Current Diabetes Reports

, Volume 7, Issue 4, pp 269–275 | Cite as

Arterial compliance and endothelial function

Article

Abstract

Decreased arterial compliance (increased stiffness) correlates with cardiovascular events, possibly due to increased cardiac afterload caused by more rapidly reflected pulse waves. Endothelium-derived mediators regulate vascular tone and structure, both of which can markedly influence arterial stiffness. Thus, increased arterial stiffness may be a mechanism by which endothelial dysfunction predisposes to complications of atherosclerosis. Conversely, therapeutic manipulation of endothelial mediators could reduce arterial stiffness and cardiovascular events. Techniques have been developed that use measures of arterial stiffness as an index of endothelial dilator function; these may provide unique prognostic information to identify high-risk subjects.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and Recommended Reading

  1. 1.
    Blacher J, Asmar R, Djane S, et al.: Aortic pulse wave velocity as a marker of cardiovascular risk in hypertensive patients. Hypertension 1999, 33:1111–1117.PubMedGoogle Scholar
  2. 2.
    Blacher J, Guerin AP, Pannier B, et al.: Arterial calcifications, arterial stiffness, and cardiovascular risk in end-stage renal disease. Hypertension 2001, 38:938–942.PubMedGoogle Scholar
  3. 3.
    Blacher J, Guerin AP, Pannier B, et al.: Impact of aortic stiffness on survival in end-stage renal disease. Circulation 1999, 99:2434–2439.PubMedGoogle Scholar
  4. 4.
    Mitchell GF, Izzo JL: Evaluation of arterial stiffness. In Hypertension Primer. Edited by Izzo JL, Black HR. Philadelphia: Lippincott, Williams & Wilkins; 2003:351–355.Google Scholar
  5. 5.
    Verdecchia P, Angeli F, Taddei S: At the beginning of stiffening: endothelial dysfunction meets “pulsology”. Hypertension 2006, 48:602–608.CrossRefGoogle Scholar
  6. 6.
    Dart AM, Kingwell BA: Pulse pressure—a review of mechanisms and clinical relevance. J Am Coll Cardiol 2001, 37:975–984.PubMedCrossRefGoogle Scholar
  7. 7.
    Wilkinson IB, MacCallum H, Hupperetz PC, et al.: Changes in the derived central pressure waveform and pulse pressure in response to angiotensin II and noradrenaline in man. J Physiol 2001, 530:541–550.PubMedCrossRefGoogle Scholar
  8. 8.
    Nichols WW: Clinical measurement of arterial stiffness obtained from noninvasive pressure waveforms. Am J Hypertens 2005, 18(suppl 1):3S–10S.PubMedCrossRefGoogle Scholar
  9. 9.
    Van Trijp MJ, Bos WJ, van der Schouw YT, et al.: Noninvasively measured structural and functional arterial characteristics and coronary heart disease risk in middleaged and elderly men. Atherosclerosis 2006, 187:110–115.PubMedCrossRefGoogle Scholar
  10. 10.
    Oliver JJ, Webb DJ: Noninvasive assessment of arterial stiffness and risk of atherosclerotic events. Arterioscler Thromb Vasc Biol 2003, 23:554–566.PubMedCrossRefGoogle Scholar
  11. 11.
    Bauersachs J, Bouloumie A, Mulsch A, et al.: Vasodilator dysfunction in aged spontaneously hypertensive rats: changes in NO synthase III and soluble guanylyl cyclase expression, and in superoxide anion production. Cardiovasc Res 1998, 37:772–779.PubMedCrossRefGoogle Scholar
  12. 12.
    Safar M, Chamiot-Clerc P, Dagher G, Renaud JF: Pulse pressure, endothelium function, and arterial stiffness in spontaneously hypertensive rats. Hypertension 2001, 38:1416–1421.PubMedGoogle Scholar
  13. 13.
    Nigam A, Mitchell GF, Lambert J, Tardif JC: Relation between conduit vessel stiffness (assessed by tonometry) and endothelial function (assessed by flow-mediated dilatation) in patients with and without coronary heart disease. Am J Cardiol 2003, 92:395–399.PubMedCrossRefGoogle Scholar
  14. 14.
    Ichigi Y, Takano H, Umetani K, et al.: Increased ambulatory pulse pressure is a strong risk factor for coronary endothelial vasomotor dysfunction. J Am Coll Cardiol 2005, 45:1461–1466.PubMedCrossRefGoogle Scholar
  15. 15.
    Ceravolo R, Maio R, Pujia A, et al.: Pulse pressure and endothelial dysfunction in never-treated hypertensive patients. J Am Coll Cardiol 2003, 41:1753–1758.PubMedCrossRefGoogle Scholar
  16. 16.
    Ramsey MW, Goodfellow J, Jones CJ, et al.: Endothelial control of arterial distensibility is impaired in chronic heart failure. Circulation 1995, 92:3212–3219.PubMedGoogle Scholar
  17. 17.
    Cheung YF, Chan GC, Ha SY: Arterial stiffness and endothelial function in patients with beta-thalassemia major. Circulation 2002, 106:2561–2566.PubMedCrossRefGoogle Scholar
  18. 18.
    Ravikumar R, Deepa R, Shanthirani C, Mohan V: Comparison of carotid intima-media thickness, arterial stiffness, and brachial artery flow mediated dilatation in diabetic and nondiabetic subjects (The Chennai Urban Population Study [CUPS-9]). Am J Cardiol 2002, 90:702–707.PubMedCrossRefGoogle Scholar
  19. 19.
    McEniery CM, Wallace S, Mackenzie IS, et al.: Endothelial function is associated with pulse pressure, pulse wave velocity, and augmentation index in healthy humans. Hypertension 2006, 48:602–608.PubMedCrossRefGoogle Scholar
  20. 20.
    Schmitt M, Avolio A, Qasem A, et al.: Basal NO locally modulates human iliac artery function in vivo. Hypertension 2005, 46:227–231.PubMedCrossRefGoogle Scholar
  21. 21.
    Peng X, Haldar S, Deshpande S, et al.: Wall stiffness suppresses Akt/eNOS and cytoprotection in pulse-perfused endothelium. Hypertension 2003, 41:378–381.PubMedCrossRefGoogle Scholar
  22. 22.
    Van der Leyen HE, Gibbons GH, Morishita R, et al.: Gene therapy inhibiting neointimal vascular lesion: in vivo transfer of endothelial cell nitric oxide synthase gene. Proc Natl Acad Sci U S A 1995, 92:1137–1141.PubMedCrossRefGoogle Scholar
  23. 23.
    Mooradian DL, Hutsell TC, Keefer LK: Nitric oxide (NO) donor molecules: effect of NO release rate on vascular smooth muscle cell proliferation in vitro. J Cardiovasc Pharmacol 1995, 25:674–678.PubMedCrossRefGoogle Scholar
  24. 24.
    Janssens S, Flaherty D, Nong ZX, et al.: Human endothelial cell nitric oxide synthase gene transfer inhibits vascular smooth muscle cell proliferation and neointima formation after balloon injury in rats. Circulation 1998, 97:1274–1281.PubMedGoogle Scholar
  25. 25.
    Tanner FC, Meier P, Greutert H, et al.: Nitric oxide modulates expression of cell cycle regulatory proteins: a cytostatic strategy for inhibition of human vascular smooth muscle cell proliferation. Circulation 2000, 101:1982–1989.PubMedGoogle Scholar
  26. 26.
    Sato J, Nair K, Hiddinga J, et al.: eNOS gene transfer to vascular smooth muscle cells inhibits cell proliferation via upregulation of p27 and p21 and not apoptosis. Cardiovasc Res 2000, 47:697–706.PubMedCrossRefGoogle Scholar
  27. 27.
    Zieman SJ, Melenovsky V, Kass DA: Mechanisms, pathophysiology, and therapy of arterial stiffness. Arterioscler Thromb Vasc Biol 2005, 25:932–943.PubMedCrossRefGoogle Scholar
  28. 28.
    Tronc F, Mallat Z, Lehoux S, et al.: Role of matrix metalloproteinases in blood flow-induced arterial enlargement: interaction with NO. Arterioscler Thromb Vasc Biol 2000, 20:E120–126.PubMedGoogle Scholar
  29. 29.
    Dumont O, Loufrani L, Henrion D: Key role of the NO-pathway and matrix metalloprotease-9 in high blood flow-induced remodeling of rat resistance arteries. Arterioscler Thromb Vasc Biol 2007, 27:317–324.PubMedCrossRefGoogle Scholar
  30. 30.
    Chew DK, Conte MS, Khalil RA: Matrix metalloproteinase-specific inhibition of Ca2+ entry mechanisms of vascular contraction. J Vasc Surg 2004, 40:1001–1010.PubMedCrossRefGoogle Scholar
  31. 31.
    Raffetto JD, Ross RL, Khalil RA: Matrix metalloproteinase 2-induced venous dilation via hyperpolarization and activation of K+ channels: Relevance to varicose vein formation. J Vasc Surg 2007, 45:373–380.PubMedCrossRefGoogle Scholar
  32. 32.
    Parkington HC, Coleman HA, Tare M: Prostacyclin and endothelium-dependent hyperpolarization. Pharmacol Res 2004, 49:509–514.PubMedCrossRefGoogle Scholar
  33. 33.
    Joannides R, Haefeli W, Linder L, et al.: Nitric oxide is responsible for flow-dependent dilatation of human peripheral conduit arteries in vivo. Circulation 1995, 91:1314–1319.PubMedGoogle Scholar
  34. 34.
    Nakayama T, Hironaga T, Ishima H, et al.: The prostacyclin analogue beraprost sodium prevents development of arterial stiffness in elderly patients with cerebral infarction. Prostaglandins Leukot Essent Fatty Acids 2004, 70:491–494PubMedCrossRefGoogle Scholar
  35. 35.
    Wu Y, Huang A, Sun D, et al.: Gender-specific compensation for the lack of NO in the mediation of flow-induced arteriolar dilation. Am J Physiol Heart Circ Physiol 2001, 280:H2456–H2461.PubMedGoogle Scholar
  36. 36.
    Sun D, Huang A, Smith CJ, et al.: Enhanced release of prostaglandins contributes to flow-induced arteriolar dilation in eNOS knockout mice. Circ Res 1999, 85:288–293.PubMedGoogle Scholar
  37. 37.
    Bryan RM Jr, You J, Golding EM, Marrelli SP: Endothelium-derived hyperpolarizing factor: a cousin to nitric oxide and prostacyclin. Anesthesiology 2005, 102:1261–1277.PubMedCrossRefGoogle Scholar
  38. 38.
    Fleming I, Busse R: Endothelium-derived epoxyeicosatrienoic acids and vascular function. Hypertension 2006, 47:629–633.PubMedCrossRefGoogle Scholar
  39. 39.
    Bellien J, Iacob M, Gutierrez L, et al.: Crucial role of NO and endothelium-derived hyperpolarizing factor in human sustained conduit artery flow-mediated dilatation. Hypertension 2006, 48:1088–1094.PubMedCrossRefGoogle Scholar
  40. 40.
    Taddei S, Versari D, Cipriano A, et al.: Identification of a cytochrome P450 2C9-derived endothelium-derived hyperpolarizing factor in essential hypertensive patients. J Am Coll Cardiol 2006, 48:508–515.PubMedCrossRefGoogle Scholar
  41. 41.
    Agapitov AV, Haynes WG: Role of endothelin in cardiovascular disease. J Renin Angiotensin Aldosterone Syst 2002, 3:1–15.PubMedCrossRefGoogle Scholar
  42. 42.
    McEniery CM, Qasem A, Schmitt M, et al.: Endothelin-1 regulates arterial pulse wave velocity in vivo. J Am Coll Cardiol 2003, 42:1975–1981.PubMedCrossRefGoogle Scholar
  43. 43.
    Heintz B, Dorr R, Gillessen T, et al.: Do arterial endothelin 1 levels affect local arterial stiffness? Am Heart J 1993, 126:987–989.PubMedCrossRefGoogle Scholar
  44. 44.
    Takahashi M: The role of endothelin-1 in vascular remodeling in vivo. Cardiovasc Res 2006, 71:4–5.PubMedCrossRefGoogle Scholar
  45. 45.
    Benetos A, Safar M, Rudnichi A, et al.: Pulse pressure: a predictor of long-term cardiovascular mortality in a French male population. Hypertension 1997, 30:1410–1405.PubMedGoogle Scholar
  46. 46.
    Benetos A, Rudnichi A, Safar M, Guize L: Pulse pressure and cardiovascular mortality in normotensive and hypertensive subjects. Hypertension 1998, 32:560–564.PubMedGoogle Scholar
  47. 47.
    Franklin SS, Khan SA, Wong ND, et al.: Is pulse pressure useful in predicting risk for coronary heart disease? The Framingham Heart study. Circulation 1999, 100:354–360.PubMedGoogle Scholar
  48. 48.
    Boutouyrie P, Tropeano AI, Asmar R, et al.: Aortic stiffness is an independent predictor of primary coronary events in hypertensive patients: a longitudinal study. Hypertension 2002, 39:10–15.PubMedCrossRefGoogle Scholar
  49. 49.
    Blacher J, Safar ME, Guerin AP, et al.: Aortic pulse wave velocity index and mortality in end-stage renal disease. Kidney Int 2003, 63:1852–1860.PubMedCrossRefGoogle Scholar
  50. 50.
    Fichtlscherer S, Breuer S, Zeiher AM: Prognostic value of systemic endothelial dysfunction in patients with acute coronary syndromes: further evidence for the existence of the “vulnerable” patient. Circulation 2004, 110:1926–1932.PubMedCrossRefGoogle Scholar
  51. 51.
    Perticone F, Ceravolo R, Pujia A, et al.: Prognostic significance of endothelial dysfunction in hypertensive patients. Circulation 2001, 104:191–196.PubMedGoogle Scholar
  52. 52.
    Brevetti G, Silvestro A, Schiano V, Chiariello M: Endothelial dysfunction and cardiovascular risk prediction in peripheral arterial disease: additive value of flow-mediated dilation to ankle-brachial pressure index. Circulation 2003, 108:2093–2098.PubMedCrossRefGoogle Scholar
  53. 53.
    Heitzer T, Schlinzig T, Krohn K, et al.: Endothelial dysfunction, oxidative stress, and risk of cardiovascular events in patients with coronary artery disease. Circulation 2001, 104:2673–2678.PubMedGoogle Scholar
  54. 54.
    Heitzer T, Baldus S, von Kodolitsch Y, et al.: Systemic endothelial dysfunction as an early predictor of adverse outcome in heart failure. Arterioscler Thromb Vasc Biol 2005, 25:1174–1179.PubMedCrossRefGoogle Scholar
  55. 55.
    Williams SB, Cusco JA, Roddy MA, et al.: Impaired nitric oxide-mediated vasodilation in patients with non-insulin-dependent diabetes mellitus. J Am Coll Cardiol 1996, 27:567–574.PubMedCrossRefGoogle Scholar
  56. 56.
    Higashi Y, Sasaki S, Nakagawa K, et al.: Effect of obesity on endothelium-dependent, nitric oxide-mediated vasodilation in normotensive individuals and patients with essential hypertension. Am J Hypertens 2001, 14:1038–1045.PubMedCrossRefGoogle Scholar
  57. 57.
    Tedesco MA, Natale F, Di Salvo G, et al.: Effects of coexisting hypertension and type II diabetes mellitus on arterial stiffness. J Hum Hypertens 2004, 18:469–473.PubMedCrossRefGoogle Scholar
  58. 58.
    Wildman RP, Farhat GN, Patel AS, et al.: Weight change is associated with change in arterial stiffness among healthy young adults. Hypertension 2005, 45:187–192.PubMedCrossRefGoogle Scholar
  59. 59.
    Sivitz WI, Wayson SM, Bayless ML, et al.: Obesity impairs vascular relaxation in human subjects: hyperglycemia exaggerates adrenergic vasoconstriction. J Diabetes Complications 2007, In press.Google Scholar
  60. 60.
    Ceravolo R, Maio R, Pujia A, et al.: Pulse pressure and endothelial dysfunction in never-treated hypertensive patients. J Am Coll Cardiol 2003, 41:1753–1758.PubMedCrossRefGoogle Scholar
  61. 61.
    Guthikonda S, Haynes WG: Homocysteine: role and implications in atherosclerosis. Curr Atheroscler Rep 2006, 8:100–106.PubMedCrossRefGoogle Scholar
  62. 62.
    Kanani PM, Sinkey CA, Browning RL, et al.: Role of oxidant stress in endothelial dysfunction produced by experimental hyperhomocyst(e)inemia in humans. Circulation 1999, 100:1161–1168.PubMedGoogle Scholar
  63. 63.
    Boger RH, Lentz SR, Bode-Boger SM, et al.: Elevation of asymmetrical dimethylarginine may mediate endothelial dysfunction during experimental hyperhomocyst(e)inaemia in humans. Clin Sci (Lond) 2001, 100:161–167.CrossRefGoogle Scholar
  64. 64.
    Sydow K, Hornig B, Arakawa N, et al.: Endothelial dysfunction in patients with peripheral arterial disease and chronic hyperhomocysteinemia: potential role of ADMA. Vasc Med 2004, 9:93–101.PubMedCrossRefGoogle Scholar
  65. 65.
    Weber T, Maas R, Auer J, et al.: Arterial wave reflections and determinants of endothelial function a hypothesis based on peripheral mode of action. Am J Hypertens 2007, 20:256–262.PubMedCrossRefGoogle Scholar
  66. 66.
    Al-Shaer MH, Raghuveer G, Browning R, et al.: Effect of hyperhomocysteinemia induced by methionine administration on flow-mediated dilatation of the brachial artery in healthy subjects. Am J Cardiol 2005, 95:428–430.PubMedCrossRefGoogle Scholar
  67. 67.
    Poulter NR, Wedel H, Dahlof B, et al.: Role of blood pressure and other variables in the differential cardiovascular event rates noted in the Anglo-Scandinavian Cardiac Outcomes Trial-Blood Pressure Lowering Arm (ASCOT-BPLA). Lancet 2005, 366:907–913.PubMedCrossRefGoogle Scholar
  68. 68.
    Dahlof B, Sever PS, Poulter NR, et al.: Prevention of cardiovascular events with an antihypertensive regimen of amlodipine adding perindopril as required versus atenolol adding bendroflumethiazide as required, in the Anglo-Scandinavian Cardiac Outcomes Trial-Blood Pressure Lowering Arm (ASCOT-BPLA): a multicentre randomized controlled trial. Lancet 2005, 366:895–906.PubMedCrossRefGoogle Scholar
  69. 69.
    Williams B, Lacy PS, Thom SM, et al.: Differential impact of blood pressure-lowering drugs on central aortic pressure and clinical outcomes: principal results of the Conduit Artery Function Evaluation (CAFE) study. Circulation 2006, 113:1213–1225.PubMedCrossRefGoogle Scholar
  70. 70.
    Klingbeil AU, John S, Schneider MP, et al.: Effect of AT1 receptor blockade on endothelial function in essential hypertension. Am J Hypertens 2003, 16:123–128.PubMedCrossRefGoogle Scholar
  71. 71.
    Thuillez C, Richard V: Targeting endothelial dysfunction in hypertensive subjects. J Hum Hypertens 2005, 19(suppl 1):S21–S25.PubMedCrossRefGoogle Scholar
  72. 72.
    McEniery CM, Schmitt M, Qasem A, et al.: Nebivolol increases arterial distensibility in vivo. Hypertension 2004, 44:305–310.PubMedCrossRefGoogle Scholar
  73. 73.
    Tzemos N, Lim PO, MacDonald TM: Nebivolol reverses endothelial dysfunction in essential hypertension: a randomized, double-blind, crossover study. Circulation 2001, 104:511–514.PubMedGoogle Scholar
  74. 74.
    Zanchetti A: Clinical pharmacodynamics of nebivolol: new evidence of nitric oxide-mediated vasodilating activity and peculiar haemodynamic properties in hypertensive patients. Blood Press Suppl 2004, 1:17–32.PubMedCrossRefGoogle Scholar
  75. 75.
    Van Merode T, van Bortel LM, Smeets FA, et al.: Verapamil and nebivolol improve carotid artery distensibility in hypertensive patients. J Hypertens Suppl 1989, 7:S262–S263.PubMedGoogle Scholar

Copyright information

© Current Medicine Group LLC 2007

Authors and Affiliations

  1. 1.General Clinical Research Center (157 MRF)University of IowaIowa CityUSA

Personalised recommendations