Current Colorectal Cancer Reports

, Volume 8, Issue 4, pp 254–262 | Cite as

The Epigenetics of Gastrointestinal Malignancies

  • Zainul Hasanali
  • August Stuart
  • Nelson Yee
  • Kamal Sharma
  • Elliot EpnerEmail author
Translational Colorectal Oncology (Y Jiang, Section Editor)


Gastrointestinal malignancies, including colorectal cancer (CRC), pancreatic cancer, and esophageal cancer, have been classically seen as genetic diseases, involving mutations and/or deletions in oncogenes and tumor suppressor genes. Recent evidence demonstrates that epigenetic changes coexist with these genetic changes and contribute to the malignant phenotype. This review will focus on epigenetic dysregulation in gastrointestinal malignancies involving multiple mechanisms of epigenetic control. Interactions between studied epigenetic alterations and genetic alterations are common.


Gastrointestinal cancer Epigenetics Cladribine Vorinostat Cetuximab DNA methylation Histone acetylation Colorectal Pancreatic 



E. Epner is supported by grants from Merck and Takeda.


Z. Hasanali, none; A. Stuart, none; N.S.-S. Yee, none; K. Sharma, payment for lectures (including service on speakers bureaus) from Allos Therapeutics and Millennium Pharmaceuticals; E. Epner, payment for lectures (including service on speakers bureaus) from Celgene, Novartis, Enzon Pharmaceuticals, GlaxoSmithKline (GSK), and Incyte Corporation.


Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Goelz SE, Vogelstein B, Hamilton SR, Feinberg AP. Hypomethylation of DNA from benign and malignant human colon neoplasms. Science. 1985;228(4696):187–90.PubMedGoogle Scholar
  2. 2.
    Suzuki K, Suzuki I, Leodolter A, Alonso S, Horiuchi S, Yamashita K, et al. Global DNA demethylation in gastrointestinal cancer is age dependent and precedes genomic damage. Cancer Cell. 2006;9(3):199–207.PubMedGoogle Scholar
  3. 3.
    Ehrlich M. DNA methylation in cancer: too much, but also too little. Oncogene. 2002;21(35):5400–13.PubMedGoogle Scholar
  4. 4.
    •• Irizarry RA, Ladd-Acosta C, Wen B, Wu Z, Montano C, Onyango P, et al. The human colon cancer methylome shows similar hypo- and hypermethylation at conserved tissue-specific CpG island shores. Nat Genet. 2009;41(2):178–86. This paper maps DNA methylation hotspots using high-throughput analysis, expanding the effect of methylation beyond the proximal promoter.PubMedGoogle Scholar
  5. 5.
    Feinberg AP, Tycko B. The history of cancer epigenetics. Nat Rev Cancer. 2004;4(2):143–53.PubMedGoogle Scholar
  6. 6.
    Milicic A, Harrison LA, Goodlad RA, Hardy RG, Nicholson AM, Presz M, et al. Ectopic expression of P-cadherin correlates with promoter hypomethylation early in colorectal carcinogenesis and enhanced intestinal crypt fission in vivo. Cancer Res. 2008;68(19):7760–8.PubMedGoogle Scholar
  7. 7.
    Matsuzaki K, Deng G, Tanaka H, Kakar S, Miura S, Kim YS. The relationship between global methylation level, loss of heterozygosity, and microsatellite instability in sporadic colorectal cancer. Clin Cancer Res. 2005;11(24 Pt 1):8564–9.PubMedGoogle Scholar
  8. 8.
    Rodriguez J, Frigola J, Vendrell E, Risques RA, Fraga MF, Morales C, et al. Chromosomal instability correlates with genome-wide DNA demethylation in human primary colorectal cancers. Cancer Res. 2006;66(17):8462–9468.PubMedGoogle Scholar
  9. 9.
    Estecio MR, Gharibyan V, Shen L, Ibrahim AE, Doshi K, He R, et al. LINE-1 hypomethylation in cancer is highly variable and inversely correlated with microsatellite instability. PLoS One. 2007;2(5):e399.PubMedGoogle Scholar
  10. 10.
    Yamada Y, Jackson-Grusby L, Linhart H, Meissner A, Eden A, Lin H, et al. Opposing effects of DNA hypomethylation on intestinal and liver carcinogenesis. Proc Natl Acad Sci USA. 2005;102(38):13580–5.PubMedGoogle Scholar
  11. 11.
    Laird PW, Jackson-Grusby L, Fazeli A, Dickinson SL, Jung WE, Li E, et al. Suppression of intestinal neoplasia by DNA hypomethylation. Cell. 1995;81(2):197–205.PubMedGoogle Scholar
  12. 12.
    Cormier RT, Dove WF. Dnmt1N/+ reduces the net growth rate and multiplicity of intestinal adenomas in C57BL/6-multiple intestinal neoplasia (Min)/+ mice independently of p53 but demonstrates strong synergy with the modifier of Min 1(AKR) resistance allele. Cancer Res. 2000;60(14):3965–70.PubMedGoogle Scholar
  13. 13.
    Eads CA, Nickel AE, Laird PW. Complete genetic suppression of polyp formation and reduction of CpG-island hypermethylation in Apc(Min/+) Dnmt1-hypomorphic Mice. Cancer Res. 2002;62(5):1296–9.PubMedGoogle Scholar
  14. 14.
    Takahashi S. Current findings for recurring mutations in acute myeloid leukemia. J Hematol Oncol. 2011;4:36.PubMedGoogle Scholar
  15. 15.
    Wajed SA, Laird PW, DeMeester TR. DNA methylation: an alternative pathway to cancer. Ann Surg. 2001;234(1):10–20.PubMedGoogle Scholar
  16. 16.
    Herman JG, Baylin SB. Gene silencing in cancer in association with promoter hypermethylation. N Engl J Med. 2003;349(21):2042–54.PubMedGoogle Scholar
  17. 17.
    Herman JG, Umar A, Polyak K, Graff JR, Ahuja N, Issa JP, et al. Incidence and functional consequences of hMLH1 promoter hypermethylation in colorectal carcinoma. Proc Natl Acad Sci USA. 1998;95(12):6870–5.PubMedGoogle Scholar
  18. 18.
    de la Chapelle A, Hampel H. Clinical relevance of microsatellite instability in colorectal cancer. J Clin Oncol. 2010;28(20):3380–7.PubMedGoogle Scholar
  19. 19.
    Frazier ML, Xi L, Zong J, Viscofsky N, Rashid A, Wu EF, et al. Association of the CpG island methylator phenotype with family history of cancer in patients with colorectal cancer. Cancer Res. 2003;63(16):4805–8.PubMedGoogle Scholar
  20. 20.
    Samowitz WS, Albertsen H, Herrick J, Levin TR, Sweeney C, Murtaugh MA, et al. Evaluation of a large, population-based sample supports a CpG island methylator phenotype in colon cancer. Gastroenterology. 2005;129(3):837–45.PubMedGoogle Scholar
  21. 21.
    Ogino S, Kawasaki T, Kirkner GJ, Kraft P, Loda M, Fuchs CS. Evaluation of markers for CpG island methylator phenotype (CIMP) in colorectal cancer by a large population-based sample. J Mol Diagn. 2007;9(3):305–14.PubMedGoogle Scholar
  22. 22.
    Weisenberger DJ, Siegmund KD, Campan M, Young J, Long TI, Faasse MA, et al. CpG island methylator phenotype underlies sporadic microsatellite instability and is tightly associated with BRAF mutation in colorectal cancer. Nat Genet. 2006;38(7):787–93.PubMedGoogle Scholar
  23. 23.
    Goel A, Nagasaka T, Arnold CN, Inoue T, Hamilton C, Niedzwiecki D, et al. The CpG island methylator phenotype and chromosomal instability are inversely correlated in sporadic colorectal cancer. Gastroenterology. 2007;132(1):127–38.PubMedGoogle Scholar
  24. 24.
    Nagasaka T, Koi M, Kloor M, Gebert J, Vilkin A, Nishida N, et al. Mutations in both KRAS and BRAF may contribute to the methylator phenotype in colon cancer. Gastroenterology. 2008;134(7):1950–60. 60 e1.PubMedGoogle Scholar
  25. 25.
    Nosho K, Irahara N, Shima K, Kure S, Kirkner GJ, Schernhammer ES, et al. Comprehensive biostatistical analysis of CpG island methylator phenotype in colorectal cancer using a large population-based sample. PLoS One. 2008;3(11):e3698.PubMedGoogle Scholar
  26. 26.
    Issa JP. CpG island methylator phenotype in cancer. Nat Rev Cancer. 2004;4(12):988–93.PubMedGoogle Scholar
  27. 27.
    Yamashita K, Dai T, Dai Y, Yamamoto F, Perucho M. Genetics supersedes epigenetics in colon cancer phenotype. Cancer Cell. 2003;4(2):121–31.PubMedGoogle Scholar
  28. 28.
    Grady WM. CIMP and colon cancer gets more complicated. Gut. 2007;56(11):1498–500.PubMedGoogle Scholar
  29. 29.
    Parry L, Clarke AR. The roles of the Methyl-CpG binding proteins in cancer. Genes Cancer. 2011;2(6):618–30.PubMedGoogle Scholar
  30. 30.
    Prokhortchouk A, Sansom O, Selfridge J, Caballero IM, Salozhin S, Aithozhina D, et al. Kaiso-deficient mice show resistance to intestinal cancer. Mol Cell Biol. 2006;26(1):199–208.PubMedGoogle Scholar
  31. 31.
    Sansom OJ, Berger J, Bishop SM, Hendrich B, Bird A, Clarke AR. Deficiency of Mbd2 suppresses intestinal tumorigenesis. Nat Genet. 2003;34(2):145–7.PubMedGoogle Scholar
  32. 32.
    Kouzarides T. Chromatin modifications and their function. Cell. 2007;128(4):693–705.PubMedGoogle Scholar
  33. 33.
    Sparmann A, van Lohuizen M. Polycomb silencers control cell fate, development and cancer. Nat Rev Cancer. 2006;6(11):846–56.PubMedGoogle Scholar
  34. 34.
    Ohm JE, McGarvey KM, Yu X, Cheng L, Schuebel KE, Cope L, et al. A stem cell-like chromatin pattern may predispose tumor suppressor genes to DNA hypermethylation and heritable silencing. Nat Genet. 2007;39(2):237–42.PubMedGoogle Scholar
  35. 35.
    Bracken AP, Dietrich N, Pasini D, Hansen KH, Helin K. Genome-wide mapping of Polycomb target genes unravels their roles in cell fate transitions. Genes Dev. 2006;20(9):1123–36.PubMedGoogle Scholar
  36. 36.
    Cruz-Correa M, Cui H, Giardiello FM, Powe NR, Hylind L, Robinson A, et al. Loss of imprinting of insulin growth factor II gene: a potential heritable biomarker for colon neoplasia predisposition. Gastroenterology. 2004;126(4):964–70.PubMedGoogle Scholar
  37. 37.
    Jirtle RL. IGF2 loss of imprinting: a potential heritable risk factor for colorectal cancer. Gastroenterology. 2004;126(4):1190–3.PubMedGoogle Scholar
  38. 38.
    Kaneda A, Wang CJ, Cheong R, Timp W, Onyango P, Wen B, et al. Enhanced sensitivity to IGF-II signaling links loss of imprinting of IGF2 to increased cell proliferation and tumor risk. Proc Natl Acad Sci USA. 2007;104(52):20926–31.PubMedGoogle Scholar
  39. 39.
    Holm TM, Jackson-Grusby L, Brambrink T, Yamada Y, Rideout 3rd WM, Jaenisch R. Global loss of imprinting leads to widespread tumorigenesis in adult mice. Cancer Cell. 2005;8(4):275–85.PubMedGoogle Scholar
  40. 40.
    Sakatani T, Kaneda A, Iacobuzio-Donahue CA, Carter MG, de Boom Witzel S, Okano H, et al. Loss of imprinting of Igf2 alters intestinal maturation and tumorigenesis in mice. Science. 2005;307(5717):1976–8.PubMedGoogle Scholar
  41. 41.
    Cui H, Onyango P, Brandenburg S, Wu Y, Hsieh CL, Feinberg AP. Loss of imprinting in colorectal cancer linked to hypomethylation of H19 and IGF2. Cancer Res. 2002;62(22):6442–6.PubMedGoogle Scholar
  42. 42.
    Nakagawa H, Chadwick RB, Peltomaki P, Plass C, Nakamura Y, de La Chapelle A. Loss of imprinting of the insulin-like growth factor II gene occurs by biallelic methylation in a core region of H19-associated CTCF-binding sites in colorectal cancer. Proc Natl Acad Sci USA. 2001;98(2):591–6.PubMedGoogle Scholar
  43. 43.
    Hibi K, Nakamura H, Hirai A, Fujikake Y, Kasai Y, Akiyama S, et al. Loss of H19 imprinting in esophageal cancer. Cancer Res. 1996;56(3):480–2.PubMedGoogle Scholar
  44. 44.
    Vincent A, Omura N, Hong SM, Jaffe A, Eshleman J, Goggins M. Genome-wide analysis of promoter methylation associated with gene expression profile in pancreatic adenocarcinoma. Clin Cancer Res. 2011;17(13):4341–54.PubMedGoogle Scholar
  45. 45.
    Omura N, Goggins M. Epigenetics and epigenetic alterations in pancreatic cancer. Int J Clin Exp Pathol. 2009;2(4):310–26.PubMedGoogle Scholar
  46. 46.
    Schutte M, Hruban RH, Geradts J, Maynard R, Hilgers W, Rabindran SK, et al. Abrogation of the Rb/p16 tumor-suppressive pathway in virtually all pancreatic carcinomas. Cancer Res. 1997;57(15):3126–30.PubMedGoogle Scholar
  47. 47.
    Esteller M, Sparks A, Toyota M, Sanchez-Cespedes M, Capella G, Peinado MA, et al. Analysis of adenomatous polyposis coli promoter hypermethylation in human cancer. Cancer Res. 2000;60(16):4366–71.PubMedGoogle Scholar
  48. 48.
    Jansen M, Fukushima N, Rosty C, Walter K, Altink R, Heek TV, et al. Aberrant methylation of the 5′ CpG island of TSLC1 is common in pancreatic ductal adenocarcinoma and is first manifest in high-grade PanlNs. Cancer Biol Ther. 2002;1(3):293–6.PubMedGoogle Scholar
  49. 49.
    Lomberk GA. Epigenetic silencing of tumor suppressor genes in pancreatic cancer. J Gastrointest Cancer. 2011;42(2):93–9.PubMedGoogle Scholar
  50. 50.
    Ashkenazi A. Targeting death and decoy receptors of the tumour-necrosis factor superfamily. Nat Rev Cancer. 2002;2(6):420–30.PubMedGoogle Scholar
  51. 51.
    Cai HH, Sun YM, Miao Y, Gao WT, Peng Q, Yao J, et al. Aberrant methylation frequency of TNFRSF10C promoter in pancreatic cancer cell lines. Hepatobiliary Pancreat Dis Int. 2011;10(1):95–100.PubMedGoogle Scholar
  52. 52.
    Li A, Omura N, Hong SM, Goggins M. Pancreatic cancer DNMT1 expression and sensitivity to DNMT1 inhibitors. Cancer Biol Ther. 2010;25:9(4).Google Scholar
  53. 53.
    He S, Wang F, Yang L, Guo C, Wan R, Ke A, et al. Expression of DNMT1 and DNMT3a are regulated by GLI1 in human pancreatic cancer. PLoS One. 2011;6(11):e27684.PubMedGoogle Scholar
  54. 54.
    Sato N, Fukushima N, Hruban RH, Goggins M. CpG island methylation profile of pancreatic intraepithelial neoplasia. Mod Pathol. 2008;21(3):238–44.PubMedGoogle Scholar
  55. 55.
    Nakagawa M, Oda Y, Eguchi T, Aishima S, Yao T, Hosoi F, et al. Expression profile of class I histone deacetylases in human cancer tissues. Oncol Rep. 2007;18(4):769–74.PubMedGoogle Scholar
  56. 56.
    Wang W, Gao J, Man XH, Li ZS, Gong YF. Significance of DNA methyltransferase-1 and histone deacetylase-1 in pancreatic cancer. Oncol Rep. 2009;21(6):1439–47.PubMedGoogle Scholar
  57. 57.
    Zhou W, Liang IC, Yee NS. Histone deacetylase 1 is required for exocrine pancreatic epithelial proliferation in development and cancer. Cancer Biol Ther. 2011;11(7):659–70.PubMedGoogle Scholar
  58. 58.
    • von Burstin J, Eser S, Paul MC, Seidler B, Brandl M, Messer M, et al. E-cadherin regulates metastasis of pancreatic cancer in vivo and is suppressed by a SNAIL/HDAC1/HDAC2 repressor complex. Gastroenterology. 2009 Jul; 137(1):361–71, 71 e1–5. This study provides an interesting look at epigenetic pathways downstream of a well known participant in colorectal cancer. Google Scholar
  59. 59.
    Huber MA, Kraut N, Beug H. Molecular requirements for epithelial-mesenchymal transition during tumor progression. Curr Opin Cell Biol. 2005;17(5):548–58.PubMedGoogle Scholar
  60. 60.
    Batlle E, Sancho E, Franci C, Dominguez D, Monfar M, Baulida J, et al. The transcription factor snail is a repressor of E-cadherin gene expression in epithelial tumour cells. Nat Cell Biol. 2000;2(2):84–9.PubMedGoogle Scholar
  61. 61.
    Perez-Moreno MA, Locascio A, Rodrigo I, Dhondt G, Portillo F, Nieto MA, et al. A new role for E12/E47 in the repression of E-cadherin expression and epithelial-mesenchymal transitions. J Biol Chem. 2001;276(29):27424–31.PubMedGoogle Scholar
  62. 62.
    Aghdassi A, Sendler M, Guenther A, Mayerle J, Behn CO, Heidecke CD, et al. Recruitment of histone deacetylases HDAC1 and HDAC2 by the transcriptional repressor ZEB1 downregulates E-cadherin expression in pancreatic cancer. Gut. 2012;61(3):439–48.PubMedGoogle Scholar
  63. 63.
    Miyake K, Yoshizumi T, Imura S, Sugimoto K, Batmunkh E, Kanemura H, et al. Expression of hypoxia-inducible factor-1alpha, histone deacetylase 1, and metastasis-associated protein 1 in pancreatic carcinoma: correlation with poor prognosis with possible regulation. Pancreas. 2008;36(3):e1–9.PubMedGoogle Scholar
  64. 64.
    Bloomston M, Frankel WL, Petrocca F, Volinia S, Alder H, Hagan JP, et al. MicroRNA expression patterns to differentiate pancreatic adenocarcinoma from normal pancreas and chronic pancreatitis. JAMA. 2007;297(17):1901–8.PubMedGoogle Scholar
  65. 65.
    Szafranska AE, Doleshal M, Edmunds HS, Gordon S, Luttges J, Munding JB, et al. Analysis of microRNAs in pancreatic fine-needle aspirates can classify benign and malignant tissues. Clin Chem. 2008;54(10):1716–24.PubMedGoogle Scholar
  66. 66.
    Kent OA, Mullendore M, Wentzel EA, Lopez-Romero P, Tan AC, Alvarez H, et al. A resource for analysis of microRNA expression and function in pancreatic ductal adenocarcinoma cells. Cancer Biol Ther. 2009;8(21):2013–24.PubMedGoogle Scholar
  67. 67.
    Chang TC, Wentzel EA, Kent OA, Ramachandran K, Mullendore M, Lee KH, et al. Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis. Mol Cell. 2007;26(5):745–52.PubMedGoogle Scholar
  68. 68.
    Raver-Shapira N, Marciano E, Meiri E, Spector Y, Rosenfeld N, Moskovits N, et al. Transcriptional activation of miR-34a contributes to p53-mediated apoptosis. Mol Cell. 2007;26(5):731–43.PubMedGoogle Scholar
  69. 69.
    Nalls D, Tang SN, Rodova M, Srivastava RK, Shankar S. Targeting epigenetic regulation of miR-34a for treatment of pancreatic cancer by inhibition of pancreatic cancer stem cells. PLoS One. 2011;6(8):e24099.PubMedGoogle Scholar
  70. 70.
    Frampton AE, Krell J, Jacob J, Stebbing J, Castellano L, Jiao LR. Loss of miR-126 is crucial to pancreatic cancer progression. Expert Rev Anticancer Ther. 2012;12(7):881–4.PubMedGoogle Scholar
  71. 71.
    Weskamp G, Kratzschmar J, Reid MS, Blobel CP. MDC9, a widely expressed cellular disintegrin containing cytoplasmic SH3 ligand domains. J Cell Biol. 1996;132(4):717–26.PubMedGoogle Scholar
  72. 72.
    Grutzmann R, Luttges J, Sipos B, Ammerpohl O, Dobrowolski F, Alldinger I, et al. ADAM9 expression in pancreatic cancer is associated with tumour type and is a prognostic factor in ductal adenocarcinoma. Br J Cancer. 2004;90(5):1053–8.PubMedGoogle Scholar
  73. 73.
    Khew-Goodall Y, Goodall GJ. A microRNA that limits metastatic colonisation and endothelial recruitment. EMBO J. 2012;31(4):786–7.PubMedGoogle Scholar
  74. 74.
    Yu YL, Chou RH, Chen LT, Shyu WC, Hsieh SC, Wu CS, et al. EZH2 regulates neuronal differentiation of mesenchymal stem cells through PIP5K1C-dependent calcium signaling. J Biol Chem. 2011;286(11):9657–67.PubMedGoogle Scholar
  75. 75.
    Wei Y, Xia W, Zhang Z, Liu J, Wang H, Adsay NV, et al. Loss of trimethylation at lysine 27 of histone H3 is a predictor of poor outcome in breast, ovarian, and pancreatic cancers. Mol Carcinog. 2008;47(9):701–6.PubMedGoogle Scholar
  76. 76.
    Bao B, Ali S, Banerjee S, Wang Z, Logna F, Azmi AS, et al. Curcumin analogue CDF inhibits pancreatic tumor growth by switching on suppressor microRNAs and attenuating EZH2 expression. Cancer Res. 2012;72(1):335–45.PubMedGoogle Scholar
  77. 77.
    Selaru FM, David S, Meltzer SJ, Hamilton JP. Epigenetic events in gastrointestinal cancer. Am J Gastroenterol. 2009;104(8):1910–2.PubMedGoogle Scholar
  78. 78.
    Zheng Y, Zhang Y, Huang X, Chen L. Analysis of the RUNX3 gene methylation in serum DNA from esophagus squamous cell carcinoma, gastric and colorectal adenocarcinoma patients. Hepatogastroenterology. 2011;58(112):2007–11.PubMedGoogle Scholar
  79. 79.
    Liu JB, Qiang FL, Dong J, Cai J, Zhou SH, Shi MX, et al. Plasma DNA methylation of Wnt antagonists predicts recurrence of esophageal squamous cell carcinoma. World J Gastroenterol. 2011;17(44):4917–21.PubMedGoogle Scholar
  80. 80.
    Smith E, De Young NJ, Pavey SJ, Hayward NK, Nancarrow DJ, Whiteman DC, et al. Similarity of aberrant DNA methylation in Barrett’s esophagus and esophageal adenocarcinoma. Mol Cancer. 2008;7:75.PubMedGoogle Scholar
  81. 81.
    Hamilton JP, Sato F, Greenwald BD, Suntharalingam M, Krasna MJ, Edelman MJ, et al. Promoter methylation and response to chemotherapy and radiation in esophageal cancer. Clin Gastroenterol Hepatol. 2006;4(6):701–8.PubMedGoogle Scholar
  82. 82.
    Zabaleta J. Multifactorial etiology of gastric cancer. Methods Mol Biol. 2012;863:411–35.PubMedGoogle Scholar
  83. 83.
    Oue N, Motoshita J, Yokozaki H, Hayashi K, Tahara E, Taniyama K, et al. Distinct promoter hypermethylation of p16INK4a, CDH1, and RAR-beta in intestinal, diffuse-adherent, and diffuse-scattered type gastric carcinomas. J Pathol. 2002;198(1):55–9.PubMedGoogle Scholar
  84. 84.
    Lambert MP, Paliwal A, Vaissiere T, Chemin I, Zoulim F, Tommasino M, et al. Aberrant DNA methylation distinguishes hepatocellular carcinoma associated with HBV and HCV infection and alcohol intake. J Hepatol. 2011;54(4):705–15.PubMedGoogle Scholar
  85. 85.
    Bos JL. Ras oncogenes in human cancer: a review. Cancer Res. 1989;49(17):4682–9.PubMedGoogle Scholar
  86. 86.
    Linardou H, Dahabreh IJ, Kanaloupiti D, Siannis F, Bafaloukos D, Kosmidis P, et al. Assessment of somatic k-RAS mutations as a mechanism associated with resistance to EGFR-targeted agents: a systematic review and meta-analysis of studies in advanced non-small-cell lung cancer and metastatic colorectal cancer. Lancet Oncol. 2008;9(10):962–72.PubMedGoogle Scholar
  87. 87.
    Downward J. Targeting RAS, signalling pathways in cancer therapy. Nat Rev Cancer. 2003;3(1):11–22.PubMedGoogle Scholar
  88. 88.
    Guan RJ, Fu Y, Holt PR, Pardee AB. Association of K-ras mutations with p16 methylation in human colon cancer. Gastroenterology. 1999;116(5):1063–71.PubMedGoogle Scholar
  89. 89.
    Alcock RA, Dey S, Chendil D, Inayat MS, Mohiuddin M, Hartman G, et al. Farnesyltransferase inhibitor (L-744,832) restores TGF-beta type II receptor expression and enhances radiation sensitivity in K-ras mutant pancreatic cancer cell line MIA PaCa-2. Oncogene. 2002;21(51):7883–90.PubMedGoogle Scholar
  90. 90.
    Peli J, Schroter M, Rudaz C, Hahne M, Meyer C, Reichmann E, et al. Oncogenic Ras inhibits Fas ligand-mediated apoptosis by downregulating the expression of Fas. EMBO J. 1999;18(7):1824–31.PubMedGoogle Scholar
  91. 91.
    •• Gazin C, Wajapeyee N, Gobeil S, Virbasius CM, Green MR. An elaborate pathway required for Ras-mediated epigenetic silencing. Nature. 2007;449(7165):1073–7. This study elegantly pinpoints an effector mediated by mutant Ras signaling responsible for the downregulation of FAS.PubMedGoogle Scholar
  92. 92.
    MacLeod AR, Rouleau J, Szyf M. Regulation of DNA methylation by the Ras signaling pathway. J Biol Chem. 1995;270(19):11327–37.PubMedGoogle Scholar
  93. 93.
    Vire E, Brenner C, Deplus R, Blanchon L, Fraga M, Didelot C, et al. The Polycomb group protein EZH2 directly controls DNA methylation. Nature. 2006;439(7078):871–4.PubMedGoogle Scholar
  94. 94.
    Spurgeon SE, Pindyck T, Okada C, Chen Y, Chen Z, Mater E, et al. Cladribine plus rituximab is an effective therapy for newly diagnosed mantle cell lymphoma. Leuk Lymphoma. 2011;52(8):1488–94.PubMedGoogle Scholar
  95. 95.
    • Gowher H, Jeltsch A. Mechanism of inhibition of DNA methyltransferases by cytidine analogs in cancer therapy. Cancer Biol Ther. 2004;3(11):1062–8. This may serve as a model for epigenetic therapy combined with monoclonal antibody treatments.PubMedGoogle Scholar
  96. 96.
    Juttermann R, Li E, Jaenisch R. Toxicity of 5-aza-2′-deoxycytidine to mammalian cells is mediated primarily by covalent trapping of DNA methyltransferase rather than DNA demethylation. Proc Natl Acad Sci USA. 1994;91(25):11797–801.PubMedGoogle Scholar
  97. 97.
    Wyczechowska D, Fabianowska-Majewska K. The effects of cladribine and fludarabine on DNA methylation in K562 cells. Biochem Pharmacol. 2003;65(2):219–25.PubMedGoogle Scholar
  98. 98.
    Xargay-Torrent S, Lopez-Guerra M, Saborit-Villarroya I, Rosich L, Campo E, Roue G, et al. Vorinostat-induced apoptosis in mantle cell lymphoma is mediated by acetylation of proapoptotic BH3-only gene promoters. Clin Cancer Res. 2011;17(12):3956–68.PubMedGoogle Scholar
  99. 99.
    Marks PA, Breslow R. Dimethyl sulfoxide to vorinostat: development of this histone deacetylase inhibitor as an anticancer drug. Nat Biotechnol. 2007;25(1):84–90.PubMedGoogle Scholar
  100. 100.
    Folprecht G, Lutz MP, Schoffski P, Seufferlein T, Nolting A, Pollert P, et al. Cetuximab and irinotecan/5-fluorouracil/folinic acid is a safe combination for the first-line treatment of patients with epidermal growth factor receptor expressing metastatic colorectal carcinoma. Ann Oncol. 2006;17(3):450–6.PubMedGoogle Scholar
  101. 101.
    Lind GE, Thorstensen L, Lovig T, Meling GI, Hamelin R, Rognum TO, et al. A CpG island hypermethylation profile of primary colorectal carcinomas and colon cancer cell lines. Mol Cancer. 2004;3:28.PubMedGoogle Scholar
  102. 102.
    Frigola J, Song J, Stirzaker C, Hinshelwood RA, Peinado MA, Clark SJ. Epigenetic remodeling in colorectal cancer results in coordinate gene suppression across an entire chromosome band. Nat Genet. 2006;38(5):540–9.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Zainul Hasanali
    • 1
  • August Stuart
    • 1
  • Nelson Yee
    • 2
  • Kamal Sharma
    • 3
  • Elliot Epner
    • 4
    Email author
  1. 1.Penn State Hershey Cancer InstituteHersheyUSA
  2. 2.Penn State Hershey Cancer InstituteDivision of Hematology/OncologyHersheyUSA
  3. 3.Penn State Hershey Cancer InstituteHersheyUSA
  4. 4.Penn State Hershey Cancer InstituteDivision of Hematology/OncologyHersheyUSA

Personalised recommendations