Advertisement

Harnessing Cardiac Regeneration as a Potential Therapeutic Strategy for AL Cardiac Amyloidosis

  • Shaurya Joshi
  • Alessandro Evangelisti
  • Ronglih Liao
  • Kevin M. AlexanderEmail author
Regenerative Medicine (SM Wu, Section Editor)
  • 31 Downloads
Part of the following topical collections:
  1. Topical Collection on Regenerative Medicine

Abstract

Purpose of Review

Cardiac regeneration has received much attention as a possible means to treat various forms of cardiac injury. This review will explore the field of cardiac regeneration by highlighting the existing animal models, describing the involved molecular pathways, and discussing attempts to harness cardiac regeneration to treat cardiomyopathies.

Recent Findings

Light chain cardiac amyloidosis is a degenerative disease characterized by progressive heart failure due to amyloid fibril deposition and light chain–mediated cardiotoxicity. Recent findings in a zebrafish model of light chain amyloidosis suggest that cardiac regenerative confers a protective effect against this disease.

Summary

Cardiac regeneration remains an intriguing potential tool for treating cardiovascular disease. Degenerative diseases, such as light chain cardiac amyloidosis, may be particularly suited for therapeutic interventions that target cardiac regeneration. Further studies are needed to translate preclinical findings for cardiac regeneration into effective therapies.

Keywords

Amyloidosis Light chain Cardiac regeneration Cardiomyopathy Zebrafish 

Notes

Funding Information

Dr. Liao is supported by the National Institutes of Health (R01 grants HL 128135 and HL 132511). Dr. Alexander is supported the American Heart Association-Amos Medical Faculty Development Program.

Compliance with Ethical Standards

Conflict of Interest

Shaurya Joshi, Alessandro Evangelisti, and Ronglih Liao declare that they have no conflict of interest. Kevin Alexander has received a grant from Pfizer and participated on advisory boards for Alnylam and Eidos.

Human and Animal Rights and Informed Consent

The article does not contain any studies with human or animal subjects performed by any of the authors.

Disclaimer

All authors take responsibility for all aspects of the reliability and freedom from bias of the data presented and their discussed interpretation.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Lepilina A, Coon AN, Kikuchi K, Holdway JE, Roberts RW, Burns CG, et al. A dynamic epicardial injury response supports progenitor cell activity during zebrafish heart regeneration. Cell. 2006;127(3):607–19.PubMedCrossRefGoogle Scholar
  2. 2.
    Poss KD, Wilson LG, Keating MT. Heart regeneration in zebrafish. Science. 2002;298(5601):2188–90.PubMedCrossRefGoogle Scholar
  3. 3.
    Jopling C, Sleep E, Raya M, Marti M, Raya A, Izpisua Belmonte JC. Zebrafish heart regeneration occurs by cardiomyocyte dedifferentiation and proliferation. Nature. 2010;464(7288):606–9.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Wang J, Panakova D, Kikuchi K, Holdway JE, Gemberling M, Burris JS, et al. The regenerative capacity of zebrafish reverses cardiac failure caused by genetic cardiomyocyte depletion. Development. 2011;138(16):3421–30.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Gonzalez-Rosa JM, Martin V, Peralta M, Torres M, Mercader N. Extensive scar formation and regression during heart regeneration after cryoinjury in zebrafish. Development. 2011;138(9):1663–74.PubMedCrossRefGoogle Scholar
  6. 6.
    Drenckhahn JD, Schwarz QP, Gray S, Laskowski A, Kiriazis H, Ming Z, et al. Compensatory growth of healthy cardiac cells in the presence of diseased cells restores tissue homeostasis during heart development. Dev Cell. 2008;15(4):521–33.PubMedCrossRefGoogle Scholar
  7. 7.
    Sturzu AC, Rajarajan K, Passer D, Plonowska K, Riley A, Tan TC, et al. Fetal mammalian heart generates a robust compensatory response to cell loss. Circulation. 2015;132(2):109–21.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Porrello ER, Mahmoud AI, Simpson E, Hill JA, Richardson JA, Olson EN, et al. Transient regenerative potential of the neonatal mouse heart. Science. 2011;331(6020):1078–80.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Haubner BJ, Adamowicz-Brice M, Khadayate S, Tiefenthaler V, Metzler B, Aitman T, et al. Complete cardiac regeneration in a mouse model of myocardial infarction. Aging. 2012;4(12):966–77.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Senyo SE, Steinhauser ML, Pizzimenti CL, Yang VK, Cai L, Wang M, et al. Mammalian heart renewal by pre-existing cardiomyocytes. Nature. 2013;493(7432):433–6.PubMedCrossRefGoogle Scholar
  11. 11.
    Klose K, Gossen M, Stamm C. Turning fibroblasts into cardiomyocytes: technological review of cardiac transdifferentiation strategies. FASEB J. 2019;33(1):49–70.PubMedCrossRefGoogle Scholar
  12. 12.
    Kikuchi K, Holdway JE, Werdich AA, Anderson RM, Fang Y, Egnaczyk GF, et al. Primary contribution to zebrafish heart regeneration by gata4(+) cardiomyocytes. Nature. 2010;464(7288):601–5.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Gupta V, Poss KD. Clonally dominant cardiomyocytes direct heart morphogenesis. Nature. 2012;484(7395):479–84.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Jonker SS, Zhang L, Louey S, Giraud GD, Thornburg KL, Faber JJ. Myocyte enlargement, differentiation, and proliferation kinetics in the fetal sheep heart. J Appl Physiol. 2007;102(3):1130–42.PubMedCrossRefGoogle Scholar
  15. 15.
    Soonpaa MH, Kim KK, Pajak L, Franklin M, Field LJ. Cardiomyocyte DNA synthesis and binucleation during murine development. Am J Phys. 1996;271(5 Pt 2):H2183–9.Google Scholar
  16. 16.
    Puente BN, Kimura W, Muralidhar SA, Moon J, Amatruda JF, Phelps KL, et al. The oxygen-rich postnatal environment induces cardiomyocyte cell-cycle arrest through DNA damage response. Cell. 2014;157(3):565–79.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    • Mohamed TMA, Ang YS, Radzinsky E, Zhou P, Huang Y, Elfenbein A, et al. Regulation of cell cycle to stimulate adult cardiomyocyte proliferation and cardiac regeneration. Cell. 2018;173(1):104–16 e12 This study suggests that a combination of cell cycle regulators can induce proliferation in post-mitotic mouse, rat, and human cardiomyocytes and that this strategy is beneficial in murine myocardial infarction models. PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    • Unno K, Oikonomopoulos A, Fujikawa Y, Okuno Y, Narita S, Kato T, et al. Alteration in ventricular pressure stimulates cardiac repair and remodeling. J Mol Cell Cardiol. 2019;133:174–87 This study suggests that proliferation of adult cardiac myocytes can be locally stimulated by changes in ventricular pressure, which can be leveraged for cardiac repair. PubMedCrossRefGoogle Scholar
  19. 19.
    Lien CL, Schebesta M, Makino S, Weber GJ, Keating MT. Gene expression analysis of zebrafish heart regeneration. PLoS Biol. 2006;4(8):e260.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Aurora AB, Porrello ER, Tan W, Mahmoud AI, Hill JA, Bassel-Duby R, et al. Macrophages are required for neonatal heart regeneration. J Clin Invest. 2014;124(3):1382–92.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Han C, Nie Y, Lian H, Liu R, He F, Huang H, et al. Acute inflammation stimulates a regenerative response in the neonatal mouse heart. Cell Res. 2015;25(10):1137–51.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Lavine KJ, Epelman S, Uchida K, Weber KJ, Nichols CG, Schilling JD, et al. Distinct macrophage lineages contribute to disparate patterns of cardiac recovery and remodeling in the neonatal and adult heart. Proc Natl Acad Sci U S A. 2014;111(45):16029–34.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Sallin P, de Preux Charles AS, Duruz V, Pfefferli C, Jazwinska A. A dual epimorphic and compensatory mode of heart regeneration in zebrafish. Dev Biol. 2015;399(1):27–40.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Wang J, Cao J, Dickson AL, Poss KD. Epicardial regeneration is guided by cardiac outflow tract and Hedgehog signalling. Nature. 2015;522(7555):226–30.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Wei K, Serpooshan V, Hurtado C, Diez-Cunado M, Zhao M, Maruyama S, et al. Epicardial FSTL1 reconstitution regenerates the adult mammalian heart. Nature. 2015;525(7570):479–85.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Epelman S, Liu PP, Mann DL. Role of innate and adaptive immune mechanisms in cardiac injury and repair. Nat Rev Immunol. 2015;15(2):117–29.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    • Das S, Goldstone AB, Wang H, Farry J, D'Amato G, Paulsen MJ, et al. A unique collateral artery development program promotes neonatal heart regeneration. Cell. 2019;176(5):1128–42 e18 This study identifies a mechanism involving CXCR4 and its ligand CXCL12 by which neonatal heart can form collateral arteries that contribute to cardiac regeneration. PubMedCrossRefGoogle Scholar
  28. 28.
    • Zhao L, Ben-Yair R, Burns CE, Burns CG. Endocardial notch signaling promotes cardiomyocyte proliferation in the regenerating zebrafish heart through wnt pathway antagonism. Cell Rep. 2019;26(3):546–54 e5 This study finds that during zebrafish heart regeneration, endocardial Notch signaling supports cardiomyocyte proliferation by attenuating myocardial Wnt signaling. PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    • Mahmoudi M, Yu M, Serpooshan V, Wu JC, Langer R, Lee RT, et al. Multiscale technologies for treatment of ischemic cardiomyopathy. Nat Nanotechnol. 2017;12(9):845–55 This review highlights major advancements in nanotechonology for the prevention and treatment of cardiovascular disease, particularly ischemic cardiomyopathy. PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    • Palmquist-Gomes P, Perez-Pomares JM, Guadix JA. Cell-based therapies for the treatment of myocardial infarction: lessons from cardiac regeneration and repair mechanisms in non-human vertebrates. Heart Fail Rev. 2019;24(1):133–42 This review discusses current approaches to study cardiac repair and regeneration using various animal models. PubMedCrossRefGoogle Scholar
  31. 31.
    Behfar A, Crespo-Diaz R, Terzic A, Gersh BJ. Cell therapy for cardiac repair—lessons from clinical trials. Nat Rev Cardiol. 2014;11(4):232–46.PubMedCrossRefGoogle Scholar
  32. 32.
    Nguyen PK, Rhee JW, Wu JC. Adult stem cell therapy and heart failure, 2000 to 2016: a systematic review. JAMA Cardiol. 2016;1(7):831–41.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Kyle RA, Linos A, Beard CM, Linke RP, Gertz MA, O'Fallon WM, et al. Incidence and natural history of primary systemic amyloidosis in Olmsted County, Minnesota, 1950 through 1989. Blood. 1992;79(7):1817–22.PubMedCrossRefGoogle Scholar
  34. 34.
    •• Falk RH, Alexander KM, Liao R, Dorbala S. AL (light-chain) cardiac amyloidosis: a review of diagnosis and therapy. J Am Coll Cardiol. 2016;68(12):1323–41 This review discusses current and novel approaches to the diagnosis and treatment of light chain cardiac amyloidosis. PubMedCrossRefGoogle Scholar
  35. 35.
    Guan J, Mishra S, Qiu Y, Shi J, Trudeau K, Las G, et al. Lysosomal dysfunction and impaired autophagy underlie the pathogenesis of amyloidogenic light chain-mediated cardiotoxicity. EMBO Mol Med. 2014;6(11):1493–507.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Guan J, Mishra S, Shi J, Plovie E, Qiu Y, Cao X, et al. Stanniocalcin1 is a key mediator of amyloidogenic light chain induced cardiotoxicity. Basic Res Cardiol. 2013;108(5):378.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Liao R, Jain M, Teller P, Connors LH, Ngoy S, Skinner M, et al. Infusion of light chains from patients with cardiac amyloidosis causes diastolic dysfunction in isolated mouse hearts. Circulation. 2001;104(14):1594–7.PubMedCrossRefGoogle Scholar
  38. 38.
    Mishra S, Guan J, Plovie E, Seldin DC, Connors LH, Merlini G, et al. Human amyloidogenic light chain proteins result in cardiac dysfunction, cell death, and early mortality in zebrafish. Am J Physiol Heart Circ Physiol. 2013;305(1):H95–103.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Shi J, Guan J, Jiang B, Brenner DA, Del Monte F, Ward JE, et al. Amyloidogenic light chains induce cardiomyocyte contractile dysfunction and apoptosis via a non-canonical p38alpha MAPK pathway. Proc Natl Acad Sci U S A. 2010;107(9):4188–93.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Kastritis E, Papassotiriou I, Merlini G, Milani P, Terpos E, Basset M, et al. Growth differentiation factor-15 is a new biomarker for survival and renal outcomes in light chain amyloidosis. Blood. 2018;131(14):1568–75.PubMedCrossRefGoogle Scholar
  41. 41.
    Wang T, Liu J, McDonald C, Lupino K, Zhai X, Wilkins BJ, et al. GDF15 is a heart-derived hormone that regulates body growth. EMBO Mol Med. 2017;9(8):1150–64.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Carrillo-Garcia C, Prochnow S, Simeonova IK, Strelau J, Holzl-Wenig G, Mandl C, et al. Growth/differentiation factor 15 promotes EGFR signalling, and regulates proliferation and migration in the hippocampus of neonatal and young adult mice. Development. 2014;141(4):773–83.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Wang X, Krebbers J, Charalambous P, Machado V, Schober A, Bosse F, et al. Growth/differentiation factor-15 and its role in peripheral nervous system lesion and regeneration. Cell Tissue Res. 2015;362(2):317–30.PubMedCrossRefGoogle Scholar
  44. 44.
    Comenzo RL, Vosburgh E, Falk RH, Sanchorawala V, Reisinger J, Dubrey S, et al. Dose-intensive melphalan with blood stem-cell support for the treatment of AL (amyloid light-chain) amyloidosis: survival and responses in 25 patients. Blood. 1998;91(10):3662–70.PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Sperry BW, Ikram A, Hachamovitch R, Valent J, Vranian MN, Phelan D, et al. Efficacy of chemotherapy for light-chain amyloidosis in patients presenting with symptomatic heart failure. J Am Coll Cardiol. 2016;67(25):2941–8.PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Ward JE, Ren R, Toraldo G, Soohoo P, Guan J, O'Hara C, et al. Doxycycline reduces fibril formation in a transgenic mouse model of AL amyloidosis. Blood. 2011;118(25):6610–7.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    •• Mishra S, Joshi S, Ward JE, Buys EP, Mishra D, Mishra D, et al. Zebrafish model of amyloid light chain cardiotoxicity: regeneration versus degeneration. Am J Physiol Heart Circ Physiol. 2019;316(5):H1158–H66 This study describes a novel transgenic zebrafish model of light chain amyloidosis to gain insights into underlying disease mechanisms.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  • Shaurya Joshi
    • 1
  • Alessandro Evangelisti
    • 2
    • 3
  • Ronglih Liao
    • 2
    • 3
  • Kevin M. Alexander
    • 2
    • 3
    Email author
  1. 1.Division of Genetics, Department of Medicine, Brigham and Women’s HospitalHarvard Medical SchoolBostonUSA
  2. 2.Stanford Cardiovascular InstituteStanford University School of MedicineStanfordUSA
  3. 3.Stanford Amyloid Center, Division of Cardiovascular MedicineStanford University School of MedicinePalo AltoUSA

Personalised recommendations