Advertisement

Current Colorectal Cancer Reports

, Volume 15, Issue 2, pp 61–69 | Cite as

Targeted Therapy in Metastatic Colorectal Cancer: Current Standards and Novel Agents in Review

  • Rebecca A. DeStefanis
  • Jeremy D. Kratz
  • Philip B. Emmerich
  • Dustin A. DemingEmail author
Systemic Therapies in Colorectal Cancer (SM Kazmi, Section Editor)
  • 58 Downloads
Part of the following topical collections:
  1. Topical Collection on Systemic Therapies in Colorectal Cancer

Abstract

Purpose of Review

Treatment options for patients with metastatic colorectal cancer continue to advance as the therapeutic implications of the molecular subtypes of this disease are becoming better understood. DNA sequencing and mismatch repair assessment are now standard of care analyses for patients with metastatic colorectal cancer This review describes important aspects of the biology of the clinically relevant molecular subtypes of colorectal cancer based on the current standard of care testing. In addition, the clinical treatment strategies available now and potentially in the future for these colorectal cancer subtypes are discussed.

Recent Findings

Currently, for metastatic colorectal cancer, standard of care molecular testing is done for mutations in exons 2, 3, and 4 of KRAS and NRAS, and BRAF V600E. Testing for mismatch repair (MMR) deficiency/microsatellite instability (MSI) status is also done. These aberrations are well known to change the clinical prognosis and guide patients’ treatment strategies. Additionally, three new subtypes have emerged: PIK3CAmut, HER2 amplified, and NTRK fusions. With the addition of these emerging subtypes, tumor heterogeneity further validates the need to examine mCRC as a heterogeneous disease. Here, we present recent exciting data from translational research and clinical trials exhibiting possible distinct treatment strategies for these different subtypes.

Summary

Altogether, these data show promising treatment strategies for many of these well-known and emerging subtypes of mCRC. In addition, these also give better clinical prognostic and predictive information. We believe that as molecular testing expands, PIK3CA mutation, HER2 amplification, and NTRK fusion molecular testing will be included in standard of care analyses. This incorporation of testing in clinical practice will generate further information regarding prognostic and therapeutic options for these and other CRC subtypes in the future.

Keywords

Colon cancer Rectal cancer Targeted therapy Molecular subtypes Emerging subtypes chemotherapy 

Notes

Financial Support

This project was supported by P30 CA014520 (Core Grant, University of Wisconsin Carbone Cancer Center).

Compliance with Ethical Standards

Conflict of Interest

Rebecca A. DeStefanis declares that she has no conflict of interest.

Jeremy D. Kratz declares that he has no conflict of interest.

Philip B. Emmerich declares that he has no conflict of interest.

Dustin A. Deming has received clinical trial funding from Merck, and has received compensation from Bristol-Myers Squibb, Genentech, Bayer, and Array Pharmaceuticals for service on advisory boards.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Siegel RL, Miller KD, Fedewa SA, Ahnen DJ, Meester RG, Barzi A, et al. Colorectal cancer statistics, 2017. CA Cancer J Clin. 2017;67(3):177–93.CrossRefGoogle Scholar
  2. 2.
    Network CGA. Comprehensive molecular characterization of human colon and rectal cancer. Nature. 2012;487(7407):330–7.CrossRefGoogle Scholar
  3. 3.
    Fuchs CS, Marshall J, Mitchell E, Wierzbicki R, Ganju V, Jeffery M, et al. Randomized, controlled trial of irinotecan plus infusional, bolus, or oral fluoropyrimidines in first-line treatment of metastatic colorectal cancer: results from the BICC-C study. J Clin Oncol. 2007;25(30):4779–86.CrossRefGoogle Scholar
  4. 4.
    de Gramont A, Figer A, Seymour M, Homerin M, Hmissi A, Cassidy J, et al. Leucovorin and fluorouracil with or without oxaliplatin as first-line treatment in advanced colorectal cancer. J Clin Oncol. 2000;18(16):2938–47.CrossRefGoogle Scholar
  5. 5.
    Hurwitz H, Fehrenbacher L, Novotny W, Cartwright T, Hainsworth J, Heim W, et al. Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med. 2004;350(23):2335–42.Google Scholar
  6. 6.
    Goldberg RM, Sargent DJ, Morton RF, Fuchs CS, Ramanathan RK, Williamson SK, et al. A randomized controlled trial of fluorouracil plus leucovorin, irinotecan, and oxaliplatin combinations in patients with previously untreated metastatic colorectal cancer. J Clin Oncol. 2004;22(1):23–30.Google Scholar
  7. 7.
    Hurwitz HI, Tebbutt NC, Kabbinavar F, Giantonio BJ, Guan Z-Z, Mitchell L, et al. Efficacy and safety of bevacizumab in metastatic colorectal cancer: pooled analysis from seven randomized controlled trials. Oncologist. 2013;18(9):1004–12.Google Scholar
  8. 8.
    Dienstmann R, Vermeulen L, Guinney J, Kopetz S, Tejpar S, Tabernero J. Consensus molecular subtypes and the evolution of precision medicine in colorectal cancer. Nat Rev Cancer. 2017;17(2):79–92.CrossRefGoogle Scholar
  9. 9.
    Barnard JA, Beauchamp RD, Russell WE, Dubois RN, Coffey RJ. Epidermal growth factor-related peptides and their relevance to gastrointestinal pathophysiology. Gastroenterology. 1995;108(2):564–80.CrossRefGoogle Scholar
  10. 10.
    Ciardiello F, Tortora G. EGFR antagonists in cancer treatment. N Engl J Med. 2008;358(11):1160–74.CrossRefGoogle Scholar
  11. 11.
    Goldstein NI, Prewett M, Zuklys K, Rockwell P, Mendelsohn J. Biological efficacy of a chimeric antibody to the epidermal growth factor receptor in a human tumor xenograft model. Clin Cancer Res. 1995;1(11):1311–8.Google Scholar
  12. 12.
    Wu X, Fan Z, Masui H, Rosen N, Mendelsohn J. Apoptosis induced by an anti-epidermal growth factor receptor monoclonal antibody in a human colorectal carcinoma cell line and its delay by insulin. J Clin Invest. 1995;95(4):1897–905.CrossRefGoogle Scholar
  13. 13.
    Yang X-D, Jia X-C, Corvalan JR, Wang P, Davis CG. Development of ABX-EGF, a fully human anti-EGF receptor monoclonal antibody, for cancer therapy. Crit Rev Oncol Hematol. 2001;38(1):17–23.CrossRefGoogle Scholar
  14. 14.
    Jonker DJ, O'callaghan CJ, Karapetis CS, Zalcberg JR, Tu D, Au H-J, et al. Cetuximab for the treatment of colorectal cancer. N Engl J Med. 2007;357(20):2040–8.CrossRefGoogle Scholar
  15. 15.
    Van Cutsem E, Kohne C-H, Láng I, Folprecht G, Nowacki MP, Cascinu S, et al. Cetuximab plus irinotecan, fluorouracil, and leucovorin as first-line treatment for metastatic colorectal cancer: updated analysis of overall survival according to tumor KRAS and BRAF mutation status. J Clin Oncol. 2011;29(15):2011–9.CrossRefGoogle Scholar
  16. 16.
    Douillard JY, Siena S, Cassidy J, Tabernero J, Burkes R, Barugel M, et al. Final results from PRIME: randomized phase III study of panitumumab with FOLFOX4 for first-line treatment of metastatic colorectal cancer. Ann Oncol. 2014;25(7):1346–55.CrossRefGoogle Scholar
  17. 17.
    Price TJ, Peeters M, Kim TW, Li J, Cascinu S, Ruff P, et al. Panitumumab versus cetuximab in patients with chemotherapy-refractory wild-type KRAS exon 2 metastatic colorectal cancer (ASPECCT): a randomised, multicentre, open-label, non-inferiority phase 3 study. Lancet Oncol. 2014;15(6):569–79.CrossRefGoogle Scholar
  18. 18.
    Venook AP, Niedzwiecki D, Lenz H-J, Innocenti F, Fruth B, Meyerhardt JA, et al. Effect of first-line chemotherapy combined with cetuximab or bevacizumab on overall survival in patients with KRAS wild-type advanced or metastatic colorectal cancer: a randomized clinical trial. JAMA. 2017;317(23):2392–401.CrossRefGoogle Scholar
  19. 19.
    Allegra CJ, Jessup JM, Somerfield MR, Hamilton SR, Hammond EH, Hayes DF, et al. American Society of Clinical Oncology provisional clinical opinion: testing for KRAS gene mutations in patients with metastatic colorectal carcinoma to predict response to anti-epidermal growth factor receptor monoclonal antibody therapy. J Clin Oncol. 2009;27(12):2091–6.CrossRefGoogle Scholar
  20. 20.
    Venook AP, Niedzwiecki D, Innocenti F, Fruth B, Greene C, O’Neil BH et al. Impact of primary (1°) tumor location on overall survival (OS) and progression-free survival (PFS) in patients (pts) with metastatic colorectal cancer (mCRC): analysis of CALGB/SWOG 80405 (Alliance). American Society of Clinical Oncology; 2016.Google Scholar
  21. 21.
    Segelov E, Earle C, Venook A, Saskin R, Mofid L, Singh S. 587PSurvival by sidedness of metastatic colorectal cancer (mCRC) treated with epidermal growth factor receptor antibodies (EGFR-Ab) in the refractory setting: A population-based study of 1509 patients. Ann Oncol. 2017;28(suppl_5)): v158–v208.  https://doi.org/10.1093/annonc/mdx393.
  22. 22.
    Tejpar S, Stintzing S, Ciardiello F, Tabernero J, Van Cutsem E, Beier F, et al. Prognostic and predictive relevance of primary tumor location in patients with RAS wild-type metastatic colorectal cancer: retrospective analyses of the CRYSTAL and FIRE-3 trials. JAMA Oncol. 2017;3(2):194–201.CrossRefGoogle Scholar
  23. 23.
    Yaeger R, Chatila WK, Lipsyc MD, Hechtman JF, Cercek A, Sanchez-Vega F, et al. Clinical sequencing defines the genomic landscape of metastatic colorectal cancer. Cancer Cell. 2018;33(1):125–36 e3.CrossRefGoogle Scholar
  24. 24.
    Cunningham D, Humblet Y, Siena S, Khayat D, Bleiberg H, Santoro A, et al. Cetuximab monotherapy and cetuximab plus irinotecan in irinotecan-refractory metastatic colorectal cancer. N Engl J Med. 2004;351(4):337–45.CrossRefGoogle Scholar
  25. 25.
    Wasan H, Meade AM, Adams R, Wilson R, Pugh C, Fisher D, et al. Intermittent chemotherapy plus either intermittent or continuous cetuximab for first-line treatment of patients with KRAS wild-type advanced colorectal cancer (COIN-B): a randomised phase 2 trial. Lancet Oncol. 2014;15(6):631–9.CrossRefGoogle Scholar
  26. 26.
    Amado R, Wolf M, Peeters M, Van Cutsem E, Siena S, Freeman D, et al. Wild-type KRAS is required for panitumumab efficacy in patients with metastatic colorectal cancer. J Clin Oncol. 2008;26(10):1626–34.CrossRefGoogle Scholar
  27. 27.
    Van Cutsem E, Peeters M, Siena S, Humblet Y, Hendlisz A, Neyns B, et al. Open-label phase III trial of panitumumab plus best supportive care compared with best supportive care alone in patients with chemotherapy-refractory metastatic colorectal cancer. J Clin Oncol. 2007;25(13):1658–64.CrossRefGoogle Scholar
  28. 28.
    Tol J, Koopman M, Cats A, Rodenburg CJ, Creemers GJ, Schrama JG, et al. Chemotherapy, bevacizumab, and cetuximab in metastatic colorectal cancer. N Engl J Med. 2009;360(6):563–72.  https://doi.org/10.1056/NEJMoa0808268.CrossRefGoogle Scholar
  29. 29.
    Kratz JD, Uboha NV, Lubner SJ, Mulkerin DL, Clipson L, Yi Y, et al. Metastatic bulk independently predicts outcomes for EGFR precision targeting in colorectal cancer. J Natl Compr Cancer Netw. 2018;16(12):1442–50.CrossRefGoogle Scholar
  30. 30.
    Benedix F, Kube R, Meyer F, Schmidt U, Gastinger I, Lippert H, et al. Comparison of 17,641 patients with right- and left-sided colon cancer: differences in epidemiology, perioperative course, histology, and survival. Dis Colon Rectum. 2010;53(1):57–64.  https://doi.org/10.1007/DCR.0b013e3181c703a4.CrossRefGoogle Scholar
  31. 31.
    Pawlik TM, Scoggins CR, Zorzi D, Abdalla EK, Andres A, Eng C, et al. Effect of surgical margin status on survival and site of recurrence after hepatic resection for colorectal metastases. Ann Surg. 2005;241(5):715–22 discussion 22-4.CrossRefGoogle Scholar
  32. 32.
    Price TJ, Beeke C, Ullah S, Padbury R, Maddern G, Roder D, et al. Does the primary site of colorectal cancer impact outcomes for patients with metastatic disease? Cancer. 2015;121(6):830–5.  https://doi.org/10.1002/cncr.29129.CrossRefGoogle Scholar
  33. 33.
    Lee CM, Tannock IF. The distribution of the therapeutic monoclonal antibodies cetuximab and trastuzumab within solid tumors. BMC Cancer. 2010;10:255.  https://doi.org/10.1186/1471-2407-10-255.CrossRefGoogle Scholar
  34. 34.
    Hofmann M, McCormack E, Mujic M, Rossberg M, Bernd A, Bereiter-Hahn J, et al. Increased plasma colloid osmotic pressure facilitates the uptake of therapeutic macromolecules in a xenograft tumor model. Neoplasia. 2009;11(8):812–22.CrossRefGoogle Scholar
  35. 35.
    Jain RK. Physiological barriers to delivery of monoclonal antibodies and other macromolecules in tumors. Cancer Res. 1990;50(3 Suppl):814s–9s.Google Scholar
  36. 36.
    Mekenkamp LJ, Tol J, Dijkstra JR, de Krijger I, Vink-Börger ME, van Vliet S, et al. Beyond KRAS mutation status: influence of KRAS copy number status and microRNAs on clinical outcome to cetuximab in metastatic colorectal cancer patients. BMC Cancer. 2012;12(1):292.CrossRefGoogle Scholar
  37. 37.
    Smith G, Bounds R, Wolf H, Steele R, Carey F, Wolf C. Activating K-Ras mutations outwith ‘hotspot’codons in sporadic colorectal tumours–implications for personalised cancer medicine. Br J Cancer. 2010;102(4):693–703.CrossRefGoogle Scholar
  38. 38.
    Bertotti A, Migliardi G, Galimi F, Sassi F, Torti D, Isella C et al. A molecularly annotated platform of patient-derived xenografts (‘xenopatients’) identifies HER2 as an effective therapeutic target in cetuximab-resistant colorectal cancer. Cancer Discov. 2011;1(6):508–23.Google Scholar
  39. 39.
    Bardelli A, Corso S, Bertotti A, Hobor S, Valtorta E, Siravegna G, et al. Amplification of the MET receptor drives resistance to anti-EGFR therapies in colorectal cancer. Cancer Discov. 2013;3:658–73.CrossRefGoogle Scholar
  40. 40.
    De Roock W, Claes B, Bernasconi D, De Schutter J, Biesmans B, Fountzilas G, et al. Effects of KRAS, BRAF, NRAS, and PIK3CA mutations on the efficacy of cetuximab plus chemotherapy in chemotherapy-refractory metastatic colorectal cancer: a retrospective consortium analysis. Lancet Oncol. 2010;11(8):753–62.CrossRefGoogle Scholar
  41. 41.
    Montagut C, Dalmases A, Bellosillo B, Crespo M, Pairet S, Iglesias M, et al. Identification of a mutation in the extracellular domain of the epidermal growth factor receptor conferring cetuximab resistance in colorectal cancer. Nat Med. 2012;18(2):221–3.CrossRefGoogle Scholar
  42. 42.
    Voigt M, Braig F, Göthel M, Schulte A, Lamszus K, Bokemeyer C, et al. Functional dissection of the epidermal growth factor receptor epitopes targeted by panitumumab and cetuximab. Neoplasia. 2012;14(11):IN2–3.CrossRefGoogle Scholar
  43. 43.
    Richman SD, Chambers P, Seymour MT, Daly C, Grant S, Hemmings G, et al. Intra-tumoral heterogeneity of KRAS and BRAF mutation status in patients with advanced colorectal cancer (aCRC) and cost-effectiveness of multiple sample testing. Anal Cell Pathol. 2011;34(1–2):61–6.CrossRefGoogle Scholar
  44. 44.
    Kosmidou V, Oikonomou E, Vlassi M, Avlonitis S, Katseli A, Tsipras I, et al. Tumor heterogeneity revealed by KRAS, BRAF, and PIK 3 CA pyrosequencing: KRAS and PIK 3 CA intratumor mutation profile differences and their therapeutic implications. Hum Mutat. 2014;35(3):329–40.CrossRefGoogle Scholar
  45. 45.
    Khan KH, Cunningham D, Werner B, Vlachogiannis G, Spiteri I, Heide T, et al. Longitudinal liquid biopsy and mathematical modeling of clonal evolution forecast time to treatment failure in the PROSPECT-C phase II colorectal cancer clinical trial. Cancer Discov. 2018;8(10):1270–85.CrossRefGoogle Scholar
  46. 46.
    Liu X, George G, Tsimberidou A, Naing A, Wheler J, Kopetz S, et al. Retreatment with anti-EGFR based therapies in metastatic colorectal cancer: impact of intervening time interval and prior anti-EGFR response. BMC Cancer. 2015;15(1):713.CrossRefGoogle Scholar
  47. 47.
    Parseghian CM, Loree JM, Morris VK, Liu X, Clifton K, Napolitano S, et al. Anti-EGFR resistant clones decay exponentially after progression: implications for anti-EGFR re-challenge. Ann Oncol. 2018; (in press).Google Scholar
  48. 48.
    Sievers CK, Kratz JD, Zurbriggen LD, LoConte NK, Lubner SJ, Uboha N, et al. The multidisciplinary management of colorectal cancer: present and future paradigms. Clin Colon Rectal Surg. 2016;29(03):232–8.Google Scholar
  49. 49.
    Van Cutsem E, Köhne C-H, Hitre E, Zaluski J, Chang Chien C-R, Makhson A, et al. Cetuximab and chemotherapy as initial treatment for metastatic colorectal cancer. N Engl J Med. 2009;360(14):1408–17.CrossRefGoogle Scholar
  50. 50.
    Lievre A, Bachet J-B, Le Corre D, Boige V, Landi B, Emile J-F, et al. KRAS mutation status is predictive of response to cetuximab therapy in colorectal cancer. Cancer Res. 2006;66(8):3992–5.CrossRefGoogle Scholar
  51. 51.
    Benvenuti S, Sartore-Bianchi A, Di Nicolantonio F, Zanon C, Moroni M, Veronese S, et al. Oncogenic activation of the RAS/RAF signaling pathway impairs the response of metastatic colorectal cancers to anti–epidermal growth factor receptor antibody therapies. Cancer Res. 2007;67(6):2643–8.CrossRefGoogle Scholar
  52. 52.
    Di Fiore F, Blanchard F, Charbonnier F, Le Pessot F, Lamy A, Galais M, et al. Clinical relevance of KRAS mutation detection in metastatic colorectal cancer treated by Cetuximab plus chemotherapy. Br J Cancer. 2007;96(8):1166–9.CrossRefGoogle Scholar
  53. 53.
    Lievre A, Bachet J-B, Boige V, Cayre A, Le Corre D, Buc E, et al. KRAS mutations as an independent prognostic factor in patients with advanced colorectal cancer treated with cetuximab. J Clin Oncol. 2008;26(3):374–9.CrossRefGoogle Scholar
  54. 54.
    Tapia Rico G, Price TJ. Atezolizumab for the treatment of colorectal cancer: the latest evidence and clinical potential. Expert Opin Biol Ther. 2018;18(4):449–57.CrossRefGoogle Scholar
  55. 55.
    • Bendell J, Ciardiello F, Tabernero J, Tebbutt N, Eng C, Di Bartolomeo M, et al. LBA-004Efficacy and safety results from IMblaze370, a randomised Phase III study comparing atezolizumab+cobimetinib and atezolizumab monotherapy vs regorafenib in chemotherapy-refractory metastatic colorectal cancer. Ann Oncol. 2018;29(suppl_5):mdy208.003-mdy208.003.  https://doi.org/10.1093/annonc/mdy208.003 Important clinical trial highlighting the need for more work to better understand the clinical significance of RAS mutations in mCRC. CrossRefGoogle Scholar
  56. 56.
    Oberst MD, Fuhrmann S, Mulgrew K, Amann M, Cheng L, Lutterbuese P et al. CEA/CD3 bispecific antibody MEDI-565/AMG 211 activation of T cells and subsequent killing of human tumors is independent of mutations commonly found in colorectal adenocarcinomas. MAbs; Taylor & Francis; 2014.Google Scholar
  57. 57.
    Kawakami H, Zaanan A, Sinicrope FA. Microsatellite instability testing and its role in the management of colorectal cancer. Curr Treat Options in Oncol. 2015;16(7):30.CrossRefGoogle Scholar
  58. 58.
    Koopman M, Kortman G, Mekenkamp L, Ligtenberg M, Hoogerbrugge N, Antonini N, et al. Deficient mismatch repair system in patients with sporadic advanced colorectal cancer. Br J Cancer. 2009;100(2):266–73.CrossRefGoogle Scholar
  59. 59.
    Boland CR, Goel A. Microsatellite instability in colorectal cancer. Gastroenterology. 2010;138(6):2073–87 e3.CrossRefGoogle Scholar
  60. 60.
    Germano G, Lamba S, Rospo G, Barault L, Magrì A, Maione F, et al. Inactivation of DNA repair triggers neoantigen generation and impairs tumour growth. Nature. 2017;552(7683):116–20.Google Scholar
  61. 61.
    Panarelli NC, Vaughn CP, Samowitz WS, Yantiss RK. Sporadic microsatellite instability-high colon cancers rarely display immunohistochemical evidence of Wnt signaling activation. Am J Surg Pathol. 2015;39(3):313–7.CrossRefGoogle Scholar
  62. 62.
    Wang B, Tian T, Kalland K-H, Ke X, Qu YJ. Targeting Wnt/β-Catenin Signaling for Cancer Immunotherapy. Trends Pharmacol Sci. 2018;39(7):648–58.CrossRefGoogle Scholar
  63. 63.
    Gupta R, Sinha S, Paul RN. The impact of microsatellite stability status in colorectal cancer. Curr Probl Cancer. 2018;42:548–59.CrossRefGoogle Scholar
  64. 64.
    Le DT, Uram JN, Wang H, Bartlett BR, Kemberling H, Eyring AD, et al. PD-1 blockade in tumors with mismatch-repair deficiency. N Engl J Med. 2015;372(26):2509–20.Google Scholar
  65. 65.
    Overman MJ, McDermott R, Leach JL, Lonardi S, Lenz H-J, Morse MA, et al. Nivolumab in patients with metastatic DNA mismatch repair-deficient or microsatellite instability-high colorectal cancer (CheckMate 142): an open-label, multicentre, phase 2 study. Lancet Oncol. 2017;18(9):1182–91.CrossRefGoogle Scholar
  66. 66.
    •• Overman MJ, Lonardi S, Wong KYM, Lenz H-J, Gelsomino F, Aglietta M, et al. Durable clinical benefit with nivolumab plus ipilimumab in DNA mismatch repair-deficient/microsatellite instability-high metastatic colorectal cancer. J Clin Oncol. 2018;36(8):773–9 The largest single group assignment immunotherapy combination study done in dMMR/MSI-H mCRC with encouranging overall response rates.Google Scholar
  67. 67.
    Overman MJ, Kopetz S, McDermott RS, Leach J, Lonardi S, Lenz H-J, et al. Nivolumab ± ipilimumab in treatment (tx) of patients (pts) with metastatic colorectal cancer (mCRC) with and without high microsatellite instability (MSI-H): CheckMate-142 interim results. 2016;34(15_suppl):3501.  https://doi.org/10.1200/JCO.2016.34.15_suppl.3501.
  68. 68.
    Overman MJ, Bergamo F, McDermott RS, Aglietta M, Chen F, Gelsomino F, et al. Nivolumab in patients with DNA mismatch repair-deficient/microsatellite instability-high (dMMR/MSI-H) metastatic colorectal cancer (mCRC): Long-term survival according to prior line of treatment from CheckMate-142. 2018;36(4_suppl):554.  https://doi.org/10.1200/JCO.2018.36.4_suppl.554.
  69. 69.
    Davies H, Bignell GR, Cox C, Stephens P, Edkins S, Clegg S, et al. Mutations of the BRAF gene in human cancer. Nature. 2002;417(6892):949–54.CrossRefGoogle Scholar
  70. 70.
    Pietrantonio F, Petrelli F, Coinu A, Di Bartolomeo M, Borgonovo K, Maggi C, et al. Predictive role of BRAF mutations in patients with advanced colorectal cancer receiving cetuximab and panitumumab: a meta-analysis. Eur J Cancer. 2015;51(5):587–94.CrossRefGoogle Scholar
  71. 71.
    Bokemeyer C, Van Cutsem E, Rougier P, Ciardiello F, Heeger S, Schlichting M, et al. Addition of cetuximab to chemotherapy as first-line treatment for KRAS wild-type metastatic colorectal cancer: pooled analysis of the CRYSTAL and OPUS randomised clinical trials. Eur J Cancer. 2012;48(10):1466–75.CrossRefGoogle Scholar
  72. 72.
    Douillard J-Y, Oliner KS, Siena S, Tabernero J, Burkes R, Barugel M, et al. Panitumumab–FOLFOX4 treatment and RAS mutations in colorectal cancer. N Engl J Med. 2013;369(11):1023–34.CrossRefGoogle Scholar
  73. 73.
    Rowland A, Dias M, Wiese M, Kichenadasse G, McKinnon RA, Karapetis C, et al. Meta-analysis of BRAF mutation as a predictive biomarker of benefit from anti-EGFR monoclonal antibody therapy for RAS wild-type metastatic colorectal cancer. Br J Cancer. 2015;112(12):1888–94.CrossRefGoogle Scholar
  74. 74.
    Kopetz S, McDonough SL, Morris VK, Lenz H-J, Magliocco AM, Atreya CE, et al. Randomized trial of irinotecan and cetuximab with or without vemurafenib in BRAF-mutant metastatic colorectal cancer (SWOG 1406). 2017;35(4_suppl):520.  https://doi.org/10.1200/JCO.2017.35.4_suppl.520.
  75. 75.
    • Cutsem EV, Cuyle P-J, Huijberts S, Yaeger R, Schellens JHM, Elez E, et al. BEACON CRC study safety lead-in (SLI) in patients with BRAFV600E metastatic colorectal cancer (mCRC): Efficacy and tumor markers. 2018;36(4_suppl):627.  https://doi.org/10.1200/JCO.2018.36.4_suppl.627 An exciting ongoing clinical trial for patients with a BRAF V600E mutation which promises to be a new clinical practice for this subset of patients.
  76. 76.
    Jones JC, Renfro LA, Al-Shamsi HO, Schrock AB, Rankin A, Zhang BY, et al. Non-V600 BRAF mutations define a clinically distinct molecular subtype of metastatic colorectal cancer. J Clin Oncol. 2017;35(23):2624–30.Google Scholar
  77. 77.
    Akinleye A, Avvaru P, Furqan M, Song Y, Liu D. Phosphatidylinositol 3-kinase (PI3K) inhibitors as cancer therapeutics. J Hematol Oncol. 2013;6(1):88.CrossRefGoogle Scholar
  78. 78.
    Fricke SL, Payne SN, Favreau PF, Kratz JD, Pasch CA, Foley TM et al. MTORC1/2 inhibition as a therapeutic strategy for PIK3CA mutant cancers. Mol Cancer Ther. 2018:18(2):346–55.Google Scholar
  79. 79.
    Raghav KPS, Overman MJ, Yu R, Meric-Bernstam F, Menter D, Kee BK, et al. HER2 amplification as a negative predictive biomarker for anti-epidermal growth factor receptor antibody therapy in metastatic colorectal cancer. Proc Am Soc Clin Oncol. 2016;34:3517.CrossRefGoogle Scholar
  80. 80.
    Siena S, Sartore-Bianchi A, Marsoni S, Hurwitz H, McCall S, Penault-Llorca F, et al. Targeting the human epidermal growth factor receptor 2 (HER2) oncogene in colorectal cancer. Ann Oncol. 2018;29(5):1108–19.CrossRefGoogle Scholar
  81. 81.
    Marsoni S, Bertotti A, Sartore-Bianchi A, Leone F, Lonardi S, Ciardiello F, et al. Dual anti-HER2 treatment of patients with HER2-positive metastatic colorectal cancer: the HERACLES trial (HER2 amplification for Colo-rectaL cancer enhanced stratification). J Clin Oncol. 2013;31, no. 15_suppl.Google Scholar
  82. 82.
    • Hainsworth JD, Meric-Bernstam F, Swanton C, Hurwitz H, Spigel DR, Sweeney C, et al. Targeted therapy for advanced solid tumors on the basis of molecular profiles: results from MyPathway, an open-label, phase IIa multiple basket study. J Clin Oncol. 2018;36(6):536–42 An important basket trial which found significant objective response rates among HER2 receptor amplified mCRC patients.Google Scholar
  83. 83.
    Amatu A, Sartore-Bianchi A, Siena S. NTRK gene fusions as novel targets of cancer therapy across multiple tumour types. ESMO Open. 2016;1(2):e000023.CrossRefGoogle Scholar
  84. 84.
    Gatalica Z, Xiu J, Swensen J, Vranic S. Molecular characterization of cancers with NTRK gene fusions. Mod Pathol. 2019;32(1):147–53.Google Scholar
  85. 85.
    Pietrantonio F, Di Nicolantonio F, Schrock AB, Lee J, Tejpar S, Sartore-Bianchi A, et al. ALK, ROS1, and NTRK rearrangements in metastatic colorectal cancer. J Natl Cancer Inst. 2017;109(12).Google Scholar
  86. 86.
    Stransky N, Cerami E, Schalm S, Kim JL, Lengauer C. The landscape of kinase fusions in cancer. Nat Commun. 2014;5:4846.CrossRefGoogle Scholar
  87. 87.
    •• Drilon A, Laetsch TW, Kummar S, DuBois SG, Lassen UN, Demetri GD, et al. Efficacy of larotrectinib in TRK fusion–positive cancers in adults and children. N Engl J Med. 2018;378(8):731–9 The first tissue-agnostic targeted therapy approved by the FDA. CrossRefGoogle Scholar
  88. 88.
    Khan KH, Cunningham D, Werner B, Vlachogiannis G, Spiteri I, Heide T, et al. Longitudinal liquid biopsy and mathematical modeling of clonal evolution forecast time to treatment failure in the PROSPECT-C phase II colorectal cancer clinical trial. Cancer Discov. 2018;8(10):1270–85.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Rebecca A. DeStefanis
    • 1
  • Jeremy D. Kratz
    • 1
  • Philip B. Emmerich
    • 1
  • Dustin A. Deming
    • 1
    • 2
    • 3
    Email author
  1. 1.Division of Hematology and Oncology, Department of MedicineUniversity of Wisconsin-MadisonMadisonUSA
  2. 2.University of Wisconsin Carbone Cancer Center, University of Wisconsin-MadisonMadisonUSA
  3. 3.McArdle Laboratory for Cancer Research, Department of OncologyUniversity of Wisconsin-MadisonMadisonUSA

Personalised recommendations