Current Diabetes Reports

, Volume 7, Issue 2, pp 131–138 | Cite as

Insights on pathogenesis of type 2 diabetes from MODY genetics

Article

Abstract

Maturity-onset diabetes of the young (MODY) is a type of non-insulin-dependent diabetes mellitus caused by rare autosomal-dominant mutations. MODY genes play key biochemical roles in the pancreatic β cell; therefore, common variants of MODY genes are excellent candidate genes for type 2 diabetes. We review recent studies that suggest that common MODY gene variation contributes modestly to the heritability of type 2 diabetes.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and Recommended Reading

  1. 1.
    Owen K, Hattersley AT: Maturity-onset diabetes of the young: from clinical description to molecular genetic characterization. Best Pract Res Clin Endocrinol Metab 2001, 15:309–323.PubMedCrossRefGoogle Scholar
  2. 2.
    Hattersley AT, Turner RC, Permutt MA, et al.: Linkage of type 2 diabetes to the glucokinase gene. Lancet 1992, 339:1307–1310.PubMedCrossRefGoogle Scholar
  3. 3.
    Vionnet N, Stoffel M, Takeda J, et al.: Nonsense mutation in the glucokinase gene causes early-onset non-insulin-dependent diabetes mellitus. Nature 1992, 356:721–722.PubMedCrossRefGoogle Scholar
  4. 4.
    Froguel P, Vaxillaire M, Sun F, et al.: Close linkage of glucokinase locus on chromosome 7p to early-onset non-insulin-dependent diabetes mellitus. Nature 1992, 356:162–164.PubMedCrossRefGoogle Scholar
  5. 5.
    Yamagata K, Oda N, Kaisaki PJ, et al.: Mutations in the hepatic nuclear factor 1 alpha gene in maturity-onset diabetes of the young (MODY3). Nature 1996, 384:455–458.PubMedCrossRefGoogle Scholar
  6. 6.
    Yamagata K, Furuta H, Oda N, et al.: Mutations in the hepatocyte nuclear factor 4 alpha gene in maturity-onset diabetes of the young (MODY1). Nature 1996, 384:458–460.PubMedCrossRefGoogle Scholar
  7. 7.
    Horikawa Y, Iwasaki N, Hara M, et al.: Mutation in hepatocyte nuclear factor-1b gene (TCF2) associated with MODY. Nat Genet 1997, 17, 384–385.PubMedCrossRefGoogle Scholar
  8. 8.
    Stoffers DA, Ferrer J, Clarke WL, Habener JF: Early-onset type-II diabetes mellitus (MODY4) linked to IPF1. Nat Genet 1997, 17:138–139.PubMedCrossRefGoogle Scholar
  9. 9.
    Malecki MT, Jhala US, Antonellis A, et al.: Mutations in NEUROD1 are associated with the development of Type 2 diabetes mellitus. Nat Genet 1999, 23:323–328.PubMedCrossRefGoogle Scholar
  10. 10.
    Stride A, Hattersley AT: Different genes, different diabetes: lessons from maturity-onset diabetes of the young. Ann Med 2002, 34:207–216.PubMedGoogle Scholar
  11. 11.
    Pearson ER, Starkey BJ, Powell RJ, et al.: Genetic cause of hyperglycaemia and response to treatment in diabetes. Lancet 2003, 362:1275–1281.PubMedCrossRefGoogle Scholar
  12. 12.
    Gloyn A, McCarthy M: The genetics of type 2 diabetes. Best Pract Res Clin Endocrinol Metab 2001, 15:293–308.PubMedCrossRefGoogle Scholar
  13. 13.
    Weedon MN, McCarthy MI, Hitman G, et al.: Combining information from common type 2 diabetes risk polymorphisms improves disease prediction. PLoS Med 2006, 3:e374.PubMedCrossRefGoogle Scholar
  14. 14.
    Barroso I, Gurnell M, Crowley VE, et al.: Dominant negative mutations in human PPARgamma associated with severe insulin resistance, diabetes mellitus and hypertension. Nature 1999, 402:880–883.PubMedGoogle Scholar
  15. 15.
    Altshuler D, Hirschhorn JN, Klannemark M, et al.: The common PPARg Pro12Ala polymorphism is associated with decreased risk of type 2 diabetes. Nat Genet 2000, 26:76–80.PubMedCrossRefGoogle Scholar
  16. 16.
    Thomas PM, Yuyang Y, Lightner E: Mutation of the pancreatic islet inward rectifier, Kir6.2 also leads to familial persistent hyperinsulinemic hypoglycemia of infancy. Hum Mol Genet 1996, 5:1809–1812.PubMedCrossRefGoogle Scholar
  17. 17.
    Gloyn AL, Pearson ER, Antcliff JF, et al.: Activating mutations in the gene encoding the ATP-sensitive potassium-channel subunit Kir6.2 and permanent neonatal diabetes. N Engl J Med 2004, 350:1838–1849.PubMedCrossRefGoogle Scholar
  18. 18.
    Florez JC, Burtt N, de Bakker PI, et al.: Haplotype structure and genotype-phenotype correlations of the sulfonylurea receptor and the islet ATP-sensitive potassium channel gene region. Diabetes 2004, 53:1360–1368.PubMedCrossRefGoogle Scholar
  19. 19.
    Odom DT, Zizlsperger N, Gordon DB, et al.: Control of pancreas and liver gene expression by HNF transcription factors. Science 2004, 303:1378–1381.PubMedCrossRefGoogle Scholar
  20. 20.
    Byrne MM, Sturis J, Menzel S, et al.: Altered insulin secretory responses to glucose in diabetic and nondiabetic subjects with mutations in the diabetes susceptibility gene MODY3 on Chromosome 12. Diabetes 1996, 45:1503–1510.PubMedCrossRefGoogle Scholar
  21. 21.
    Ellard S, Colclough K: Mutations in the genes encoding the transcription factors hepatocyte nuclear factor 1 alpha (HNF1A) and 4 alpha (HNF4A) in maturity-onset diabetes of the young. Hum Mutat 2006, 27:854–869.PubMedCrossRefGoogle Scholar
  22. 22.
    Hegele RA, Zinman B, Hanley AJ, et al.: Genes, environment and Oji-Cree type 2 diabetes. Clin Biochem 2003, 36:163–170.PubMedCrossRefGoogle Scholar
  23. 23.
    Hegele RA, Cao H, Harris SB, et al.: The hepatic nuclear factor-1alpha G319S variant is associated with early-onset type 2 diabetes in Canadian Oji-Cree. J Clin Endocrinol Metab 1999, 84:1077–1082.PubMedCrossRefGoogle Scholar
  24. 24.
    Triggs-Raine BL, Kirkpatrick RD, Kelly SL, et al.: HNF-1alpha G319S, a transactivation-deficient mutant, is associated with altered dynamics of diabetes onset in an Oji-Cree community. Proc Natl Acad Sci U S A 2002, 99:4614–4619.PubMedCrossRefGoogle Scholar
  25. 25.
    Mahtani MM, Widen E, Lehto M, et al.: Mapping of a gene for type 2 diabetes associated with an insulin secretion defect by a genome scan in Finnish families. Nat Genet 1996, 14:90–94.PubMedCrossRefGoogle Scholar
  26. 26.
    McCarthy MI: Growing evidence for diabetes susceptibility genes from genome scan data. Curr Diab Rep 2003, 3:159–167.PubMedGoogle Scholar
  27. 27.
    Reynisdottir I, Thorleifsson G, Benediktsson R, et al.: Localization of a susceptibility gene for type 2 diabetes to chromosome 5q34-q35.2. Am J Hum Genet 2003, 73:323–335.PubMedCrossRefGoogle Scholar
  28. 28.
    Urhammer SA, Rasmussen SK, Kaisaki PJ, et al.: Genetic variation in the hepatocyte nuclear factor-1a gene in Danish Caucasians with late onset NIDDM. Diabetologia 1997, 40:473–475.PubMedCrossRefGoogle Scholar
  29. 29.
    Weedon MN, Owen KR, Shields B, et al.: A largescale association analysis of common variation of the HNF1alpha gene with type 2 diabetes in the U.K. Caucasian population. Diabetes 2005, 54:2487–2491.PubMedCrossRefGoogle Scholar
  30. 30.
    Winckler W, Burtt NP, Holmkvist J, et al.: Association of common variation in the HNF1alpha gene region with risk of type 2 diabetes. Diabetes 2005, 54:2336–2342.PubMedCrossRefGoogle Scholar
  31. 31.
    Bonnycastle LL, Willer CJ, Conneely KN, et al.: Common variants in maturity-onset diabetes of the young genes contribute to risk of type 2 diabetes in Finns. Diabetes 2006, 55:2 534–2 540.CrossRefGoogle Scholar
  32. 32.
    International HapMap Consortium: A haplotype map of the human genome. Nature 2005, 437:1299–1320.CrossRefGoogle Scholar
  33. 33.
    Pearson ER, Pruhova S, Tack CJ, et al.: Molecular genetics and phenotypic characteristics of MODY caused by hepatocyte nuclear factor 4alpha mutations in a large European collection. Diabetologia 2005, 48:878–885.PubMedCrossRefGoogle Scholar
  34. 34.
    Mohlke KL, Boehnke M: The role of HNF4A variants in the risk of type 2 diabetes. Curr Diab Rep 2005, 5:149–156.PubMedGoogle Scholar
  35. 35.
    Love-Gregory LD, Wasson J, Ma J, et al.: A Common polymorphism in the upstream promoter region of the hepatocyte nuclear factor-4alpha gene on chromosome 20q is associated with type 2 diabetes and appears to contribute to the evidence for linkage in an Ashkenazi Jewish population. Diabetes 2004, 53:1134–1140.PubMedCrossRefGoogle Scholar
  36. 36.
    Silander K, Mohlke KL, Scott LJ, et al.: Genetic variation near the hepatocyte nuclear factor-4alpha gene predicts susceptibility to type 2 diabetes. Diabetes 2004, 53:1141–1149.PubMedCrossRefGoogle Scholar
  37. 37.
    Thomas H, Jaschkowitz K, Bulman M, et al.: A distant upstream promoter of the HNF-4alpha gene connects the transcription factors involved in maturity-onset diabetes of the young. Hum Mol Genet 2001, 10:2089–2097.PubMedCrossRefGoogle Scholar
  38. 38.
    Hansen SK, Parrizas M, Jensen ML, et al.: Genetic evidence that HNF-1alpha-dependent transcriptional control of HNF-4alpha is essential for human pancreatic beta cell function. J Clin Invest 2002, 110:827–833.PubMedCrossRefGoogle Scholar
  39. 39.
    Raeder H, Bjorkhaug L, Johansson S, et al.: A hepatocyte nuclear factor-4{alpha} gene (HNF4A) P2 promoter haplotype linked with late-onset diabetes: studies of HNF4A variants in the Norwegian MODY registry. Diabetes 2006, 55:1899–1903.PubMedCrossRefGoogle Scholar
  40. 40.
    Hara K, Horikoshi M, Kitazato H, et al.: Hepatocyte nuclear factor-4alpha P2 promoter haplotypes are associated with type 2 diabetes in the Japanese population. Diabetes 2006, 55:1260–1264.PubMedCrossRefGoogle Scholar
  41. 41.
    Muller YL, Infante AM, Hanson RL, et al.: Variants in hepatocyte nuclear factor 4alpha are modestly associated with type 2 diabetes in Pima Indians. Diabetes 2005, 54:3035–3039.PubMedCrossRefGoogle Scholar
  42. 42.
    Hansen SK, Rose CS, Glumer C, et al.: Variation near the hepatocyte nuclear factor (HNF)-4alpha gene associates with type 2 diabetes in the Danish population. Diabetologia 2005, 48:452–458.PubMedCrossRefGoogle Scholar
  43. 43.
    Winckler W, Graham RR, de Bakker PI, et al.: Association testing of variants in the hepatocyte nuclear factor 4alpha gene with risk of type 2 diabetes in 7,883 people. Diabetes 2005, 54:886–892.PubMedCrossRefGoogle Scholar
  44. 44.
    Weedon M, Owen K, Shields B, et al.: Common variants of the HNF4alpha P2 promoter are associated with type 2 diabetes in the UK population. Diabetes 2004, 53:3002–3006.PubMedCrossRefGoogle Scholar
  45. 45.
    Matschinsky F, Liang Y, Kesavan P, et al.: Glucokinase as pancreatic beta cell glucose sensor and diabetes gene. J Clin Invest 1993, 92:2092–2098.PubMedCrossRefGoogle Scholar
  46. 46.
    Stride A, Vaxillaire M, Tuomi T, et al.: The genetic abnormality in the beta cell determines the response to an oral glucose load. Diabetologia 2002, 45:427–435.PubMedCrossRefGoogle Scholar
  47. 47.
    Frayling TM, Evans JC, Bulman MP, et al.: beta-cell genes and diabetes: molecular and clinical characterization of mutations in transcription factors. Diabetes 2001, 50:S94–S100.PubMedCrossRefGoogle Scholar
  48. 48.
    Weedon MN, Frayling TM, Shields B, et al.: Genetic regulation of birth weight and fasting glucose by a common polymorphism in the islet cell promoter of the glucokinase gene. Diabetes 2005, 54:576–581.PubMedCrossRefGoogle Scholar
  49. 49.
    Rose CS, Ek J, Urhammer SA, et al.: A-30G>A polymorphism of the beta-cell-specific glucokinase promoter associates with hyperglycemia in the general population of whites. Diabetes 2005, 54:3026–3031.PubMedCrossRefGoogle Scholar
  50. 50.
    Marz W, Nauck M, Hoffmann MM, et al.: G(−30)A polymorphism in the pancreatic promoter of the glucokinase gene associated with angiographic coronary artery disease and type 2 diabetes mellitus. Circulation 2004, 109:2844–2849.PubMedCrossRefGoogle Scholar
  51. 51.
    Weedon MN, Clark VJ, Qian Y, et al.: A common haplotype of the glucokinase gene alters fasting glucose and birth weight: association in six studies and population-genetics analyses. Am J Hum Genet 2006, 79:991–1001.PubMedCrossRefGoogle Scholar
  52. 52.
    Pearson ER, Badman MK, Lockwood CR, et al.: Contrasting diabetes phenotypes associated with hepatocyte nuclear factor-1alpha and-1beta mutations. Diabetes Care 2004, 27:1102–1107.PubMedCrossRefGoogle Scholar
  53. 53.
    Ek J, Grarup N, Urhammer SA, et al.: Studies of the variability of the hepatocyte nuclear factor-1beta (HNF-1beta / TCF2) and the dimerization cofactor of HNF-1 (DcoH / PCBD) genes in relation to type 2 diabetes mellitus and beta-cell function. Hum Mutat 2001, 18:356–357.PubMedCrossRefGoogle Scholar
  54. 54.
    Babaya N, Ikegami H, Kawaguchi Y, et al.: Hepatocyte nuclear factor-1alpha gene and non-insulin-dependent diabetes mellitus in the Japanese population. Acta Diabetol 1998, 35:150–153.PubMedCrossRefGoogle Scholar
  55. 55.
    Macfarlane WM, Smith SB, James RFL, et al.: The p38/reactiviating kinase mitogen activated protein kinase cascade mediates the activation of the transcription factor IUF1 and insulin gene transcription by high glucose in pancreatic beta-cells. J Biol Chem 1997, 272:20936–20944.PubMedCrossRefGoogle Scholar
  56. 56.
    Macfarlane WM, McKinnon CM, Felton-Edkins ZA, et al.: Glucose stimulates translocation of the homeodomain transcription factor PDX1 from the cytoplasm to the nucleus in pancreatic beta-cells. J Biol Chem 1999, 274:1011–1016.PubMedCrossRefGoogle Scholar
  57. 57.
    Stoffers DA, Zinkin NT, Stanojevic V, et al.: Pancreatic agenesis attributable to a single nucleotide deletion in the human IPF1 gene coding sequence. Nat Genet 1997, 15:106–110.PubMedCrossRefGoogle Scholar
  58. 58.
    Macfarlane W, Frayling T, Ellard S, et al.: Missense mutations in the insulin promoter factor 1 (IPF-1) gene predispose to type 2 diabetes. J Clin Invest 1999, 104:R33–R39.PubMedGoogle Scholar
  59. 59.
    Hani EH, Stoffers DA, Chevre JC, et al.: Defective mutations in the insulin promoter factor-1 (IPF-1) gene in late-onset type 2 diabetes mellitus. J Clin Invest 1999, 104:R41–R48.PubMedGoogle Scholar
  60. 60.
    Weng J, Macfarlane WM, Lehto M, et al.: Functional consequences of mutations in the MODY4 gene (IPF1) and coexistence with MODY3 mutations. Diabetologia 2001, 44:249–258.PubMedCrossRefGoogle Scholar
  61. 61.
    Silver K, Shetty A: IPF-1 gene variation and the development of type 2 diabetes. Mol Genet Metab 2002, 75:287–289.PubMedCrossRefGoogle Scholar
  62. 62.
    Reis AF, Ye WZ, Dubois-Laforgue D, et al.: Mutations in the insulin promoter factor-1 gene in late-onset type 2 diabetes mellitus. Eur J Endocrinol 2000, 143:511–513.PubMedCrossRefGoogle Scholar
  63. 63.
    Hansen L, Urioste S, Petersen HV, et al.: Missense mutations in the human insulin promoter factor-1 gene and their relation to maturity-onset diabetes of the young and late-onset type 2 diabetes mellitus in Caucasians. J Clin Endocrinol Metab 2000, 85:1323–1326.PubMedCrossRefGoogle Scholar
  64. 64.
    Shiau MY, Huang CN, Liao JH, Chang YH: Missense mutations in the human insulin promoter factor-1 gene are not a common cause of type 2 diabetes mellitus in Taiwan. J Endocrinol Invest 2004, 27:1076–1080.PubMedGoogle Scholar
  65. 65.
    Elbein SC, Karim MA: Does the aspartic acid to asparagine substitution at position 76 in the pancreas duodenum homeobox gene (PDX1) cause late-onset type 2 diabetes? Diabetes Care 2004, 27:1968–1973.PubMedCrossRefGoogle Scholar
  66. 66.
    Owen KR, Evans JC, Frayling TM, et al.: Role of the D76N polymorphism of insulin promoter factor-1 in predisposing to Type 2 diabetes. Diabetologia 2004, 47:957–958.PubMedCrossRefGoogle Scholar
  67. 67.
    Kristinsson SY, Thorolfsdottir ET, Talseth B, et al.: MODY in Iceland is associated with mutations in HNF-1alpha and a novel mutation in NeuroD1. Diabetologia 2001, 44:2098–2103.PubMedCrossRefGoogle Scholar
  68. 68.
    Vella A, Howson JM, Barratt BJ, et al.: Lack of association of the Ala(45)Thr polymorphism and other common variants of the NeuroD gene with type 1 diabetes. Diabetes 2004, 53:1158–1161.PubMedCrossRefGoogle Scholar
  69. 69.
    Kavvoura FK, Ioannidis JP: Ala45Thr polymorphism of the NEUROD1 gene and diabetes susceptibility: a meta-analysis. Hum Genet 2005, 116:192–199.PubMedCrossRefGoogle Scholar
  70. 70.
    Weedon MN, Hattersley AT, Frayling TM: Transcription factor genes in type 2 diabetes. In New Transcription Factors and Their Role in Diabetes and Its Therapy, vol 5, edn 1. Edited by Friedman JE. Netherlands: Elsevier; 2006:1–14.Google Scholar

Copyright information

© Current Medicine Group LLC 2007

Authors and Affiliations

  1. 1.Institute of Biomedical & Clinical Sciences, Peninsula College of Medicine & DentistryPeninsula Medical SchoolExeterUK

Personalised recommendations