controlled type II diabetic patients. Studies on fasting and postprandial LpA-I particles. Arterioscler Thromb Vasc Biol 1995, 15:2130–2135.PubMedGoogle Scholar
  32. 32.
    Brites FD, Bonavita CD, De Geitere C, et al.: Alterations in the main steps of reverse cholesterol transport in male patients with primary hypertriglyceridemia and low HDL-cholesterol levels. Atherosclerosis 2000, 152:181–192.PubMedCrossRefGoogle Scholar
  33. 33.
    Syvanne M, Castro G, Dengremont C, et al.: Cholesterol efflux from Fu5AH hepatoma cells induced by plasma of subjects with or without coronary artery disease and non-insulin-dependent diabetes: importance of LpA-I:A-II particles and phospholipid transfer protein. Atherosclerosis 1996, 127:245–253.PubMedCrossRefGoogle Scholar
  34. 34.
    Fievet C, Theret N, Shojaee N, et al.: Apolipoprotein A-I-containing particles and reverse cholesterol transport in IDDM. Diabetes 1992, 41(suppl 2):81–85.PubMedGoogle Scholar
  35. 35.
    Hoang A, Murphy AJ, Coughlan MT, et al.: Advanced glycation of apolipoprotein A-I impairs its anti-atherogenic properties. Diabetologia 2007, 50:1770–1779.PubMedCrossRefGoogle Scholar
  36. 36.
    Duell PB, Oram JF, Bierman EL: Nonenzymatic glycosylation of HDL and impaired HDL-receptor-mediated cholesterol efflux. Diabetes 1991, 40:377–384.PubMedCrossRefGoogle Scholar
  37. 37.
    Rashduni DL, Rifici VA, Schneider SH, Khachadurian AK: Glycation of high-density lipoprotein does not increase its susceptibility to oxidation or diminish its cholesterol efflux capacity. Metabolism 1999, 48:139–143.PubMedCrossRefGoogle Scholar
  38. 38.
    Sparks DL, Davidson WS, Lund-Katz S, Phillips MC: Effects of the neutral lipid content of high density lipoprotein on apolipoprotein A-I structure and particle stability. J Biol Chem 1995, 270:26910–26917.PubMedCrossRefGoogle Scholar
  39. 39.
    Curtiss LK, Bonnet DJ, Rye KA: The conformation of apolipoprotein A-I in high-density lipoproteins is influenced by core lipid composition and particle size: a surface plasmon resonance study. Biochemistry 2000, 39:5712–5721.PubMedCrossRefGoogle Scholar
  40. 40.
    Yancey PG, de la Llera-Moya M, Swarnakar S, et al.: High density lipoprotein phospholipid composition is a major determinant of the bi-directional flux and net movement of cellular free cholesterol mediated by scavenger receptor BI. J Biol Chem 2000, 275:36596–36604.PubMedCrossRefGoogle Scholar
  41. 41.
    Artl A, Marsche G, Lestavel S, et al.: Role of serum amyloid A during metabolism of acute-phase HDL by macrophages. Arterioscler Thromb Vasc Biol 2000, 20:763–772.PubMedGoogle Scholar
  42. 42.
    Gowri MS, Van der Westhuyzen DR, Bridges SR, Anderson JW: Decreased protection by HDL from poorly controlled type 2 diabetic subjects against LDL oxidation may be due to the abnormal composition of HDL. Arterioscler Thromb Vasc Biol 1999, 19:2226–2233.PubMedGoogle Scholar
  43. 43.
    Lakshman MR, Gottipati CS, Narasimhan SJ, et al.: Inverse correlation of serum paraoxonase and homocysteine thiolactonase activities and antioxidant capacity of high-density lipoprotein with the severity of cardiovascular disease in persons with type 2 diabetes mellitus. Metabolism 2006, 55:1201–1206.PubMedCrossRefGoogle Scholar
  44. 44.
    Sanguinetti SM, Brites FD, Fasulo V, et al.: HDL oxidability and its protective effect against LDL oxidation in Type 2 diabetic patients. Diabetes Nutr Metab 2001, 14:27–36.PubMedGoogle Scholar
  45. 45.
    Maxwell S, Holm G, Bondjers G, Wiklund O: Comparison of antioxidant activity in lipoprotein fractions from insulin-dependent diabetics and healthy controls. Atherosclerosis 1997, 129:89–96.PubMedCrossRefGoogle Scholar
  46. 46.
    Julier K, Mackness MI, Dean JD, Durrington PN: Susceptibility of low-and high-density lipoproteins from diabetic subjects to in vitro oxidative modification. Diabet Med 1999, 16:415–423.PubMedCrossRefGoogle Scholar
  47. 47.
    Kontush A, de Faria EC, Chantepie S, Chapman MJ: Anti-oxidative activity of HDL particle subspecies is impaired in hyperalphalipoproteinemia: relevance of enzymatic and physicochemical properties. Arterioscler Thromb Vasc Biol 2004, 24:526–533.PubMedCrossRefGoogle Scholar
  48. 48.
    Mastorikou M, Mackness M, Mackness B: Defective metabolism of oxidized phospholipid by HDL from people with type 2 diabetes. Diabetes 2006, 55:3099–3103.PubMedCrossRefGoogle Scholar
  49. 49.
    Watanabe J, Chou KJ, Liao JC, et al.: Differential association of hemoglobin with proinflammatory high density lipoproteins in atherogenic/hyperlipidemic mice. A novel biomarker of atherosclerosis. J Biol Chem 2007, 282:23698–23707.PubMedCrossRefGoogle Scholar
  50. 50.
    Nicholls SJ, Rye KA, Barter PJ: High-density lipoproteins as therapeutic targets. Curr Opin Lipidol 2005, 16:345–349.PubMedCrossRefGoogle Scholar
  51. 51.
    Salvayre R, Auge N, Benoist H, Negre-Salvayre A: Oxidized low-density lipoprotein-induced apoptosis. Biochim Biophys Acta 2002, 1585:213–221.PubMedGoogle Scholar
  52. 52.
    Abderrahmani A, Niederhauser G, Favre D, et al.: Human high-density lipoprotein particles prevent activation of the JNK pathway induced by human oxidised low-density lipoprotein particles in pancreatic beta cells. Diabetologia 2007, 50:1304–1314.PubMedCrossRefGoogle Scholar
  53. 53.
    de Souza JA, Vindis C, Hansel B, et al.: Metabolic syndrome features small, apolipoprotein A-I-poor, triglyceride-rich HDL3 particles with defective anti-apoptotic activity. Atherosclerosis 2007, [Epub ahead of print.]Google Scholar
  54. 54.
    Matsunaga T, Iguchi K, Nakajima T, et al.: Glycated high-density lipoprotein induces apoptosis of endothelial cells via a mitochondrial dysfunction. Biochem Biophys Res Commun 2001, 287:714–720.PubMedCrossRefGoogle Scholar
  55. 55.
    Persegol L, Verges B, Foissac M, et al.: Inability of HDL from type 2 diabetic patients to counteract the inhibitory effect of oxidised LDL on endothelium-dependent vasorelaxation. Diabetologia 2006, 49:1380–1386.PubMedCrossRefGoogle Scholar
  56. 56.
    Persegol L, Verges B, Gambert P, Duvillard L: Inability of HDL from abdominally obese subjects to counteract the inhibitory effect of oxidized LDL on vasorelaxation. J Lipid Res 2007, 48:1396–1401.PubMedCrossRefGoogle Scholar
  57. 57.
    Kanter JE, Johansson F, LeBoeuf RC, Bornfeldt KE: Do glucose and lipids exert independent effects on atherosclerotic lesion initiation or progression to advanced plaques? Circ Res 2007, 100:769–781.PubMedCrossRefGoogle Scholar
  58. 58.
    Chapman MJ: Therapeutic elevation of HDL-cholesterol to prevent atherosclerosis and coronary heart disease. Pharmacol Ther 2006, 111:893–908.PubMedCrossRefGoogle Scholar
  59. 59.
    Tall AR, Yvan-Charvet L, Wang N: The failure of torcetrapib: was it the molecule or the mechanism? Arterioscler Thromb Vasc Biol 2007, 27:257–260.PubMedCrossRefGoogle Scholar

Copyright information

© Current Medicine Group LLC 2008

Authors and Affiliations

  1. 1.INSERM Unité 551, Pavillon Benjamin DelessertHôpital de la PitiéParis Cedex 13France

Personalised recommendations