Current Colorectal Cancer Reports

, Volume 6, Issue 4, pp 199–205

Management Strategies for Patients with KRAS Mutations

  • Stephen Leong
  • S. Gail Eckhardt
  • Wells A. Messersmith
Article

Abstract

In an era of targeted therapies and personalized medicine, the search for predictive and prognostic biomarkers has reached the forefront in cancer research. Testing for KRAS mutation status in the treatment of colorectal cancer (CRC) has now become standard of care, especially for patients being considered for treatment with antibodies to the epidermal growth factor receptor (EGFR). Because metastatic CRC patients whose tumors harbor KRAS mutations do not respond to EGFR-targeting antibodies, their management is challenging. As our understanding of the role of KRAS mutations grows, new treatment strategies are being devised but are not yet ready for clinical use. In this review, we examine some of these potential strategies.

Keywords

KRAS KRAS mutations Colorectal cancer Novel therapeutics 

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    •• Tol J, Koopman M, Cats A, et al.: Chemotherapy, bevacizumab, and cetuximab in metastatic colorectal cancer. N Engl J Med 2009, 360(6):563–572. This phase III randomized study (CAIRO2) assigned patients with metastatic colon cancer to receive first-line therapy with capecitabine, oxaliplatin, and bevacizumab or the same regimen with cetuximab. It showed that addition of cetuximab to capecitabine, oxaliplatin, and bevacizumab resulted in a significantly shorter PFS and inferior quality of life. Also, KRAS mutation status was a predictor of outcome in the cetuximab-treated group.CrossRefPubMedGoogle Scholar
  2. 2.
    • Karapetis CS, Khambata-Ford S, Jonker DJ, et al.: K-ras mutations and benefit from cetuximab in advanced colorectal cancer. N Engl J Med 2008, 359(17):1757–1765.This randomized phase III trial of cetuximab and BSC demonstrated that patients with colorectal tumors with KRAS MT did not benefit from cetuximab. KRAS WT patients treated with cetuximab had longer overall survival and PFS.CrossRefPubMedGoogle Scholar
  3. 3.
    • Amado RG, Wolf M, Peeters M, et al.: Wild-type KRAS is required for panitumumab efficacy in patients with metastatic colorectal cancer. J Clin Oncol 2008, 26(10):1626–1634. This randomized phase III trial of panitumumab and BSC demonstrated that only panitumumab-treated patients whose tumors exhibited WT KRAS derived any efficacy with regard to PFS and response rate.CrossRefPubMedGoogle Scholar
  4. 4.
    •• Bokemeyer C, Bondarenko I, Makhson A, et al.: Fluorouracil, leucovorin, and oxaliplatin with and without cetuximab in the first-line treatment of metastatic colorectal cancer. J Clin Oncol 2009, 27(5):663–671. This randomized phase II study of FOLFOX4 versus FOLFOX4 plus cetuximab demonstrated that patients with KRAS WT tumors treated with FOLFOX4 plus cetuximab in the first-line setting had a significantly increased chance of response and a lower risk of disease progression.CrossRefPubMedGoogle Scholar
  5. 5.
    •• Van Cutsem E, Kohne CH, Hitre E, et al.: Cetuximab and chemotherapy as initial treatment for metastatic colorectal cancer. N Engl J Med 2009, 360(14):1408–1417. The authors report results of the phase III CRYSTAL study, in which patients were randomly assigned to receive first-line therapy with FOLFIRI (folinic acid, fluorouracil, and irinotecan) with or without cetuximab. This retrospective KRAS mutational analysis demonstrated the negative predictive effect of KRAS MT on response in cetuximab-treated patients.CrossRefPubMedGoogle Scholar
  6. 6.
    Schubbert S, Shannon K, Bollag G: Hyperactive Ras in developmental disorders and cancer. Nat Rev Cancer 2007, 7(4):295–308.CrossRefPubMedGoogle Scholar
  7. 7.
    Lowy DR, Willumsen BM: Function and regulation of ras. Annu Rev Biochem 1993, 62:851–891.CrossRefPubMedGoogle Scholar
  8. 8.
    Downward J: Targeting RAS signalling pathways in cancer therapy. Nat Rev Cancer 2003, 3(1):11–22.CrossRefPubMedGoogle Scholar
  9. 9.
    Spano JP, Lagorce C, Atlan D, et al.: Impact of EGFR expression on colorectal cancer patient prognosis and survival. Ann Oncol 2005, 16(1):102–108.CrossRefPubMedGoogle Scholar
  10. 10.
    Malumbres M, Barbacid M: RAS oncogenes: the first 30 years. Nat Rev Cancer 2003, 3(6):459–465.CrossRefPubMedGoogle Scholar
  11. 11.
    Zhu D, Keohavong P, Finkelstein SD, et al.: K-ras gene mutations in normal colorectal tissues from K-ras mutation-positive colorectal cancer patients. Cancer Res 1997, 57(12):2485–2492.PubMedGoogle Scholar
  12. 12.
    Goldberg RM, Sargent DJ, Thibodeau SN, et al.: Adjuvant mFOLFOX6 plus or minus cetuximab (Cmab) in patients (pts) with KRAS mutant (m) resected stage III colon cancer (CC): NCCTG Intergroup Phase III Trial N0147 [abstract]. J Clin Oncol 2010 ASCO Annual Meeting Proceedings (Post-Meeting Edition) 2010, 28(15_Suppl):3508.Google Scholar
  13. 13.
    Tejpar S, Popovici T, Delorenzi M, et al.: Mutant KRAS and BRAF gene expression profiles in colorectal cancer: results of the translational study on the PETACC 3-EORTC 40993- SAKK60-00 trial [abstract]. J Clin Oncol 2010 ASCO Annual Meeting Proceedings (Post-Meeting Edition) 2010, 28(15_Suppl):3505.Google Scholar
  14. 14.
    Janakiraman M, Vakiani E, Zeng Z, et al.: Genomic and biological characterization of exon 4 KRAS mutations in human cancer. Cancer Res 2010, Jun 22 (Epub ahead of print).Google Scholar
  15. 15.
    Cunningham C, de Gramont A, Scheithauer W, et al.: Randomized double-blind placebo-controlled trial of the farnesyltransferase inhibitor R115777 (Zarnestra) in advanced refractory colon cancer [abstract]. Proc Am Soc Clin Oncol 2002, 21:502.Google Scholar
  16. 16.
    Sebti SM, Der CJ: Opinion: searching for the elusive targets of farnesyltransferase inhibitors. Nat Rev Cancer 2003, 3(12):945–951.CrossRefPubMedGoogle Scholar
  17. 17.
    Adjei AA, Dy GK, Erlichman C, et al.: A phase I trial of ISIS 2503, an antisense inhibitor of H-ras, in combination with gemcitabine in patients with advanced cancer. Clin Cancer Res 2003, 9(1):115–123.PubMedGoogle Scholar
  18. 18.
    Alberts SR, Schroeder M, Erlichman C, et al.: Gemcitabine and ISIS-2503 for patients with locally advanced or metastatic pancreatic adenocarcinoma: a North Central Cancer Treatment Group phase II trial. J Clin Oncol 2004, 22(24):4944–4950.CrossRefPubMedGoogle Scholar
  19. 19.
    Cunningham CC, Holmlund JT, Geary RS, et al.: A phase I trial of H-ras antisense oligonucleotide ISIS 2503 administered as a continuous intravenous infusion in patients with advanced carcinoma. Cancer 2001, 92(5):1265–1271.CrossRefPubMedGoogle Scholar
  20. 20.
    Davies H, Bignell GR, Cox C, et al.: Mutations of the BRAF gene in human cancer. Nature 2002, 417(6892):949–954.CrossRefPubMedGoogle Scholar
  21. 21.
    Rajagopalan H, Bardelli A, Lengauer C, et al.: Tumorigenesis: RAF/RAS oncogenes and mismatch-repair status. Nature 2002, 418(6901):934.CrossRefPubMedGoogle Scholar
  22. 22.
    Vaughn CP, Wilson AR, Samowitz WS: Quantitative evaluation of CpG island methylation in hyperplastic polyps. Mod Pathol 2010, 23(1):151–156.CrossRefPubMedGoogle Scholar
  23. 23.
    Di Nicolantonio F, Martini M, Molinari F, et al.: Wild-type BRAF is required for response to panitumumab or cetuximab in metastatic colorectal cancer. J Clin Oncol 2008, 26(35):5705–5712.CrossRefPubMedGoogle Scholar
  24. 24.
    Laurent-Puig P, Cayre A, Manceau G, et al.: Analysis of PTEN, BRAF, and EGFR status in determining benefit from cetuximab therapy in wild-type KRAS metastatic colon cancer. J Clin Oncol 2009, 27(35):5924–5930.CrossRefPubMedGoogle Scholar
  25. 25.
    Tol J, Nagtegaal ID, Punt CJ: BRAF mutation in metastatic colorectal cancer. N Engl J Med 2009, 361(1):98–99.CrossRefPubMedGoogle Scholar
  26. 26.
    Wilhelm SM, Carter C, Tang L, et al.: BAY 43-9006 exhibits broad spectrum oral antitumor activity and targets the RAF/MEK/ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis. Cancer Res 2004, 64(19):7099–7109.CrossRefPubMedGoogle Scholar
  27. 27.
    Kolinsky KD, Su F, Bollag G, et al.: Efficacy of PLX4032, a selective V600EB-Raf inhibitor, as monotherapy or in combination with capecitabine ± bevacizumab in a colorectal cancer xenograft model [abstract 362]. Presented at the 2009 Gastrointestinal Cancers Symposium. San Francisco, CA; January 15–17, 2009.Google Scholar
  28. 28.
    Flaherty K, Puzanov I, Sosman J, et al.: Phase I study of PLX4032: proof of concept for V600E BRAF mutation as a therapeutic target in human cancer [abstract]. J Clin Oncol 2009, 27(Suppl 15s):9000.Google Scholar
  29. 29.
    Schwartz GK, Robertson S, Shen A, et al. A phase I study of XL281, a selective oral RAF kinase inhibitor, in patients (pts) with advanced solid tumors [abstract]. J Clin Oncol 2009, 27(Suppl 15s):3513.Google Scholar
  30. 30.
    Kopetz S, Desai J, Chan E, et al.: PLX4032 in metastatic colorectal cancer patients with mutant BRAF tumors [abstract]. J Clin Oncol 2010, 28(Suppl 15s):3534.Google Scholar
  31. 31.
    Hatzivassiliou G, Song K, Yen I, et al.: RAF inhibitors prime wild-type RAF to activate the MAPK pathway and enhance growth. Nature 2010, 464(7287):431–435.CrossRefPubMedGoogle Scholar
  32. 32.
    Marshall JL, Eisenberg SG, Johnson MD, et al.: A phase II trial of ISIS 3521 in patients with metastatic colorectal cancer. Clin Colorectal Cancer 2004, 4(4):268–274.CrossRefPubMedGoogle Scholar
  33. 33.
    Cripps MC, Figueredo AT, Oza AM, et al.: Phase II randomized study of ISIS 3521 and ISIS 5132 in patients with locally advanced or metastatic colorectal cancer: a National Cancer Institute of Canada clinical trials group study. Clin Cancer Res 2002, 8(7):2188–2192.PubMedGoogle Scholar
  34. 34.
    Rinehart J, Adjei AA, Lorusso PM, et al.: Multicenter phase II study of the oral MEK inhibitor, CI-1040, in patients with advanced non-small-cell lung, breast, colon, and pancreatic cancer. J Clin Oncol 2004, 22(22):4456–4462.CrossRefPubMedGoogle Scholar
  35. 35.
    LoRusso P, Krishnamurthi S, Rinehart J, et al.: Clinical aspects of a phase I study of PD-0325901, a selective oral MEK inhibitor, in patients with advanced cancer [abstract 113]. Mol Cancer Ther 2007, 6:3649 s.Google Scholar
  36. 36.
    Yeh TC, Marsh V, Bernat BA, et al.: Biological characterization of ARRY-142886 (AZD6244), a potent, highly selective mitogen-activated protein kinase kinase 1/2 inhibitor. Clin Cancer Res 2007, 13(5):1576–1583.CrossRefPubMedGoogle Scholar
  37. 37.
    Adjei AA, Cohen RB, Franklin W, et al.: Phase I pharmacokinetic and pharmacodynamic study of the oral, small-molecule mitogen-activated protein kinase kinase 1/2 inhibitor AZD6244 (ARRY-142886) in patients with advanced cancers. J Clin Oncol 2008, 26(13):2139–2146.CrossRefPubMedGoogle Scholar
  38. 38.
    Bennouna J, Lang I, Valladares-Ayerbes M, et al.: A phase II, open-label, randomised study to assess the efficacy and safety of the MEK1/2 inhibitor AZD6244 (ARRY-142886) versus capecitabine monotherapy in patients with colorectal cancer who have failed one or two prior chemotherapeutic regimens. Invest New Drugs 2010 Feb 2 (Epub ahead of print).Google Scholar
  39. 39.
    Doyle MP, Yeh TC, Suzy B, et al.: validation and use of a biomarker for clinical development of the MEK1/2 inhibitor ARRY-142886 (AZD6244) [abstract]. J Clin Oncol 2005 ASCO Annual Meeting Proceedings 2005, 23(Suppl 16S):3075.Google Scholar
  40. 40.
    Tenter JJ, Nallapreddy S, Tan AC, et al.: Members of the non-canonical WNT pathway confer resistance to the MEK 1/2 inhibitor AZD6244 in colorectal cancer (CRC) cell lines. Mol Cancer Ther 2009, 8(12 Suppl):A38.Google Scholar
  41. 41.
    Hennessy BT, Smith DL, Ram PT, et al.: Exploiting the PI3K/AKT pathway for cancer drug discovery. Nat Rev Drug Discov 2005, 4(12):988–1004.CrossRefPubMedGoogle Scholar
  42. 42.
    Liu P, Cheng H, Roberts TM, Zhao JJ: Targeting the phosphoinositide 3-kinase pathway in cancer. Nat Rev Drug Discov 2009, 8(8):627–644.CrossRefPubMedGoogle Scholar
  43. 43.
    Samuels Y, Velculescu VE: Oncogenic mutations of PIK3CA in human cancers. Cell Cycle 2004, 3(10):1221–1224.PubMedGoogle Scholar
  44. 44.
    Parsons DW, Wang TL, Samuels Y, et al.: Colorectal cancer: mutations in a signalling pathway. Nature 2005, 436(7052):792.CrossRefPubMedGoogle Scholar
  45. 45.
    Lo Russo PM, Markman B, Tabernero J, et al.: A phase I dose-escalation study of the safety, pharmacokinetics (PK), and pharmacodynamics of XL765, a PI3K/TORC1/TORC2 inhibitor administered orally to patients (pts) with advanced solid tumors [abstract]. J Clin Oncol 2009, 27(Suppl 15s):3502.Google Scholar
  46. 46.
    Shapiro GI, Kwak EL, Baselga J, et al.: Phase I dose-escalation study of XL147, a PI3K inhibitor administered orally to patients with solid tumors [abstract]. J Clin Oncol 2009, 27(Suppl 15s):3500.Google Scholar
  47. 47.
    Wagner AJ, Von Hoff DD, Lo Russo PM, et al.: A first-in-human phase I study to evaluate the pan-PI3K inhibitor GDC-0941 administered QD or BID in patients with advanced solid tumors [abstract]. J Clin Oncol 2009, 27(Suppl 15s):3501.Google Scholar
  48. 48.
    Jiang BH, Liu LZ: PI3K/PTEN signaling in angiogenesis and tumorigenesis. Adv Cancer Res 2009, 102:19–65.CrossRefPubMedGoogle Scholar
  49. 49.
    Fuchs CS, Tabernero JM, Hwang J, et al.: Multicenter phase II study of RAD001 in patients with chemotherapy-refractory metastatic colon cancer (mCRC) [abstract 446]. Presented at the 2009 Gastrointestinal Cancers Symposium. San Francisco, CA; January 15–17, 2009.Google Scholar
  50. 50.
    Velho S, Oliveira C, Ferreira A, et al.: The prevalence of PIK3CA mutations in gastric and colon cancer. Eur J Cancer 2005, 41(11):1649–1654.CrossRefPubMedGoogle Scholar
  51. 51.
    Balmanno K, Chell SD, Gillings AS, et al.: Intrinsic resistance to the MEK1/2 inhibitor AZD6244 (ARRY-142886) is associated with weak ERK1/2 signalling and/or strong PI3K signalling in colorectal cancer cell lines. Int J Cancer 2009, 125(10):2332–2341.CrossRefPubMedGoogle Scholar
  52. 52.
    Wee S, Jagani Z, Xiang KX, et al.: PI3K pathway activation mediates resistance to MEK inhibitors in KRAS mutant cancers. Cancer Res 2009, 69(10):4286–4293.CrossRefPubMedGoogle Scholar
  53. 53.
    Hoeflich KP, O’Brien C, Boyd Z, et al.: In vivo antitumor activity of MEK and phosphatidylinositol 3-kinase inhibitors in basal-like breast cancer models. Clin Cancer Res 2009, 15(14):4649–4664.CrossRefPubMedGoogle Scholar
  54. 54.
    Kinkade CW, Castillo-Martin M, Puzio-Kuter A, et al.: Targeting AKT/mTOR and ERK MAPK signaling inhibits hormone-refractory prostate cancer in a preclinical mouse model. J Clin Invest 2008, 118(9):3051–3064.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Stephen Leong
    • 1
  • S. Gail Eckhardt
    • 1
  • Wells A. Messersmith
    • 1
  1. 1.Gastrointestinal Malignancies and Developmental Therapeutics Program, Division of Medical OncologyUniversity of Colorado Cancer CenterAuroraUSA

Personalised recommendations