Current Diabetes Reports

, Volume 4, Issue 4, pp 247–252 | Cite as

Oxidative stress and diabetic vascular complications

  • Seok Man Son
  • Matthew K. Whalin
  • David G. Harrison
  • W. Robert Taylor
  • Kathy K. Griendling


Vascular complications of diabetes represent the leading cause of morbidity and mortality in affected patients. Production of reactive oxygen species is increased in diabetic patients, especially in those with poor glycemic control. Reactive oxygen species affect vascular smooth muscle cell growth and migration, endothelial function, including abnormal endothelium-dependent relaxation and expression of a proinflammatory phenotype, and modification of the extracellular matrix. All of these events contribute to the development of diabetic microvascular and macrovascular complications, suggesting that the sources of reactive oxygen species and the signaling pathways that they modify may represent important therapeutic targets.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and Recommended Reading

  1. 1.
    The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulindependent diabetes mellitus. The Diabetes Control and Complications Trial Research Group [no authors listed]. N Engl J Med 1993, 329:977-986.Google Scholar
  2. 2.
    Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). UK Prospective Diabetes Study (UKPDS) Group [no authors listed]. Lancet 1998, 352:837-853.Google Scholar
  3. 3.
    Griendling KK, FitzGerald GA: Oxidative stress and cardiovascular injury. Part II: animal and human studies. Circulation 2003, 108:2034–2040.PubMedCrossRefGoogle Scholar
  4. 4.
    Hink U, Li H, Mollnau H, et al.: Mechanisms underlying endothelial dysfunction in diabetes mellitus. Circ Res 2001, 88:E14-E22. Provides novel experimental evidence that PKC mediates superoxide production from uncoupled endothelial NO synthase and NAD(P)H oxidases.PubMedGoogle Scholar
  5. 5.
    Ceriello A: New insights on oxidative stress and diabetic complications may lead to a "causal" antioxidant therapy. Diabetes Care 2003, 26:1589–1596. Describes recent advances in our understanding of the role of oxidative stress in the development of diabetic complications.PubMedCrossRefGoogle Scholar
  6. 6.
    Evans JL, Goldfine ID, Maddux BA, Grodsky GM: Oxidative stress and stress-activated signaling pathways: a unifying hypothesis of type 2 diabetes. Endocr Rev 2002, 23:599–622.PubMedCrossRefGoogle Scholar
  7. 7.
    DeFronzo RA: Pathogenesis of type 2 diabetes: metabolic and molecular implications for identifying diabetes genes. Diabetes Rev 1997, 5:177–269.Google Scholar
  8. 8.
    Brownlee M: Biochemistry and molecular cell biology of diabetic complications. Nature 2001, 414:813–820.PubMedCrossRefGoogle Scholar
  9. 9.
    Sheetz MJ, King GL: Molecular understanding of hyperglycemia's adverse effects for diabetic complications. JAMA 2002, 288:2579–2588.PubMedCrossRefGoogle Scholar
  10. 10.
    Bierman EL: George Lyman Duff Memorial Lecture. Atherogenesis in diabetes. Arterioscler Thromb 1992, 12:647–656.PubMedGoogle Scholar
  11. 11.
    Bowie A, Owens D, Collins P, et al.: Glycosylated low density lipoprotein is more sensitive to oxidation: implications for the diabetic patient? Atherosclerosis 1993, 102:63–67.PubMedCrossRefGoogle Scholar
  12. 12.
    Ceriello A: Coagulation activation in diabetes mellitus: the role of hyperglycaemia and therapeutic prospects. Diabetologia 1993, 36:1119–1125.PubMedCrossRefGoogle Scholar
  13. 13.
    Kiuchi K, Nejima J, Takano T, et al.: Increased serum concentrations of advanced glycation end products: a marker of coronary artery disease activity in type 2 diabetic patients. Heart 2001, 85:87–91.PubMedCrossRefGoogle Scholar
  14. 14.
    Park L, Raman KG, Lee KJ, et al.: Suppression of accelerated diabetic atherosclerosis by the soluble receptor for advanced glycation endproducts. Nat Med 1998, 4:1025–1031.PubMedCrossRefGoogle Scholar
  15. 15.
    Wautier MP, Chappey O, Corda S, et al.: Activation of NADPH oxidase by AGE links oxidant stress to altered gene expression via RAGE. Am J Physiol Endocrinol Metab 2001, 280:E685-E694.PubMedGoogle Scholar
  16. 16.
    Taniyama Y, Griendling KK: Reactive oxygen species in the vasculature: molecular and cellular mechanisms. Hypertension 2003, 42:1075–1081.PubMedCrossRefGoogle Scholar
  17. 17.
    Koya D, Haneda M, Kikkawa R, King GL: d-alpha-tocopherol treatment prevents glomerular dysfunctions in diabetic rats through inhibition of protein kinase C-diacylglycerol pathway. Biofactors 1998, 7:69–76.PubMedGoogle Scholar
  18. 18.
    Mohamed AK, Bierhaus A, Schiekofer S, et al.: The role of oxidative stress and NF-kappaB activation in late diabetic complications. Biofactors 1999, 10:157–167.PubMedGoogle Scholar
  19. 19.
    Ho FM, Liu SH, Liau CS, et al.: High glucose-induced apoptosis in human endothelial cells is mediated by sequential activations of c-Jun NH(2)-terminal kinase and caspase-3. Circulation 2000, 101:2618–2624.PubMedGoogle Scholar
  20. 20.
    Inoguchi T, Li P, Umeda F, et al.: High glucose level and free fatty acid stimulate reactive oxygen species production through protein kinase C-dependent activation of NAD(P)H oxidase in cultured vascular cells. Diabetes 2000, 49:1939–1945.PubMedCrossRefGoogle Scholar
  21. 21.
    Ishii H, Jirousek MR, Koya D, et al.: Amelioration of vascular dysfunctions in diabetic rats by an oral PKC beta inhibitor. Science 1996, 272:728–731.PubMedCrossRefGoogle Scholar
  22. 22.
    Kakimoto M, Inoguchi T, Sonta T, et al.: Accumulation of 8- hydroxy-2’-deoxyguanosine and mitochondrial DNA deletion in kidney of diabetic rats. Diabetes 2002, 51:1588–1595.PubMedCrossRefGoogle Scholar
  23. 23.
    Leinonen J, Lehtimaki T, Toyokuni S, et al.: New biomarker evidence of oxidative DNA damage in patients with non-insulin- dependent diabetes mellitus. FEBS Lett 1997, 417:150–152.PubMedCrossRefGoogle Scholar
  24. 24.
    Williams SB, Cusco JA, Roddy MA, et al.: Impaired nitric oxidemediated vasodilation in patients with non-insulin-dependent diabetes mellitus. J Am Coll Cardiol 1996, 27:567–574.PubMedCrossRefGoogle Scholar
  25. 25.
    Kim YK, Lee MS, Son SM, et al.: Vascular NADH oxidase is involved in impaired endothelium-dependent vasodilation in OLETF rats, a model of type 2 diabetes. Diabetes 2002, 51:522–527. Describes experiments clearly implicating the NAD(P)H oxidases as sources of ROS in type 2 diabetes.PubMedCrossRefGoogle Scholar
  26. 26.
    Spitaler MM, Graier WF: Vascular targets of redox signalling in diabetes mellitus. Diabetologia 2002, 45:476–494. Excellent review of potential molecular targets of oxidative stress.PubMedCrossRefGoogle Scholar
  27. 27.
    Garcia Soriano F, Virag L, Jagtap P, et al.: Diabetic endothelial dysfunction: the role of poly(ADP-ribose) polymerase activation. Nat Med 2001, 7:108–113.CrossRefGoogle Scholar
  28. 28.
    Park KS, Kim JH, Kim MS, et al.: Effects of insulin and antioxidant on plasma 8-hydroxyguanine and tissue 8-hydroxydeoxyguanosine in streptozotocin-induced diabetic rats. Diabetes 2001, 50:2837–2841.PubMedCrossRefGoogle Scholar
  29. 29.
    Suzuki LA, Poot M, Gerrity RG, Bornfeldt KE: Diabetes accelerates smooth muscle accumulation in lesions of atherosclerosis: lack of direct growth-promoting effects of high glucose levels. Diabetes 2001, 50:851–860.PubMedCrossRefGoogle Scholar
  30. 30.
    Watson PA, Nesterova A, Burant CF, et al.: Diabetes-related changes in cAMP response element-binding protein content enhance smooth muscle cell proliferation and migration. J Biol Chem 2001, 276:46142–46150.PubMedCrossRefGoogle Scholar
  31. 31.
    Fukumoto H, Naito Z, Asano G, Aramaki T: Immunohistochemical and morphometric evaluations of coronary atherosclerotic plaques associated with myocardial infarction and diabetes mellitus. J Atheroscler Thromb 1998, 5:29–35.PubMedGoogle Scholar
  32. 32.
    Uemura S, Matsushita H, Li W, et al.: Diabetes mellitus enhances vascular matrix metalloproteinase activity: role of oxidative stress. Circ Res 2001, 88:1291–1298.PubMedGoogle Scholar
  33. 33.
    Kashihara N, Watanabe Y, Makino H, et al.: Selective decreased de novo synthesis of glomerular proteoglycans under the influence of reactive oxygen species. Proc Natl Acad Sci U S A 1992, 89:6309–6313.PubMedCrossRefGoogle Scholar
  34. 34.
    Etoh T, Inoguchi T, Kakimoto M, et al.: Increased expression of NAD(P)H oxidase subunits, NOX4 and p22phox, in the kidney of streptozotocin-induced diabetic rats and its reversibity by interventive insulin treatment. Diabetologia 2003, 46:1428–1437.PubMedCrossRefGoogle Scholar
  35. 35.
    Ellis EA, Guberski DL, Somogyi-Mann M, Grant MB: Increased H2O2, vascular endothelial growth factor and receptors in the retina of the BBZ/Wor diabetic rat. Free Radic Biol Med 2000, 28:91–101.PubMedCrossRefGoogle Scholar
  36. 36.
    Cameron NE, Cotter MA, Archibald V, et al.: Anti-oxidant and pro-oxidant effects on nerve conduction velocity, endoneurial blood flow and oxygen tension in non-diabetic and streptozotocin-diabetic rats. Diabetologia 1994, 37:449–459.PubMedCrossRefGoogle Scholar
  37. 37.
    Cameron NE, Cotter MA: Neurovascular dysfunction in diabetic rats. Potential contribution of autoxidation and free radicals examined using transition metal chelating agents. J Clin Invest1995, 96:1159–1163.PubMedCrossRefGoogle Scholar
  38. 38.
    Cameron NE, Cotter MA: Effects of antioxidants on nerve and vascular dysfunction in experimental diabetes. Diabetes Res Clin Pract 1999, 45:137–146.PubMedCrossRefGoogle Scholar
  39. 39.
    Abiko T, Abiko A, Clermont AC, et al.: Characterization of retinal leukostasis and hemodynamics in insulin resistance and diabetes: role of oxidants and protein kinase-C activation. Diabetes2003, 52:829–837.PubMedCrossRefGoogle Scholar
  40. 40.
    Kunisaki M, Bursell SE, Clermont AC, et al.: Vitamin E prevents diabetes-induced abnormal retinal blood flow via the diacylglycerol-protein kinase C pathway. Am J Physiol 1995, 269:E239-E246.PubMedGoogle Scholar
  41. 41.
    Onozato ML, Tojo A, Goto A, et al.: Oxidative stress and nitric oxide synthase in rat diabetic nephropathy: effects of ACEI and ARB. Kidney Int 2002, 61:186–194.PubMedCrossRefGoogle Scholar
  42. 42.
    Nassar T, Kadery B, Lotan C, et al.: Effects of the superoxide dismutase-mimetic compound tempol on endothelial dysfunction in streptozotocin-induced diabetic rats. Eur J Pharmacol 2002, 436:111–118.PubMedCrossRefGoogle Scholar
  43. 43.
    Coppey LJ, Gellett JS, Davidson EP, et al.: Effect of M40403 treatment of diabetic rats on endoneurial blood flow, motor nerve conduction velocity and vascular function of epineurial arterioles of the sciatic nerve. Br J Pharmacol 2001, 134:21–29.PubMedCrossRefGoogle Scholar
  44. 44.
    Cotter MA, Cameron NE, Keegan A, Dines KC: Effects of acetyl- and proprionyl-L-carnitine on peripheral nerve function and vascular supply in experimental diabetes. Metabolism 1995, 44:1209–1214.PubMedCrossRefGoogle Scholar
  45. 45.
    Packer L, Kraemer K, Rimbach G: Molecular aspects of lipoic acid in the prevention of diabetes complications. Nutrition 2001, 17:888–895.PubMedCrossRefGoogle Scholar
  46. 46.
    Brenner BM, Cooper ME, de Zeeuw D, et al.: Effects of losartan on renal and cardiovascular outcomes in patients with type 2 diabetes and nephropathy. N Engl J Med 2001, 345:861–869. Suggests a critical role for the renin-angiotensin system in diabetic nephropathy in patients with type 2 diabetes.PubMedCrossRefGoogle Scholar
  47. 47.
    O'Driscoll G, Green D, Maiorana A, et al.: Improvement in endothelial function by angiotensin-converting enzyme inhibition in non-insulin-dependent diabetes mellitus. J Am Coll Cardiol 1999, 33:1506–1511.PubMedCrossRefGoogle Scholar
  48. 48.
    Arcaro G, Zenere BM, Saggiani F, et al.: ACE inhibitors improve endothelial function in type 1 diabetic patients with normal arterial pressure and microalbuminuria. Diabetes Care 1999, 22:1536–1542.PubMedCrossRefGoogle Scholar
  49. 49.
    Vanhoutte PM, Boulanger CM, Mombouli JV: Endotheliumderived relaxing factors and converting enzyme inhibition. Am J Cardiol 1995, 76:3E-12E.PubMedCrossRefGoogle Scholar
  50. 50.
    Beckman JA, Goldfine AB, Gordon MB, Creager MA: Ascorbate restores endothelium-dependent vasodilation impaired by acute hyperglycemia in humans. Circulation 2001, 103:1618–1623.PubMedGoogle Scholar
  51. 51.
    Yusuf S, Dagenais G, Pogue J, et al.: Vitamin E supplementation and cardiovascular events in high-risk patients. The Heart Outcomes Prevention Evaluation Study Investigators. N Engl J Med 2000, 342:154–160.PubMedCrossRefGoogle Scholar

Copyright information

© Current Science Inc 2004

Authors and Affiliations

  • Seok Man Son
  • Matthew K. Whalin
  • David G. Harrison
  • W. Robert Taylor
  • Kathy K. Griendling
    • 1
  1. 1.Division of CardiologyEmory University School of MedicineAtlantaUSA

Personalised recommendations