Current Colorectal Cancer Reports

, Volume 4, Issue 4, pp 177–183

Advances in immunotherapy for colorectal malignancies

Article
  • 32 Downloads

Abstract

In the past decade, numerous advances have been made in resection, adjuvant treatment, and targeted therapies for colorectal malignancies; however, survival in the setting of metastatic disease treated with the most recent guideline-based therapy is only about 13 months. There has been mounting evidence that immune pathways are important in the development, progression, and regression of colorectal malignancies. This article explores the past attempts to harness immunotherapy against colorectal cancer and considers the future of colorectal cancer immunotherapeutics.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and Recommended Reading

  1. 1.
    Dunn GP, Old LJ, Schreiber RD: The three Es of cancer immunoediting. Annu Rev Immunol 2004, 22:329–360.PubMedCrossRefGoogle Scholar
  2. 2.
    Schreiber RD: Cancer vaccines 2004 opening address: the molecular and cellular basis for cancer immunosurveillance and immunoediting. Cancer Immun 2005, 5(Suppl 1):1.PubMedGoogle Scholar
  3. 3.
    Rosenberg SA: Development of cancer immunotherapies based on identification of the genes encoding cancer regression antigens. J Natl Cancer Inst 1999, 88:1635–1644.CrossRefGoogle Scholar
  4. 4.
    Jass JR, Love SB, Northover JM: A new prognostic classification of rectal cancer. Lancet 1987, 6:1303–1306.CrossRefGoogle Scholar
  5. 5.
    Pages F, Berger A, Camus M, et al.: Effector memory T cells, early metastasis, and survival in colorectal cancer. N Engl J Med 2005, 353:2654–2666.PubMedCrossRefGoogle Scholar
  6. 6.
    Galon J, Costes A, Sanchez-Cabo F, et al.: Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science 2006, 313:1960–1964.PubMedCrossRefGoogle Scholar
  7. 7.
    Naito Y, Saito K, Shiiba K, et al.: CD8+ T cells infiltrated within cancer cell nests as a prognostic factor in human colorectal cancer. Cancer Res 1998, 58:3491–3494.PubMedGoogle Scholar
  8. 8.
    Sandel MH, Dadabayev AR, Menon AG, et al.: Prognostic value of tumor-infiltrating dendritic cells in colorectal cancer: role of maturation status and intratumoral localization. Clin Cancer Res 2005, 11:2576–2582.PubMedCrossRefGoogle Scholar
  9. 9.
    Nagorsen D, Voigt S, Berg E, et al.: Tumor-infiltrating macrophages and dendritic cells in human colorectal cancer: relation to local regulatory T cells, systemic T-cell response against tumor-associated antigens and survival. J Transl Med 2007, 5:62.PubMedCrossRefGoogle Scholar
  10. 10.
    Klimp AH, de Vries EG, Scherphof GL, Daemen T: A potential role of macrophage activation in the treatment of cancer. Crit Rev Oncol Hematol 2002, 44:143–161.PubMedCrossRefGoogle Scholar
  11. 11.
    Ichim CV: Revisiting immunosurveillance and immunostimulation: implications for cancer immunotherapy. J Transl Med 2005, 3:8.PubMedCrossRefGoogle Scholar
  12. 12.
    Kuniyasu H, Sasaki T, Sasahira T, et al.: Depletion of tumor-infiltrating macrophages is associated with amphoterin expression in colorectal cancer. Pathobiology 2004, 71:129–136.PubMedCrossRefGoogle Scholar
  13. 13.
    Miyagawa S, Soeda J, Takagi S, et al.: Prognostic significance of mature dendritic cells and factors associated with their accumulation in metastatic liver tumors from colorectal cancer. Hum Pathol 2004, 35:1392–1396.PubMedCrossRefGoogle Scholar
  14. 14.
    Etoh T, Shibuta K, Barnard GF, et al.: Angiogenin expression in human colorectal cancer: the role of focal macrophage infiltration. Clin Cancer Res 2000, 6:3545–3551.PubMedGoogle Scholar
  15. 15.
    Coca S, Perez-Piqueras J, Martinez D, et al.: The prognostic significance of intratumoral natural killer cells in patients with colorectal carcinoma. Cancer 1997, 79:2320–2328.PubMedCrossRefGoogle Scholar
  16. 16.
    Nielsen HJ, Hansen U, Christensen IJ, et al.: Independent prognostic value of eosinophil and mast cell infiltration in colorectal cancer tissue. J Pathol 1999, 189:487–495.PubMedCrossRefGoogle Scholar
  17. 17.
    Ferretti G, Felici A, Cognetti F: Forkhead box P3-positive regulatory T cells in immune surveillance and cancer. Br J Cancer 2007, 97:1015–1016.PubMedGoogle Scholar
  18. 18.
    Wolf AM, Wolf D, Steurer M, et al.: Increase of regulatory T cells in the peripheral blood of cancer patients. Clin Cancer Res 2003, 9:606–612.PubMedGoogle Scholar
  19. 19.
    Loddenkemper C, Schernus M, Noutsias M, et al.: In situ analysis of FOXP3+ regulatory T cells in human colorectal cancer. J Transl Med 2006, 4:52.PubMedCrossRefGoogle Scholar
  20. 20.
    Scanlan MJ, Simpson AJ, Old LJ: The cancer/testis genes: review, standardization, and commentary. Cancer Immun 2004, 4:1.PubMedGoogle Scholar
  21. 21.
    Wischnewski F, Pantel K, Schwarzenbach H: Promoter demethylation and histone acetylation mediate gene expression of MAGE-A1,-A2,-A3, and-A12 in human cancer cells. Mol Cancer Res 2006, 4:339–349.PubMedCrossRefGoogle Scholar
  22. 22.
    Murakami T, Sato A, Furukawa Y, Kobayashi E: Sensitization of murine B16 melanoma cells with the HDAC inhibitor depsipeptide promotes immune cell-mediated tumor destruction. J Immunol 2007, 178:48.24.Google Scholar
  23. 23.
    Zeh HJ, Stavely-O’Carroll K, Choti MA: Vaccines for colorectal cancer. Trend Mol Med 2001, 7:307–313.CrossRefGoogle Scholar
  24. 24.
    Leelawat K, Watanabe T, Nakajima M, et al.: Upregulation of tumor associated antigen RCAS1 in implicated in high stages of colorectal cancer. J Clin Pathol 2003, 56:764–768.PubMedCrossRefGoogle Scholar
  25. 25.
    Koesters R, Linnebacher M, Coy JF, et al.: WT1 is a tumor-associated antigen in colon cancer that can be recognized by in vitro stimulated cytotoxic T cells. Int J Cancer 2004, 109:385–392.PubMedCrossRefGoogle Scholar
  26. 26.
    van der Burg SH, Menon AG, Redeker A, et al.: Induction of p53-specific immune responses in colorectal cancer patients receiving a recombinant ALVAC-p53 candidate vaccine. Clin Cancer Res 2002, 8:1019–1027.PubMedGoogle Scholar
  27. 27.
    Rosenberg SA, Lotze MT, Muul LM, et al.: Observations on the systemic administration of autologous lymphokine-activated killer cells and recombinant interleukin-2 to patients with metastatic cancer. N Engl J Med 1985, 313:1485–1492.PubMedGoogle Scholar
  28. 28.
    Brivio F, Lissoni P, Alderi G, et al.: Preoperative interleukin-2 subcutaneous immunotherapy may prolong the survival time in advanced colorectal cancer patients. Oncology 1996, 53:263–268.PubMedCrossRefGoogle Scholar
  29. 29.
    Smith RE, Colangelo L, Wieand HS, et al.: Randomized trial of adjuvant therapy in colon carcinoma: 10-year results of NSABP protocol C-01. J Natl Cancer Inst 2004, 96:1128–1132.PubMedCrossRefGoogle Scholar
  30. 30.
    Panettiere FJ, Goodman PJ, Costanzi JJ, et al.: Adjuvant therapy in large bowel adenocarcinoma: long-term results of a Southwest Oncology Group Study. J Clin Oncol 1988, 6:947–954.PubMedGoogle Scholar
  31. 31.
    Wolmark N, Bryant J, Smith R, et al.: Adjuvant 5-fluorouracil and leucovorin with or without interferon alfa-2a in colon carcinoma: National Surgical Adjuvant Breast and Bowel Project C-05. J Natl Cancer Inst 1998, 90:1810–1816.PubMedCrossRefGoogle Scholar
  32. 32.
    Wiesenfeld M, O’Connell MJ, Wieand HS, et al.: Controlled trial of interferon-gamma as postoperative surgical adjuvant therapy for colon cancer. J Clin Oncol 1995, 13:2324–2329.PubMedGoogle Scholar
  33. 33.
    Sakamoto J, Morita S, Oba K, et al.: Efficacy of adjuvant immunochemotherapy with polysaccharide K for patients with curatively resected colorectal cancer: a meta-analysis of centrally randomized controlled clinical trials. Cancer Immunol Immunother 2005, 55:404–411.PubMedCrossRefGoogle Scholar
  34. 34.
    Hoover HC Jr, Brandhorst JS, Peters LC, et al.: Adjuvant active specific immunotherapy for human colorectal cancer: 6.5 year median follow-up of a phase III prospectively randomized trial. J Clin Oncol 1993, 11:390–399.PubMedGoogle Scholar
  35. 35.
    Harris JE, Ryan L, Hoover HC Jr, et al.: Adjuvant active specific immunotherapy for stage II and III colon cancer with an autologous tumor cell vaccine: Eastern Cooperative Oncology Group Study E5283. J Clin Oncol 2000, 18:148–157.PubMedGoogle Scholar
  36. 36.
    Vermorken JB, Claessen AM, van Tinteren H, et al.: Active specific immunotherapy for stage II and III human colon cancer: a randomised trial. Lancet 1999, 353:345–350.PubMedCrossRefGoogle Scholar
  37. 37.
    Hanna MG, Hoover HC, Vermorken JB, et al.: Adjuvant active specific immunotherapy of stage II and stage III colon cancer with an autologous tumor cell vaccine: first randomized phase III trials show promise. Vaccine 2001, 19:2576–2582.PubMedCrossRefGoogle Scholar
  38. 38.
    Liang W, Wang H, Sun TM, et al.: Application of autologous tumor cell vaccine and NDV vaccine in treatment of tumors of digestive tract. World J Gastroenterol 2003, 9:495–498.PubMedGoogle Scholar
  39. 39.
    Habal N, Gupta RK, Bilchik AJ, et al.: CancerVax, an allogeneic tumor cell vaccine, induces specific humoral and cellular immune responses in advanced colon cancer. Ann Surg Oncol 2001, 8:389–401.PubMedCrossRefGoogle Scholar
  40. 40.
    Mazzaferro V, Coppa J, Carrabba MG, et al.: Vaccination with autologous tumor-derived heat-shock protein gp96 after liver resection for metastatic colorectal cancer. Clin Cancer Res 2003, 9:3235–3245.PubMedGoogle Scholar
  41. 41.
    Ullenhag GJ, Frodin JE, Jeddi-Tehrani M, et al.: Durable carcinoembryonic antigen (CEA)-specific humoral and cellular immune responses in colorectal carcinoma patients vaccinated with recombinatnt CEA and granulocyte/macrophage colony-stimulating factor. Clin Cancer Res 2004, 10:3273–3281.PubMedCrossRefGoogle Scholar
  42. 42.
    Mosolits S, Markovic K, Frodin JE, et al.: Vaccination with Ep-CAM protein or anti-idiotypic antibody induces Th1-biased response against MHC class I-and II-restricted Ep-CAM epitopes in colorectal carcinoma patients. Clin Cancer Res 2004, 10:5391–5402.PubMedCrossRefGoogle Scholar
  43. 43.
    Riethmuller G, Holz E, Schlimok G, et al.: Monoclonal antibody therapy for resected Duke’s C colorectal cancer: seven-year outcome of a multicenter randomized trial. J Clin Oncol 1998, 16:1788–1794.PubMedGoogle Scholar
  44. 44.
    Loibner H, Eller N, Groiss F, et al.: A randomized placebocontrolled phase II study with the cancer vaccine IGN101 in patients with epithelial solid organ tumors (IGN101/2-01). Proc Am Soc Clin Oncol 2004, 22:14S.Google Scholar
  45. 45.
    Foon KA, John WJ, Chakraborty M, et al.: Clinical and immune responses in resected colon cancer patients treated with anti-idiotype monoclonal antibody vaccine that mimics the carcinoembryonic antigen. J Clin Oncol 1999, 17:2889–2895.PubMedGoogle Scholar
  46. 46.
    Foon KA, John WJ, Chakraborty M, et al.: Clinical and immune responses in advanced colorectal cancer patients treated with anti-idiotype monoclonal antibody vaccine that mimics the carcinoembryonic antigen. Clin Cancer Res 1997, 3:1267–1276.PubMedGoogle Scholar
  47. 47.
    Marshall JL, Hoyer RJ, Toomey MA, et al.: Phase I study in advanced cancer patients of a diversified prime-and-boost vaccination protocol using recombinant vaccinia virus and recombinant nonreplicating avipox virus to elicit anti-carcinoembryonic antigen immune responses. J Clin Oncol 2000, 18:3964–3973.PubMedGoogle Scholar
  48. 48.
    Marshall JL, Gulley JL, Arlen PM, et al.: Phase I study of sequential vaccinations with fowlpox-CEA(6D)-TRICOM alone and sequentially with vaccinia-CEA(6D)-TRICOM, with and without granulocyte-macrophage colony-stimulating factor, in patients with carcinoembryonic antigen-expressing carcinomas. J Clin Oncol 2005, 23:720–731.PubMedCrossRefGoogle Scholar
  49. 49.
    Harrop R, Connolly N, Redchenko I, et al.: Vaccination of colorectal cancer patients with modified vaccinia Ankara delivering the tumor antigen 5T4 (TroVax) induces immune responses which correlate to disease control: a phase I/II trial. Clin Cancer Res 2006, 12(11 Pt 1):3416–3424.PubMedCrossRefGoogle Scholar
  50. 50.
    Dangoor A, Burt D, Harrop P, et al.: A vaccinia-based vaccine (TroVax) targeting the oncofetal antigen 5T4 administered before and after surgical resection of colorectal cancer liver metastasis: phase II trial. Proc Am Soc Clin Oncol 2006, 24:18S.Google Scholar
  51. 51.
    Harrop R, John J, Carroll MW: Recombinant viral vectors: cancer vaccines. Adv Drug Deliv Rev 2006, 58:931–947.PubMedCrossRefGoogle Scholar
  52. 52.
    Petrulio CA, Kaufman HL: Development of the PANVAC-VF vaccine for pancreatic cancer. Expert Rev Vaccines 2006, 5:9–19.PubMedCrossRefGoogle Scholar
  53. 53.
    Medical News Today: Therion reports results of phase 3 PANVAC-VF trial and announces plans for company sale. Available at http://www.medicalnewstoday.com/articles/46137.php. Accessed on June 20, 2008.
  54. 54.
    Ridgway D: The first 1000 dendritic cell vaccinees. Cancer Invest 2003, 21:873–886.PubMedCrossRefGoogle Scholar
  55. 55.
    Clinical Trials: Vaccine therapy with liver metastases from colorectal cancer. Available at http://www.clinicaltrials.gov/ct2/show/NCT00103142?recr=Open&intr=%22falimarev%22&rank=4. Accessed June 20, 2008.

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Department of MedicineDuke University Medical CenterDurhamUSA

Personalised recommendations