Skip to main content

Advertisement

Log in

Cannabis Use as a Risk Factor for Takotsubo (Stress) Cardiomyopathy: Exploring the Evidence from Brain-Heart Link

  • Myocardial Disease (A Abbate and G Sinagra, Section Editors)
  • Published:
Current Cardiology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Recently, an association between cannabis use and Takotsubo (stress) cardiomyopathy (TTC) has been shown. With the current trend of legalization of cannabis, it is important to understand brain effects of cannabis use that could lead to cardiac disease, such as TTC. Here we review recent brain imaging studies in order to search for the evidence supporting the association between cannabis use, stress, and TTC.

Recent Findings

There exist brain imaging studies showing similar findings across TTC, stress, and cannabis use. These similar findings are mainly centered on a key central autonomic network region amygdala, i.e., amygdala hyperactivity/hyperconnectivity when exposed to challenge, stress, or negative stimuli.

Summary

This similarity supports a close association among cannabis use, stress, and TTC. Amygdala-centered neuronal circuits could underlie cannabis use as risk factor to TTC. Based on the findings, several directions for future studies are proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Medina de Chazal H, Del Buono MG, Keyser-Marcus L, Ma L, Moeller FG, Berrocal D, et al. Stress cardiomyopathy diagnosis and treatment: JACC state-of-the-art review. J Am Coll Cardiol. 2018;72(16):1955–71. https://doi.org/10.1016/j.jacc.2018.07.072.

    Article  PubMed  Google Scholar 

  2. Pelliccia F, Kaski JC, Crea F, Camici PG. Pathophysiology of Takotsubo syndrome. Circulation. 2017;135(24):2426–41. https://doi.org/10.1161/CIRCULATIONAHA.116.027121.

    Article  CAS  PubMed  Google Scholar 

  3. Sonnino C, Van Tassell BW, Toldo S, Del Buono MG, Moeller FG, Abbate A. Lack of soluble circulating cardiodepressant factors in takotsubo cardiomyopathy. Auton Neurosci. 2017;208:170–2. https://doi.org/10.1016/j.autneu.2017.10.010.

    Article  CAS  PubMed  Google Scholar 

  4. Murthy SB, Shah S, Venkatasubba Rao CP, Suarez JI, Bershad EM. Clinical characteristics of myocardial stunning in acute stroke. J Clin Neurosci. 2014;21(8):1279–82. https://doi.org/10.1016/j.jocn.2013.11.022.

    Article  PubMed  Google Scholar 

  5. Lin WS, Sung YF. Neurogenic stunned myocardium as a manifestation of encephalitis involving cerebellar tonsils. Am J Emerg Med. 2012;30(9):2083 e1–2. https://doi.org/10.1016/j.ajem.2011.11.006.

    Article  Google Scholar 

  6. Kono T, Morita H, Kuroiwa T, Onaka H, Takatsuka H, Fujiwara A. Left ventricular wall motion abnormalities in patients with subarachnoid hemorrhage: neurogenic stunned myocardium. J Am Coll Cardiol. 1994;24(3):636–40.

    Article  CAS  PubMed  Google Scholar 

  7. Kerro A, Woods T, Chang JJ. Neurogenic stunned myocardium in subarachnoid hemorrhage. J Crit Care. 2017;38:27–34. https://doi.org/10.1016/j.jcrc.2016.10.010.

    Article  PubMed  Google Scholar 

  8. Mierzewska-Schmidt M, Gawecka A. Neurogenic stunned myocardium - do we consider this diagnosis in patients with acute central nervous system injury and acute heart failure? Anaesthesiol Intensive Ther. 2015;47(2):175–80. https://doi.org/10.5603/AIT.2015.0017.

    Article  PubMed  Google Scholar 

  9. Inamasu J, Watanabe E, Okuda K, Kumai T, Sugimoto K, Ozaki Y, et al. Are there differences between Takotsubo cardiomyopathy and neurogenic stunned myocardium? A prospective observational study. Int J Cardiol. 2014;177(3):1108–10. https://doi.org/10.1016/j.ijcard.2014.08.084.

    Article  PubMed  Google Scholar 

  10. Aryana A, Williams MA. Marijuana as a trigger of cardiovascular events: speculation or scientific certainty? Int J Cardiol. 2007;118(2):141–4. https://doi.org/10.1016/j.ijcard.2006.08.001.

    Article  PubMed  Google Scholar 

  11. Thomas G, Kloner RA, Rezkalla S. Adverse cardiovascular, cerebrovascular, and peripheral vascular effects of marijuana inhalation: what cardiologists need to know. Am J Cardiol. 2014;113(1):187–90. https://doi.org/10.1016/j.amjcard.2013.09.042.

    Article  CAS  PubMed  Google Scholar 

  12. Del Buono MG, O’Quinn MP, Garcia P, Gerszten E, Roberts C, Moeller FG, et al. Cardiac arrest due to ventricular fibrillation in a 23-year-old woman with broken heart syndrome. Cardiovasc Pathol. 2017;30:78–81. https://doi.org/10.1016/j.carpath.2017.06.007.

    Article  PubMed  Google Scholar 

  13. Kaushik M, Alla VM, Madan R, Arouni AJ, Mohiuddin SM. Recurrent stress cardiomyopathy with variable regional involvement: insights into etiopathogenetic mechanisms. Circulation. 2011;124(22):e556–7. https://doi.org/10.1161/CIRCULATIONAHA.111.059329.

    Article  PubMed  Google Scholar 

  14. Nogi M, Fergusson D, Chiaco JM. Mid-ventricular variant takotsubo cardiomyopathy associated with cannabinoid hyperemesis syndrome: a case report. Hawaii J Med Public Health. 2014;73(4):115–8.

    PubMed  PubMed Central  Google Scholar 

  15. Singh A, Agrawal S, Fegley M, Manda Y, Nanda S, Shirani J. Marijuana (cannabis) use is an independent predictor of stress cardiomyopathy in younger men. American Heart Association 2016 Scientific Sessions; November 13, 2016; New Orleans, LA Abstract S4054. 2016.

  16. Chen Z, Venkat P, Seyfried D, Chopp M, Yan T, Chen J. Brain-heart interaction: cardiac complications after stroke. Circ Res. 2017;121(4):451–68. https://doi.org/10.1161/CIRCRESAHA.117.311170.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Taggart P, Critchley H, Lambiase PD. Heart-brain interactions in cardiac arrhythmia. Heart. 2011;97(9):698–708. https://doi.org/10.1136/hrt.2010.209304.

    Article  CAS  PubMed  Google Scholar 

  18. Mazzeo AT, Micalizzi A, Mascia L, Scicolone A, Siracusano L. Brain-heart crosstalk: the many faces of stress-related cardiomyopathy syndromes in anaesthesia and intensive care. Br J Anaesth. 2014;112(5):803–15. https://doi.org/10.1093/bja/aeu046.

    Article  CAS  PubMed  Google Scholar 

  19. McEwen BS. Physiology and neurobiology of stress and adaptation: central role of the brain. Physiol Rev. 2007;87(3):873–904. https://doi.org/10.1152/physrev.00041.2006.

    Article  PubMed  Google Scholar 

  20. Ghadri JR, Sarcon A, Diekmann J, Bataiosu DR, Cammann VL, Jurisic S, et al. Happy heart syndrome: role of positive emotional stress in takotsubo syndrome. Eur Heart J. 2016;37(37):2823–9. https://doi.org/10.1093/eurheartj/ehv757.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Wallstrom S, Ulin K, Maatta S, Omerovic E, Ekman I. Impact of long-term stress in Takotsubo syndrome: experience of patients. Eur J Cardiovasc Nurs. 2016;15(7):522–8. https://doi.org/10.1177/1474515115618568.

    Article  PubMed  Google Scholar 

  22. Rosman L, Dunsiger S, Salmoirago-Blotcher E. Cumulative impact of stressful life events on the development of Takotsubo cardiomyopathy. Ann Behav Med. 2017;51(6):925–30. https://doi.org/10.1007/s12160-017-9908-y.

    Article  PubMed  Google Scholar 

  23. Hyman SM, Sinha R. Stress-related factors in cannabis use and misuse: implications for prevention and treatment. J Subst Abus Treat. 2009;36(4):400–13. https://doi.org/10.1016/j.jsat.2008.08.005.

    Article  Google Scholar 

  24. Moitra E, Christopher PP, Anderson BJ, Stein MD. Coping-motivated marijuana use correlates with DSM-5 cannabis use disorder and psychological distress among emerging adults. Psychol Addict Behav. 2015;29(3):627–32. https://doi.org/10.1037/adb0000083.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Casajuana-Kogel C, Lopez-Pelayo H, Oliveras C, Colom J, Gual A, Balcells-Olivero MM. The relationship between motivations for cannabis consumption and problematic use. Adicciones. 2019;0(0):1221. https://doi.org/10.20882/adicciones.1221.

  26. • Saravia R, Ten-Blanco M, Julia-Hernandez M, Gagliano H, Andero R, Armario A, et al. Concomitant THC and stress adolescent exposure induces impaired fear extinction and related neurobiological changes in adulthood. Neuropharmacology. 2019;144:345–57. https://doi.org/10.1016/j.neuropharm.2018.11.016. This is a most recent preclinical study suggesting that the effects of cannabis use and stress on fear memory are long-lasting, similar, and additive.

    Article  CAS  PubMed  Google Scholar 

  27. Sklerov M, Dayan E, Browner N. Functional neuroimaging of the central autonomic network: recent developments and clinical implications. Clin Auton Res. 2018. https://doi.org/10.1007/s10286-018-0577-0.

  28. Goico A, Chandrasekaran M, Herrera CJ. Novel developments in stress cardiomyopathy: from pathophysiology to prognosis. Int J Cardiol. 2016;223:1053–8. https://doi.org/10.1016/j.ijcard.2016.08.241.

    Article  PubMed  Google Scholar 

  29. Rahmouni K. Cardiovascular regulation by the arcuate nucleus of the hypothalamus: neurocircuitry and signaling systems. Hypertension. 2016;67(6):1064–71. https://doi.org/10.1161/HYPERTENSIONAHA.115.06425.

    Article  CAS  PubMed  Google Scholar 

  30. Arnsten AF. Stress signalling pathways that impair prefrontal cortex structure and function. Nat Rev Neurosci. 2009;10(6):410–22. https://doi.org/10.1038/nrn2648.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ulrich-Lai YM, Herman JP. Neural regulation of endocrine and autonomic stress responses. Nat Rev Neurosci. 2009;10(6):397–409. https://doi.org/10.1038/nrn2647.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Beissner F, Meissner K, Bar KJ, Napadow V. The autonomic brain: an activation likelihood estimation meta-analysis for central processing of autonomic function. J Neurosci. 2013;33(25):10503–11. https://doi.org/10.1523/JNEUROSCI.1103-13.2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Nagai M, Dote K, Kato M, Sasaki S, Oda N, Kagawa E, et al. The insular cortex and Takotsubo cardiomyopathy. Curr Pharm Des. 2017;23(6):879–88. https://doi.org/10.2174/1381612822666161006123530.

    Article  CAS  PubMed  Google Scholar 

  34. Hansel A, von Kanel R. The ventro-medial prefrontal cortex: a major link between the autonomic nervous system, regulation of emotion, and stress reactivity? Biopsychosoc Med. 2008;2:21. https://doi.org/10.1186/1751-0759-2-21.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Etkin A, Egner T, Kalisch R. Emotional processing in anterior cingulate and medial prefrontal cortex. Trends Cogn Sci. 2011;15(2):85–93. https://doi.org/10.1016/j.tics.2010.11.004.

    Article  PubMed  Google Scholar 

  36. Carmichael CY, Wainford RD. Hypothalamic signaling mechanisms in hypertension. Curr Hypertens Rep. 2015;17(5):39. https://doi.org/10.1007/s11906-015-0550-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ramikie TS, Nyilas R, Bluett RJ, Gamble-George JC, Hartley ND, Mackie K, et al. Multiple mechanistically distinct modes of endocannabinoid mobilization at central amygdala glutamatergic synapses. Neuron. 2014;81(5):1111–25. https://doi.org/10.1016/j.neuron.2014.01.012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Smith SM, Fox PT, Miller KL, Glahn DC, Fox PM, Mackay CE, et al. Correspondence of the brain’s functional architecture during activation and rest. Proc Natl Acad Sci U S A. 2009;106(31):13040–5. https://doi.org/10.1073/pnas.0905267106.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Van Dijk KR, Hedden T, Venkataraman A, Evans KC, Lazar SW, Buckner RL. Intrinsic functional connectivity as a tool for human connectomics: theory, properties, and optimization. J Neurophysiol. 2010;103(1):297–321. https://doi.org/10.1152/jn.00783.2009.

    Article  PubMed  Google Scholar 

  40. Laird AR, Fox PM, Eickhoff SB, Turner JA, Ray KL, McKay DR, et al. Behavioral interpretations of intrinsic connectivity networks. J Cogn Neurosci. 2011;23(12):4022–37. https://doi.org/10.1162/jocn_a_00077.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Poldrack RA, Baker CI, Durnez J, Gorgolewski KJ, Matthews PM, Munafo MR, et al. Scanning the horizon: towards transparent and reproducible neuroimaging research. Nat Rev Neurosci. 2017;18(2):115–26. https://doi.org/10.1038/nrn.2016.167.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Nickerson LD. Replication of resting state-task network correspondence and novel findings on brain network activation during task fMRI in the human connectome project study. Sci Rep. 2018;8(1):17543. https://doi.org/10.1038/s41598-018-35209-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zhu X, Cortes CR, Mathur K, Tomasi D, Momenan R. Model-free functional connectivity and impulsivity correlates of alcohol dependence: a resting-state study. Addict Biol. 2017;22(1):206–17. https://doi.org/10.1111/adb.12272.

    Article  PubMed  Google Scholar 

  44. Cole DM, Smith SM, Beckmann CF. Advances and pitfalls in the analysis and interpretation of resting-state FMRI data. Front Syst Neurosci. 2010;4:8. https://doi.org/10.3389/fnsys.2010.00008.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Sabisz A, Treder N, Fijalkowska M, Sieminski M, Fijalkowska J, Naumczyk P, et al. Brain resting state functional magnetic resonance imaging in patients with takotsubo cardiomyopathy an inseparable pair of brain and heart. Int J Cardiol. 2016;224:376–81. https://doi.org/10.1016/j.ijcard.2016.09.067.

    Article  CAS  PubMed  Google Scholar 

  46. Klein C, Hiestand T, Ghadri JR, Templin C, Jancke L, Hanggi J. Takotsubo syndrome - predictable from brain imaging data. Sci Rep. 2017;7(1):5434. https://doi.org/10.1038/s41598-017-05592-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Templin C, Hanggi J, Klein C, Topka MS, Hiestand T, Levinson RA, et al. Altered limbic and autonomic processing supports brain-heart axis in Takotsubo syndrome. Eur Heart J. 2019;40(15):1183–7. https://doi.org/10.1093/eurheartj/ehz068.

    Article  PubMed  PubMed Central  Google Scholar 

  48. • Silva AR, Magalhaes R, Arantes C, Moreira PS, Rodrigues M, Marques P, et al. Brain functional connectivity is altered in patients with Takotsubo syndrome. Sci Rep. 2019;9(1):4187. https://doi.org/10.1038/s41598-019-40695-3. This is a most recent study investigating the brain of the individuals with episode of Takotsubo cardiomyopathy both when the patients were stressed and during resting state.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Pereira VH, Marques P, Magalhaes R, Portugues J, Calvo L, Cerqueira JJ, et al. Central autonomic nervous system response to autonomic challenges is altered in patients with a previous episode of Takotsubo cardiomyopathy. Eur Heart J Acute Cardiovasc Care. 2016;5(2):152–63. https://doi.org/10.1177/2048872615568968.

    Article  PubMed  Google Scholar 

  50. Soares JM, Sampaio A, Ferreira LM, Santos NC, Marques P, Marques F, et al. Stress impact on resting state brain networks. PLoS One. 2013;8(6):e66500. https://doi.org/10.1371/journal.pone.0066500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Soares JM, Sampaio A, Marques P, Ferreira LM, Santos NC, Marques F, et al. Plasticity of resting state brain networks in recovery from stress. Front Hum Neurosci. 2013;7:919. https://doi.org/10.3389/fnhum.2013.00919.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Sripada RK, King AP, Welsh RC, Garfinkel SN, Wang X, Sripada CS, et al. Neural dysregulation in posttraumatic stress disorder: evidence for disrupted equilibrium between salience and default mode brain networks. Psychosom Med. 2012;74(9):904–11. https://doi.org/10.1097/PSY.0b013e318273bf33.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Clemens B, Wagels L, Bauchmuller M, Bergs R, Habel U, Kohn N. Alerted default mode: functional connectivity changes in the aftermath of social stress. Sci Rep. 2017;7:40180. https://doi.org/10.1038/srep40180.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Admon R, Lubin G, Stern O, Rosenberg K, Sela L, Ben-Ami H, et al. Human vulnerability to stress depends on amygdala’s predisposition and hippocampal plasticity. Proc Natl Acad Sci U S A. 2009;106(33):14120–5. https://doi.org/10.1073/pnas.0903183106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. van Wingen GA, Geuze E, Vermetten E, Fernandez G. Perceived threat predicts the neural sequelae of combat stress. Mol Psychiatry. 2011;16(6):664–71. https://doi.org/10.1038/mp.2010.132.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Pujol J, Blanco-Hinojo L, Batalla A, Lopez-Sola M, Harrison BJ, Soriano-Mas C, et al. Functional connectivity alterations in brain networks relevant to self-awareness in chronic cannabis users. J Psychiatr Res. 2014;51:68–78. https://doi.org/10.1016/j.jpsychires.2013.12.008.

    Article  PubMed  Google Scholar 

  57. Wetherill RR, Fang Z, Jagannathan K, Childress AR, Rao H, Franklin TR. Cannabis, cigarettes, and their co-occurring use: disentangling differences in default mode network functional connectivity. Drug Alcohol Depend. 2015;153:116–23. https://doi.org/10.1016/j.drugalcdep.2015.05.046.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Spechler PA, Orr CA, Chaarani B, Kan KJ, Mackey S, Morton A, et al. Cannabis use in early adolescence: evidence of amygdala hypersensitivity to signals of threat. Dev Cogn Neurosci. 2015;16:63–70. https://doi.org/10.1016/j.dcn.2015.08.007.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Bhattacharyya S, Egerton A, Kim E, Rosso L, Riano Barros D, Hammers A, et al. Acute induction of anxiety in humans by delta-9-tetrahydrocannabinol related to amygdalar cannabinoid-1 (CB1) receptors. Sci Rep. 2017;7(1):15025. https://doi.org/10.1038/s41598-017-14203-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. • Ma L, Steinberg JL, Bjork JM, Wang Q, Hettema JM, Abbate A, et al. Altered effective connectivity of central autonomic network in response to negative facial expression in adults with cannabis use disorder. Biol Psychiatry Cogn Neurosci Neuroimaging. 2019. https://doi.org/10.1016/j.bpsc.2019.05.013. This is a most recent study which used directional brain connectivity to investigate the brain of individuals with cannabis use disorder and linked the brain connectivity to stress.

  61. Katona I, Rancz EA, Acsady L, Ledent C, Mackie K, Hajos N, et al. Distribution of CB1 cannabinoid receptors in the amygdala and their role in the control of GABAergic transmission. J Neurosci. 2001;21(23):9506–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Patel S, Cravatt BF, Hillard CJ. Synergistic interactions between cannabinoids and environmental stress in the activation of the central amygdala. Neuropsychopharmacology. 2005;30(3):497–507. https://doi.org/10.1038/sj.npp.1300535.

    Article  CAS  PubMed  Google Scholar 

  63. Gray JM, Vecchiarelli HA, Morena M, Lee TT, Hermanson DJ, Kim AB, et al. Corticotropin-releasing hormone drives anandamide hydrolysis in the amygdala to promote anxiety. J Neurosci. 2015;35(9):3879–92. https://doi.org/10.1523/JNEUROSCI.2737-14.2015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Hillard CJ, Beatka M, Sarvaideo J. Endocannabinoid signaling and the hypothalamic-pituitary-adrenal axis. Compr Physiol. 2016;7(1):1–15. https://doi.org/10.1002/cphy.c160005.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Burns HD, Van Laere K, Sanabria-Bohorquez S, Hamill TG, Bormans G, Eng WS, et al. [18F]MK-9470, a positron emission tomography (PET) tracer for in vivo human PET brain imaging of the cannabinoid-1 receptor. Proc Natl Acad Sci U S A. 2007;104(23):9800–5. https://doi.org/10.1073/pnas.0703472104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Wall MB, Pope R, Freeman TP, Kowalczyk OS, Demetriou L, Mokrysz C, et al. Dissociable effects of cannabis with and without cannabidiol on the human brain’s resting-state functional connectivity. J Psychopharmacol. 2019;269881119841568:822–30. https://doi.org/10.1177/0269881119841568.

    Article  CAS  Google Scholar 

  67. Bossong MG, Jansma JM, van Hell HH, Jager G, Kahn RS, Ramsey NF. Default mode network in the effects of delta9-tetrahydrocannabinol (THC) on human executive function. PLoS One. 2013;8(7):e70074. https://doi.org/10.1371/journal.pone.0070074.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Rzepa E, Tudge L, McCabe C. The CB1 neutral antagonist tetrahydrocannabivarin reduces default mode network and increases executive control network resting state functional connectivity in healthy volunteers. Int J Neuropsychopharmacol. 2015;19:pyv092. https://doi.org/10.1093/ijnp/pyv092.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Hirvonen J, Goodwin RS, Li CT, Terry GE, Zoghbi SS, Morse C, et al. Reversible and regionally selective downregulation of brain cannabinoid CB1 receptors in chronic daily cannabis smokers. Mol Psychiatry. 2012;17(6):642–9. https://doi.org/10.1038/mp.2011.82.

    Article  CAS  PubMed  Google Scholar 

  70. Prashad S, Dedrick ES, To WT, Vanneste S, Filbey FM. Testing the role of the posterior cingulate cortex in processing salient stimuli in cannabis users: an rTMS study. Eur J Neurosci. 2018. https://doi.org/10.1111/ejn.14194.

    Article  PubMed  Google Scholar 

  71. Bressler SL, Menon V. Large-scale brain networks in cognition: emerging methods and principles. Trends Cogn Sci. 2010;14(6):277–90. https://doi.org/10.1016/j.tics.2010.04.004.

    Article  PubMed  Google Scholar 

  72. Razi A, Seghier ML, Zhou Y, McColgan P, Zeidman P, Park H-J, et al. Large-scale DCMs for resting-state fMRI. Network Neurosci. 2017;1(3):222–41.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liangsuo Ma.

Ethics declarations

Conflict of Interest

Liangsuo Ma, Marco Giuseppe Del Buono, and F. Gerard Moeller declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Myocardial Disease

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, L., Del Buono, M.G. & Moeller, F.G. Cannabis Use as a Risk Factor for Takotsubo (Stress) Cardiomyopathy: Exploring the Evidence from Brain-Heart Link. Curr Cardiol Rep 21, 121 (2019). https://doi.org/10.1007/s11886-019-1210-0

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11886-019-1210-0

Keywords

Navigation