Skip to main content
Log in

Association Between Obesity and Cardiovascular Outcomes: Updated Evidence from Meta-analysis Studies

  • Ischemic Heart Disease (D Mukherjee, Section Editor)
  • Published:
Current Cardiology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The prevalence of obesity and cardiovascular disease (CVD) has been increasing worldwide. Studies examining the association between adiposity and CVD outcomes have produced conflicting findings. The interplay between obesity and CVD outcomes in the general population and in specific subpopulations is complex and requires further elucidation.

Recent Findings

We report updated evidence on the association between obesity and CVD events through a review of meta-analysis studies. This review identified that obesity or high body mass index (BMI) was associated with an increased risk of CVD events, including mortality, in the general population and that cardiac respiratory fitness (CRF) and metabolic health status appear to stratify the risk of CVD outcomes. In patients with diabetes, hypertension, or coronary artery disease, mortality displayed a U-shaped association with BMI. This U-shaped association may result from the effect of unintentional weight loss or medication use. By contrast, patients with other severe heart diseases or undergoing cardiac surgery displayed a reverse J-shaped association suggesting the highest mortality associated with low BMI. In these conditions, a prolonged intensive medication use might have attenuated the risk of mortality associated with high BMI.

Summary

For the general population, a large body of evidence points to the importance of obesity prevention and maintenance of a healthy weight. However, for those with diagnosed cardiovascular diseases or diabetes, the relationship between BMI and cardiovascular outcomes is more complex and varies with the type of disease. More studies are needed to define how heterogeneity in the longitudinal changes in BMI affects mortality, especially in patients with severe heart diseases or going under cardiac surgery, in order to target subgroups for tailored interventions. Interventions for managing body weight, in conjunction with improving CRF and metabolic health status and avoiding unintentional weight loss, should be used to improve CVD outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Cuspidi C, Rescaldani M, Sala C, Grassi G. Left-ventricular hypertrophy and obesity: a systematic review and meta-analysis of echocardiographic studies. J Hypertens. 2014;32(1):16–25. https://doi.org/10.1097/HJH.0b013e328364fb58.

    Article  CAS  PubMed  Google Scholar 

  2. Colpani V, Baena CP, Jaspers L, van Dijk GM, Farajzadegan Z, Dhana K, et al. Lifestyle factors, cardiovascular disease and all-cause mortality in middle-aged and elderly women: a systematic review and meta-analysis. Eur J Epidemiol. 2018;33(9):831–45. https://doi.org/10.1007/s10654-018-0374-z.

    Article  CAS  PubMed  Google Scholar 

  3. Said S, Mukherjee D, Whayne TF. Interrelationships with metabolic syndrome, obesity and cardiovascular risk. Curr Vasc Pharmacol. 2016;14(5):415–25. https://doi.org/10.2174/1570161114666160722121615.

    Article  CAS  PubMed  Google Scholar 

  4. Riaz H, Khan MS, Siddiqi TJ, Usman MS, Shah N, Goyal A, et al. Association between obesity and cardiovascular outcomes: a systematic review and meta-analysis of Mendelian randomization studies. JAMA Netw Open. 2018;1(7):e183788. https://doi.org/10.1001/jamanetworkopen.2018.3788.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Kelley GA, Kelley KS, Stauffer BL. Obesity and cardiovascular outcomes: another look at a meta-analysis of Mendelian randomization studies. J Investig Med. 2019. https://doi.org/10.1136/jim-2019-001069.

  6. Lavie CJ, Arena R, Alpert MA, Milani RV, Ventura HO. Management of cardiovascular diseases in patients with obesity. Nat Rev Cardiol. 2018;15(1):45–56. https://doi.org/10.1038/nrcardio.2017.108.

    Article  PubMed  Google Scholar 

  7. Ji M, Zhang S, An R. Effectiveness of a body shape index (ABSI) in predicting chronic diseases and mortality: a systematic review and meta-analysis. Obes Rev. 2018;19(5):737–59. https://doi.org/10.1111/obr.12666.

    Article  CAS  PubMed  Google Scholar 

  8. Savva SC, Lamnisos D, Kafatos AG. Predicting cardiometabolic risk: waist-to-height ratio or BMI. A meta-analysis. Diabetes Metab Syndr Obes. 2013;6:403–19. https://doi.org/10.2147/dmso.S34220.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Lavie CJ, Milani RV, Ventura HO. Obesity and cardiovascular disease: risk factor, paradox, and impact of weight loss. J Am Coll Cardiol. 2009;53(21):1925–32. https://doi.org/10.1016/j.jacc.2008.12.068.

    Article  PubMed  Google Scholar 

  10. Wormser D, Kaptoge S, Di Angelantonio E, Wood AM, Pennells L, Thompson A, et al. Separate and combined associations of body-mass index and abdominal adiposity with cardiovascular disease: collaborative analysis of 58 prospective studies. Lancet. 2011;377(9771):1085–95. https://doi.org/10.1016/s0140-6736(11)60105-0.

    Article  PubMed  Google Scholar 

  11. Yeh TL, Chen HH, Tsai SY, Lin CY, Liu SJ, Chien KL. The relationship between metabolically healthy obesity and the risk of cardiovascular disease: a systematic review and meta-analysis. J Clin Med. 2019;8(8). https://doi.org/10.3390/jcm8081228.

  12. Mirzababaei A, Djafarian K, Mozafari H, Shab-Bidar S. The long-term prognosis of heart diseases for different metabolic phenotypes: a systematic review and meta-analysis of prospective cohort studies. Endocrine. 2019;63(3):439–62. https://doi.org/10.1007/s12020-019-01840-0.

    Article  CAS  PubMed  Google Scholar 

  13. Zheng R, Zhou D, Zhu Y. The long-term prognosis of cardiovascular disease and all-cause mortality for metabolically healthy obesity: a systematic review and meta-analysis. J Epidemiol Community Health. 2016;70(10):1024–31. https://doi.org/10.1136/jech-2015-206948.

    Article  PubMed  Google Scholar 

  14. Fan H, Li X, Zheng L, Chen X, Lan Q, Wu H, et al. Abdominal obesity is strongly associated with cardiovascular disease and its risk factors in elderly and very elderly community-dwelling Chinese. Sci Rep. 2016;6:21521. https://doi.org/10.1038/srep21521.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Abell JE, Egan BM, Wilson PW, Lipsitz S, Woolson RF, Lackland DT. Differences in cardiovascular disease mortality associated with body mass between Black and White persons. Am J Public Health. 2008;98(1):63–6. https://doi.org/10.2105/ajph.2006.093781.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Yatsuya H, Folsom AR, Yamagishi K, North KE, Brancati FL, Stevens J, et al. Race- and sex-specific associations of obesity measures with ischemic stroke incidence in the Atherosclerosis Risk in Communities (ARIC) study. Stroke. 2010;41(3):417–25. https://doi.org/10.1161/STROKEAHA.109.566299.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Guh DP, Zhang W, Bansback N, Amarsi Z, Birmingham CL, Anis AH. The incidence of co-morbidities related to obesity and overweight: a systematic review and meta-analysis. BMC Public Health. 2009;9:88. https://doi.org/10.1186/1471-2458-9-88.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Mongraw-Chaffin ML, Peters SAE, Huxley RR, Woodward M. The sex-specific association between BMI and coronary heart disease: a systematic review and meta-analysis of 95 cohorts with 1.2 million participants. Lancet Diabetes Endocrinol. 2015;3(6):437–49. https://doi.org/10.1016/s2213-8587(15)00086-8.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Lu Y, Hajifathalian K, Ezzati M, Woodward M, Rimm EB, Danaei G. Metabolic mediators of the effects of body-mass index, overweight, and obesity on coronary heart disease and stroke: a pooled analysis of 97 prospective cohorts with 1.8 million participants. Lancet. 2014;383(9921):970–83. https://doi.org/10.1016/s0140-6736(13)61836-x.

    Article  PubMed  Google Scholar 

  20. Zhou BF. Effect of body mass index on all-cause mortality and incidence of cardiovascular diseases--report for meta-analysis of prospective studies open optimal cut-off points of body mass index in Chinese adults. Biomed Environ Sci. 2002;15(3):245–52.

    PubMed  Google Scholar 

  21. Central obesity and risk of cardiovascular disease in the Asia Pacific Region. Asia Pac J Clin Nutr. 2006;15(3):287–92.

  22. Mahajan R, Stokes M, Elliott A, Munawar DA, Khokhar KB, Thiyagarajah A, et al. Complex interaction of obesity, intentional weight loss and heart failure: a systematic review and meta-analysis. Heart. 2019. https://doi.org/10.1136/heartjnl-2019-314770.

  23. Aune D, Sen A, Norat T, Janszky I, Romundstad P, Tonstad S, et al. Body mass index, abdominal fatness, and heart failure incidence and mortality: a systematic review and dose-response meta-analysis of prospective studies. Circulation. 2016;133(7):639–49. https://doi.org/10.1161/CIRCULATIONAHA.115.016801.

    Article  PubMed  Google Scholar 

  24. Aune D, Sen A, Schlesinger S, Norat T, Janszky I, Romundstad P, et al. Body mass index, abdominal fatness, fat mass and the risk of atrial fibrillation: a systematic review and dose-response meta-analysis of prospective studies. Eur J Epidemiol. 2017;32(3):181–92. https://doi.org/10.1007/s10654-017-0232-4.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Asad Z, Abbas M, Javed I, Korantzopoulos P, Stavrakis S. Obesity is associated with incident atrial fibrillation independent of gender: a meta-analysis. J Cardiovasc Electrophysiol. 2018;29(5):725–32. https://doi.org/10.1111/jce.13458.

    Article  PubMed  Google Scholar 

  26. Phan K, Khuong JN, Xu J, Kanagaratnam A, Yan TD. Obesity and postoperative atrial fibrillation in patients undergoing cardiac surgery: systematic review and meta-analysis. Int J Cardiol. 2016;217:49–57. https://doi.org/10.1016/j.ijcard.2016.05.002.

    Article  PubMed  Google Scholar 

  27. Guijian L, Jinchuan Y, Rongzeng D, Jun Q, Jun W, Wenqing Z. Impact of body mass index on atrial fibrillation recurrence: a meta-analysis of observational studies. Pacing Clin Electrophysiol. 2013;36(6):748–56. https://doi.org/10.1111/pace.12106.

    Article  PubMed  Google Scholar 

  28. Wong CX, Sullivan T, Sun MT, Mahajan R, Pathak RK, Middeldorp M, et al. Obesity and the risk of incident, post-operative, and post-ablation atrial fibrillation: a meta-analysis of 626,603 individuals in 51 studies. JACC Clin Electrophysiol. 2015;1(3):139–52. https://doi.org/10.1016/j.jacep.2015.04.004.

    Article  PubMed  Google Scholar 

  29. Jones NR, Taylor KS, Taylor CJ, Aveyard P. Weight change and the risk of incident atrial fibrillation: a systematic review and meta-analysis. Heart. 2019. https://doi.org/10.1136/heartjnl-2019-314931.

  30. Chatterjee NA, Giulianini F, Geelhoed B, Lunetta KL, Misialek JR, Niemeijer MN, et al. Genetic obesity and the risk of atrial fibrillation: causal estimates from Mendelian randomization. Circulation. 2017;135(8):741–54. https://doi.org/10.1161/CIRCULATIONAHA.116.024921.

    Article  PubMed  Google Scholar 

  31. Gray L, Hart CL, Smith GD, Batty GD. What is the predictive value of established risk factors for total and cardiovascular disease mortality when measured before middle age? Pooled analyses of two prospective cohort studies from Scotland. Eur J Cardiovasc Prev Rehabil. 2010;17(1):106–12. https://doi.org/10.1097/HJR.0b013e3283348ed9.

    Article  PubMed  PubMed Central  Google Scholar 

  32. McGee DL, Diverse PC. Body mass index and mortality: a meta-analysis based on person-level data from twenty-six observational studies. Ann Epidemiol. 2005;15(2):87–97. https://doi.org/10.1016/j.annepidem.2004.05.012.

    Article  PubMed  Google Scholar 

  33. Kramer CK, Zinman B, Retnakaran R. Are metabolically healthy overweight and obesity benign conditions?: a systematic review and meta-analysis. Ann Intern Med. 2013;159(11):758–69. https://doi.org/10.7326/0003-4819-159-11-201312030-00008.

    Article  PubMed  Google Scholar 

  34. Saito I, Kokubo Y, Kiyohara Y, Doi Y, Saitoh S, Ohnishi H, et al. Prospective study on waist circumference and risk of all-cause and cardiovascular mortality: pooled analysis of Japanese community-based studies. Circ J. 2012;76(12):2867–74. https://doi.org/10.1253/circj.cj-11-1259.

    Article  PubMed  Google Scholar 

  35. Chen H, Deng Y, Li S. Relation of body mass index categories with risk of sudden cardiac death. Int Heart J. 2019;60(3):624–30. https://doi.org/10.1536/ihj.18-155.

    Article  PubMed  Google Scholar 

  36. Aune D, Schlesinger S, Norat T, Riboli E. Body mass index, abdominal fatness, and the risk of sudden cardiac death: a systematic review and dose-response meta-analysis of prospective studies. Eur J Epidemiol. 2018;33(8):711–22. https://doi.org/10.1007/s10654-017-0353-9.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Huxley RR, Woodward M. Cigarette smoking as a risk factor for coronary heart disease in women compared with men: a systematic review and meta-analysis of prospective cohort studies. Lancet. 2011;378(9799):1297–305. https://doi.org/10.1016/S0140-6736(11)60781-2.

    Article  PubMed  Google Scholar 

  38. Milajerdi A, Djafarian K, Shab-Bidar S, Speakman JR. Pre- and post-diagnosis body mass index and heart failure mortality: a dose-response meta-analysis of observational studies reveals greater risk of being underweight than being overweight. Obes Rev. 2018;20(2):252–61. https://doi.org/10.1111/obr.12777.

    Article  CAS  PubMed  Google Scholar 

  39. •• Barry VW, Caputo JL, Kang M. The joint association of fitness and fatness on cardiovascular disease mortality: a meta-analysis. Prog Cardiovasc Dis. 2018;61(2):136–41. https://doi.org/10.1016/j.pcad.2018.07.004This is an important meta-analysis that jointly evaluated the role of fitness and fatness on cardiovascular disease mortality and demonstrated the importance of cardiac respiratory fitness in understanding the relationship between obesity and cardiovascular disease mortality.

    Article  PubMed  Google Scholar 

  40. Cronin O, Morris DR, Walker PJ, Golledge J. The association of obesity with cardiovascular events in patients with peripheral artery disease. Atherosclerosis. 2013;228(2):316–23. https://doi.org/10.1016/j.atherosclerosis.2013.03.002.

    Article  CAS  PubMed  Google Scholar 

  41. Chang HW, Li YH, Hsieh CH, Liu PY, Lin GM. Association of body mass index with all-cause mortality in patients with diabetes: a systemic review and meta-analysis. Cardiovasc Diagn Ther. 2016;6(2):109–19. https://doi.org/10.21037/cdt.2015.12.06.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Zaccardi F, Dhalwani NN, Papamargaritis D, Webb DR, Murphy GJ, Davies MJ, et al. Nonlinear association of BMI with all-cause and cardiovascular mortality in type 2 diabetes mellitus: a systematic review and meta-analysis of 414,587 participants in prospective studies. Diabetologia. 2017;60(2):240–8. https://doi.org/10.1007/s00125-016-4162-6.

    Article  PubMed  Google Scholar 

  43. Kwon Y, Kim HJ, Park S, Park YG, Cho KH. Body mass index-related mortality in patients with type 2 diabetes and heterogeneity in obesity paradox studies: a dose-response meta-analysis. PLoS One. 2017;12(1):e0168247. https://doi.org/10.1371/journal.pone.0168247.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Liu XM, Liu YJ, Zhan J, He QQ. Overweight, obesity and risk of all-cause and cardiovascular mortality in patients with type 2 diabetes mellitus: a dose-response meta-analysis of prospective cohort studies. Eur J Epidemiol. 2015;30(1):35–45. https://doi.org/10.1007/s10654-014-9973-5.

    Article  CAS  PubMed  Google Scholar 

  45. Chen Y, Yang X, Wang J, Li Y, Ying D, Yuan H. Weight loss increases all-cause mortality in overweight or obese patients with diabetes: a meta-analysis. Medicine (Baltimore). 2018;97(35):e12075. https://doi.org/10.1097/MD.0000000000012075.

    Article  Google Scholar 

  46. Jayedi A, Shab-Bidar S. Nonlinear dose-response association between body mass index and risk of all-cause and cardiovascular mortality in patients with hypertension: a meta-analysis. Obes Res Clin Pract. 2018;12(1):16–28. https://doi.org/10.1016/j.orcp.2018.01.002.

    Article  PubMed  Google Scholar 

  47. Romero-Corral A, Montori VM, Somers VK, Korinek J, Thomas RJ, Allison TG, et al. Association of bodyweight with total mortality and with cardiovascular events in coronary artery disease: a systematic review of cohort studies. Lancet. 2006;368(9536):666–78. https://doi.org/10.1016/s0140-6736(06)69251-9.

    Article  PubMed  Google Scholar 

  48. Wang ZJ, Zhou YJ, Galper BZ, Gao F, Yeh RW, Mauri L. Association of body mass index with mortality and cardiovascular events for patients with coronary artery disease: a systematic review and meta-analysis. Heart. 2015;101(20):1631–8. https://doi.org/10.1136/heartjnl-2014-307119.

    Article  CAS  PubMed  Google Scholar 

  49. • Pack QR, Rodriguez-Escudero JP, Thomas RJ, Ades PA, West CP, Somers VK, et al. The prognostic importance of weight loss in coronary artery disease: a systematic review and meta-analysis. Mayo Clin Proc. 2014;89(10):1368–77. https://doi.org/10.1016/j.mayocp.2014.04.033This is the first meta-analysis study to distinguish the role of intentional weight loss and unintentional weight loss on cardiovascular outcomes among coronary artery disease patients. This study showed that the intentional weight loss is associated with improved cardiovascular disease outcomes whereas unintentional or observational weight loss is associated with worse clinical outcomes in patients with coronary artery disease.

    Article  PubMed  Google Scholar 

  50. Mukherjee D, Ojha C. Obesity paradox in contemporary cardiology practice. JACC Cardiovasc Interv. 2017;10(13):1293–4. https://doi.org/10.1016/j.jcin.2017.03.048.

    Article  PubMed  Google Scholar 

  51. Ma WQ, Sun XJ, Wang Y, Han XQ, Zhu Y, Liu NF. Does body mass index truly affect mortality and cardiovascular outcomes in patients after coronary revascularization with percutaneous coronary intervention or coronary artery bypass graft? A systematic review and network meta-analysis. Obes Rev. 2018;19(9):1236–47. https://doi.org/10.1111/obr.12713.

    Article  PubMed  Google Scholar 

  52. Kakavas S, Georgiopoulos G, Oikonomou D, Karayiannis D, Masi S, Karlis G, et al. The impact of body mass index on post resuscitation survival after cardiac arrest: a meta-analysis. Clin Nutr ESPEN. 2018;24:47–53. https://doi.org/10.1016/j.clnesp.2018.01.071.

    Article  PubMed  Google Scholar 

  53. Lamelas PM, Maheer K, Schwalm JD. Body mass index and mortality after acute coronary syndromes: a systematic review and meta-analysis. Acta Cardiol. 2017;72(6):655–61. https://doi.org/10.1080/00015385.2017.1320470.

    Article  PubMed  Google Scholar 

  54. Niedziela J, Hudzik B, Niedziela N, Gasior M, Gierlotka M, Wasilewski J, et al. The obesity paradox in acute coronary syndrome: a meta-analysis. Eur J Epidemiol. 2014;29(11):801–12. https://doi.org/10.1007/s10654-014-9961-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Huang K, Liu F, Han X, Huang C, Huang J, Gu D, et al. Association of BMI with total mortality and recurrent stroke among stroke patients: a meta-analysis of cohort studies. Atherosclerosis. 2016;253:94–101. https://doi.org/10.1016/j.atherosclerosis.2016.08.042.

    Article  CAS  PubMed  Google Scholar 

  56. Wang L, Liu W, He X, Chen Y, Lu J, Liu K, et al. Association of overweight and obesity with patient mortality after acute myocardial infarction: a meta-analysis of prospective studies. Int J Obes. 2016;40(2):220–8. https://doi.org/10.1038/ijo.2015.176.

    Article  CAS  Google Scholar 

  57. Zhu W, Shen Y, Zhou Q, Xu Z, Huang L, Chen Q, et al. Association of physical fitness with the risk of atrial fibrillation: a systematic review and meta-analysis. Clin Cardiol. 2016;39(7):421–8. https://doi.org/10.1002/clc.22552.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Qin W, Liu F, Wan C. A U-shaped association of body mass index and all-cause mortality in heart failure patients: a dose-response meta-analysis of prospective cohort studies. Cardiovasc Ther. 2017;35(2). https://doi.org/10.1111/1755-5922.12232.

  59. Oreopoulos A, Kalantar-Zadeh K, Sharma AM, Fonarow GC. The obesity paradox in the elderly: potential mechanisms and clinical implications. Clin Geriatr Med. 2009;25(4):643–59, viii. https://doi.org/10.1016/j.cger.2009.07.005.

    Article  PubMed  Google Scholar 

  60. Sharma A, Lavie CJ, Borer JS, Vallakati A, Goel S, Lopez-Jimenez F, et al. Meta-analysis of the relation of body mass index to all-cause and cardiovascular mortality and hospitalization in patients with chronic heart failure. Am J Cardiol. 2015;115(10):1428–34. https://doi.org/10.1016/j.amjcard.2015.02.024.

    Article  PubMed  Google Scholar 

  61. Padwal R, McAlister FA, McMurray JJ, Cowie MR, Rich M, Pocock S, et al. The obesity paradox in heart failure patients with preserved versus reduced ejection fraction: a meta-analysis of individual patient data. Int J Obes. 2014;38(8):1110–4. https://doi.org/10.1038/ijo.2013.203.

    Article  Google Scholar 

  62. Zhang J, Begley A, Jackson R, Harrison M, Pellicori P, Clark AL, et al. Body mass index and all-cause mortality in heart failure patients with normal and reduced ventricular ejection fraction: a dose-response meta-analysis. Clin Res Cardiol. 2019;108(2):119–32. https://doi.org/10.1007/s00392-018-1302-7.

    Article  PubMed  Google Scholar 

  63. Park DW, Kim YH, Yun SC, Ahn JM, Lee JY, Kim WJ, et al. Association of body mass index with major cardiovascular events and with mortality after percutaneous coronary intervention. Circ Cardiovasc Interv. 2013;6(2):146–53. https://doi.org/10.1161/circinterventions.112.000062.

    Article  PubMed  Google Scholar 

  64. Bundhun PK, Li N, Chen MH. Does an obesity paradox really exist after cardiovascular intervention?: a systematic review and meta-analysis of randomized controlled trials and observational studies. Medicine (Baltimore). 2015;94(44):e1910. https://doi.org/10.1097/md.0000000000001910.

    Article  Google Scholar 

  65. Bundhun PK, Wu ZJ, Chen MH. Impact of modifiable cardiovascular risk factors on mortality after percutaneous coronary intervention: a systematic review and meta-analysis of 100 studies. Medicine (Baltimore). 2015;94(50):e2313. https://doi.org/10.1097/md.0000000000002313.

    Article  Google Scholar 

  66. •• Tan XF, Shi JX, Chen AM. Prolonged and intensive medication use are associated with the obesity paradox after percutaneous coronary intervention: a systematic review and meta-analysis of 12 studies. BMC Cardiovasc Disord. 2016;16:125. https://doi.org/10.1186/s12872-016-0310-7This is the first study that investigated the role of prolonged and intensive medication use on the obesity paradox associated with short- and long-term mortality after percutaneous coronary intervention and found to be a potential reason for it.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Borracci RA, Ingino CA, Miranda JM. Association of body mass index with short-term outcomes after cardiac surgery: retrospective study and meta-analysis. Medicina (B Aires). 2018;78(3):171–9.

    Google Scholar 

  68. Sharma A, Vallakati A, Einstein AJ, Lavie CJ, Arbab-Zadeh A, Lopez-Jimenez F, et al. Relationship of body mass index with total mortality, cardiovascular mortality, and myocardial infarction after coronary revascularization: evidence from a meta-analysis. Mayo Clin Proc. 2014;89(8):1080–100. https://doi.org/10.1016/j.mayocp.2014.04.020.

    Article  PubMed  Google Scholar 

  69. Takagi H, Umemoto T. Overweight, but not obesity, paradox on mortality following coronary artery bypass grafting. J Cardiol. 2016;68(3):215–21. https://doi.org/10.1016/j.jjcc.2015.09.015.

    Article  PubMed  Google Scholar 

  70. Takagi H, Umemoto T, Group A. “Obesity paradox” in transcatheter aortic valve implantation. J Cardiovasc Surg (Torino). 2017;58(1):113–20. https://doi.org/10.23736/S0021-9509.16.09233-8.

    Article  Google Scholar 

  71. Aggarwal R, Harling L, Efthimiou E, Darzi A, Athanasiou T, Ashrafian H. The effects of bariatric surgery on cardiac structure and function: a systematic review of cardiac imaging outcomes. Obes Surg. 2016;26(5):1030–40. https://doi.org/10.1007/s11695-015-1866-5.

    Article  PubMed  Google Scholar 

  72. Osei-Assibey G, Boachie C. Dietary interventions for weight loss and cardiovascular risk reduction in people of African ancestry (blacks): a systematic review. Public Health Nutr. 2012;15(1):110–5. https://doi.org/10.1017/S1368980011001121.

    Article  CAS  PubMed  Google Scholar 

  73. Kane JA, Mehmood T, Munir I, Kamran H, Kariyanna PT, Zhyvotovska A, et al. Cardiovascular risk reduction associated with pharmacological weight loss: a meta-analysis. Int J Clin Res Trials. 2019;4(1). https://doi.org/10.15344/2456-8007/2019/131.

  74. De Stefani FDC, Pietraroia PS, Fernandes-Silva MM, Faria-Neto J, Baena CP. Observational evidence for unintentional weight loss in all-cause mortality and major cardiovascular events: a systematic review and meta-analysis. Sci Rep. 2018;8(1):15447. https://doi.org/10.1038/s41598-018-33563-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Wahid A, Manek N, Nichols M, Kelly P, Foster C, Webster P et al. Quantifying the association between physical activity and cardiovascular disease and diabetes: a systematic review and meta-analysis. J Am Heart Assoc. 2016;5(9). https://doi.org/10.1161/JAHA.115.002495.

  76. Drolet B, Simard C, Poirier P. Impact of weight-loss medications on the cardiovascular system: focus on current and future anti-obesity drugs. Am J Cardiovasc Drugs. 2007;7(4):273–88. https://doi.org/10.2165/00129784-200707040-00005.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alok Kumar Dwivedi.

Ethics declarations

Conflict of Interest

Alok Kumar Dwivedi, Pallavi Dubey, and Sireesha Y. Reddy declare that they do not have any conflict of interest.

David P. Cistola reports a grant from the US NIH/National Heart Lung and Blood Institute, R21 HL143030. In addition, Dr. Cistola has three broadly relevant patents and patent applications: (1) “Methods for Monitoring Changes in the Core of Lipoprotein Particles in Metabolism and Disease,” U.S. utility patent, issued January 24, 2017, as US patent number 9,551,768. Assignee: East Carolina University, Inventors: Cistola, David P.; Robinson, Michelle D; (2) “Methods and Tools for Diagnosing Insulin Resistance and Assessing Health Status Using NMR Relaxation Times for Water.” U.S. provisional patent 62/13,112. Filed February 6, 2015; PCT patent PCT/US2016/016906, filed February 6, 2016. Published, 8/11/2016; U.S. non-provisional patent 15/548,442, filed 8/3/2017, published 1/25/2018. Assignee: University of North Texas Health Science Center, Fort Worth Inventors: Cistola, David P.; Robinson, Michelle D., patent pending; and (3) “Method and System for Non-invasive Measurement of Metabolic Health.” U.S. non-provisional patent application no. 15/911,728, filed 3/5/2018; published 9/5/2019 as US 2019/0271749 A1. Assignee: Texas Tech University Inventors: Cistola, David P.; Patel, Vipulkumar, patent pending.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Ischemic Heart Disease

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dwivedi, A.K., Dubey, P., Cistola, D.P. et al. Association Between Obesity and Cardiovascular Outcomes: Updated Evidence from Meta-analysis Studies. Curr Cardiol Rep 22, 25 (2020). https://doi.org/10.1007/s11886-020-1273-y

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11886-020-1273-y

Keywords

Navigation