Advertisement

Current Cardiology Reports

, 21:104 | Cite as

Pheochromocytoma/Paraganglioma: Is This a Genetic Disorder?

  • Lauren FishbeinEmail author
Hypertension (DS Geller and DL Cohen, Section Editors)
Part of the following topical collections:
  1. Topical Collection on Hypertension

Abstract

Pheochromocytomas and paragangliomas (PCC/PGL) are neuroendocrine tumors of the adrenal medulla and extra-adrenal ganglia which often over-secrete catecholamines leading to cardiovascular morbidity and even mortality. These unique tumors have the highest heritability of all solid tumor types with up to 35–40% of patients with PCC/PGL having a germline predisposition.

Purpose of Review

To review the germline susceptibility genes and clinical syndromes associated with PCC/PGL.

Recent Findings

There are over 12 PCC/PGL susceptibility genes identified in a wide range of pathways. Each gene is associated with a clinical syndrome with varying penetrance for both primary and metastatic PCC/PGL and often includes increased risk for additional tumors besides PCC/PGL.

Summary

Patients with sporadic or hereditary PCC/PGL should be monitored for life given the risk of multiple primary tumors, recurrence, and metastatic disease. All patients with PCC/PGL should be referred for consideration for clinical genetic testing given the high heritability of disease.

Keywords

Pheochromocytoma Paraganglioma Genetics Hereditary Metastatic pheochromocytoma 

Notes

Funding Information

LF is supported by the American Cancer Society Mentored Research Scholar Grant MRSG-15-063-01-TBG.

Compliance with Ethical Standards

Conflict of Interest

Lauren Fishbein declares that she has no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Lloyd RVOR, Kloppel G, Rosai J. WHO classification of tumours: pathology and genetics of tumours of endocrine organs. 4th ed. Lyon: IARC; 2017.Google Scholar
  2. 2.
    Bruynzeel H, Feelders RA, Groenland TH, van den Meiracker AH, van Eijck CH, Lange JF, et al. Risk factors for hemodynamic instability during surgery for pheochromocytoma. J Clin Endocrinol Metab. 2010;95(2):678–85.  https://doi.org/10.1210/jc.2009-1051.CrossRefPubMedGoogle Scholar
  3. 3.
    Favier J, Amar L, Gimenez-Roqueplo AP. Paraganglioma and phaeochromocytoma: from genetics to personalized medicine. Nat Rev Endocrinol. 2015;11(2):101–11.  https://doi.org/10.1038/nrendo.2014.188.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Fishbein L, Merrill S, Fraker DL, Cohen DL, Nathanson KL. Inherited mutations in pheochromocytoma and paraganglioma: why all patients should be offered genetic testing. Ann Surg Oncol. 2013;20(5):1444–50.  https://doi.org/10.1245/s10434-013-2942-5.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Fassnacht M, Arlt W, Bancos I, Dralle H, Newell-Price J, Sahdev A, et al. Management of adrenal incidentalomas: European Society of Endocrinology Clinical Practice Guideline in collaboration with the European network for the study of adrenal tumors. Eur J Endocrinol. 2016;175(2):G1–G34.  https://doi.org/10.1530/EJE-16-0467.CrossRefPubMedGoogle Scholar
  6. 6.
    Zeiger MA, Thompson GB, Duh QY, Hamrahian AH, Angelos P, Elaraj D, et al. The American Association of Clinical Endocrinologists and American Association of endocrine surgeons medical guidelines for the management of adrenal incidentalomas. Endocr Pract. 2009;15(Suppl 1):1–20.  https://doi.org/10.4158/EP.15.S1.1.CrossRefPubMedGoogle Scholar
  7. 7.
    Cohen DL, Fraker D, Townsend RR. Lack of symptoms in patients with histologic evidence of pheochromocytoma: a diagnostic challenge. Ann N Y Acad Sci. 2006;1073:47–51.  https://doi.org/10.1196/annals.1353.005.CrossRefPubMedGoogle Scholar
  8. 8.
    Kopetschke R, Slisko M, Kilisli A, Tuschy U, Wallaschofski H, Fassnacht M, et al. Frequent incidental discovery of phaeochromocytoma: data from a German cohort of 201 phaeochromocytoma. Eur J Endocrinol. 2009;161(2):355–61.  https://doi.org/10.1530/EJE-09-0384.CrossRefPubMedGoogle Scholar
  9. 9.
    Mannelli M, Ianni L, Cilotti A, Conti A. Pheochromocytoma in Italy: a multicentric retrospective study. Eur J Endocrinol. 1999;141(6):619–24.CrossRefGoogle Scholar
  10. 10.
    Wachtel H, Cerullo I, Bartlett EK, Roses RE, Cohen DL, Kelz RR, et al. Clinicopathologic characteristics of incidentally identified pheochromocytoma. Ann Surg Oncol. 2015;22(1):132–8.  https://doi.org/10.1245/s10434-014-3933-x.CrossRefPubMedGoogle Scholar
  11. 11.
    • Lenders JW, Duh QY, Eisenhofer G, Gimenez-Roqueplo AP, Grebe SK, Murad MH, et al. Pheochromocytoma and paraganglioma: an endocrine society clinical practice guideline. J Clin Endocrinol Metab. 2014;99(6):1915–42.  https://doi.org/10.1210/jc.2014-1498. The Endocrine Society guidelines for the evaluation and treatment of pheochromocytomas and paragangliomas. CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Lenders JW, Pacak K, Walther MM, Linehan WM, Mannelli M, Friberg P, et al. Biochemical diagnosis of pheochromocytoma: which test is best? JAMA. 2002;287(11):1427–34.CrossRefGoogle Scholar
  13. 13.
    Mannelli M, Castellano M, Schiavi F, Filetti S, Giacche M, Mori L, et al. Clinically guided genetic screening in a large cohort of italian patients with pheochromocytomas and/or functional or nonfunctional paragangliomas. J Clin Endocrinol Metab. 2009;94(5):1541–7.  https://doi.org/10.1210/jc.2008-2419.CrossRefPubMedGoogle Scholar
  14. 14.
    Burnichon N, Vescovo L, Amar L, Libe R, de Reynies A, Venisse A, et al. Integrative genomic analysis reveals somatic mutations in pheochromocytoma and paraganglioma. Hum Mol Genet. 2011;20(20):3974–85.  https://doi.org/10.1093/hmg/ddr324.CrossRefPubMedGoogle Scholar
  15. 15.
    Castro-Vega LJ, Letouze E, Burnichon N, Buffet A, Disderot PH, Khalifa E, et al. Multi-omics analysis defines core genomic alterations in pheochromocytomas and paragangliomas. Nat Commun. 2015;6:6044.  https://doi.org/10.1038/ncomms7044.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    • Fishbein L, Leshchiner I, Walter V, Danilova L, Robertson AG, Johnson AR, et al. Comprehensive molecular characterization of pheochromocytoma and paraganglioma. Cancer Cell. 2017;31(2):181–93.  https://doi.org/10.1016/j.ccell.2017.01.001. The Cancer Genome Atlas (TCGA) paper on germline and somatic genetics of pheochromocytoma and paraganglioma using integrated genomic sequencing. CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Flynn A, Benn D, Clifton-Bligh R, Robinson B, Trainer AH, James P, et al. The genomic landscape of phaeochromocytoma. J Pathol. 2015;236(1):78–89.  https://doi.org/10.1002/path.4503.CrossRefPubMedGoogle Scholar
  18. 18.
    Hampel H, Bennett RL, Buchanan A, Pearlman R, Wiesner GL. A practice guideline from the American College of Medical Genetics and Genomics and the National Society of Genetic Counselors: referral indications for cancer predisposition assessment. Genet Med. 2015;17(1):70–87.  https://doi.org/10.1038/gim.2014.147.CrossRefPubMedGoogle Scholar
  19. 19.
    Stewart DR, Korf BR, Nathanson KL, Stevenson DA, Yohay K. Care of adults with neurofibromatosis type 1: a clinical practice resource of the American College of Medical Genetics and Genomics (ACMG). Genet Med. 2018;20(7):671–82.  https://doi.org/10.1038/gim.2018.28.CrossRefPubMedGoogle Scholar
  20. 20.
    Yap YS, McPherson JR, Ong CK, Rozen SG, Teh BT, Lee AS, et al. The NF1 gene revisited - from bench to bedside. Oncotarget. 2014;5(15):5873–92.  https://doi.org/10.18632/oncotarget.2194.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Gruber LM, Erickson D, Babovic-Vuksanovic D, Thompson GB, Young WF Jr, Bancos I. Pheochromocytoma and paraganglioma in patients with neurofibromatosis type 1. Clin Endocrinol. 2016;86:141–9.  https://doi.org/10.1111/cen.13163.CrossRefGoogle Scholar
  22. 22.
    Zinnamosca L, Petramala L, Cotesta D, Marinelli C, Schina M, Cianci R, et al. Neurofibromatosis type 1 (NF1) and pheochromocytoma: prevalence, clinical and cardiovascular aspects. Arch Dermatol Res. 2011;303(5):317–25.  https://doi.org/10.1007/s00403-010-1090-z.CrossRefPubMedGoogle Scholar
  23. 23.
    Walther MM, Herring J, Enquist E, Keiser HR, Linehan WM. von Recklinghausen’s disease and pheochromocytomas. J Urol. 1999;162(5):1582–6.CrossRefGoogle Scholar
  24. 24.
    Bausch B, Borozdin W, Neumann HP. Clinical and genetic characteristics of patients with neurofibromatosis type 1 and pheochromocytoma. N Engl J Med. 2006;354(25):2729–31.  https://doi.org/10.1056/NEJMc066006.CrossRefPubMedGoogle Scholar
  25. 25.
    Eisenhofer G, Lenders JW, Timmers H, Mannelli M, Grebe SK, Hofbauer LC, et al. Measurements of plasma methoxytyramine, normetanephrine, and metanephrine as discriminators of different hereditary forms of pheochromocytoma. Clin Chem. 2011;57(3):411–20.  https://doi.org/10.1373/clinchem.2010.153320.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Binderup ML, Bisgaard ML, Harbud V, Moller HU, Gimsing S, Friis-Hansen L, et al. Von Hippel-Lindau disease (vHL). National clinical guideline for diagnosis and surveillance in Denmark. 3rd edition. Dan Med J. 2013;60(12):B4763.PubMedGoogle Scholar
  27. 27.
    Min JH, Yang H, Ivan M, Gertler F, Kaelin WG Jr, Pavletich NP. Structure of an HIF-1alpha -pVHL complex: hydroxyproline recognition in signaling. Science. 2002;296(5574):1886–9.  https://doi.org/10.1126/science.1073440.CrossRefPubMedGoogle Scholar
  28. 28.
    VHL Alliance. The VHL handbook. 5th ed. Boston (MA): VHL Alliance. 2015.Google Scholar
  29. 29.
    Delman KA, Shapiro SE, Jonasch EW, Lee JE, Curley SA, Evans DB, et al. Abdominal visceral lesions in von Hippel-Lindau disease: incidence and clinical behavior of pancreatic and adrenal lesions at a single center. World J Surg. 2006;30(5):665–9.  https://doi.org/10.1007/s00268-005-0359-4.CrossRefPubMedGoogle Scholar
  30. 30.
    Boedeker CC, Erlic Z, Richard S, Kontny U, Gimenez-Roqueplo AP, Cascon A, et al. Head and neck paragangliomas in von Hippel-Lindau disease and multiple endocrine neoplasia type 2. J Clin Endocrinol Metab. 2009;94(6):1938–44.  https://doi.org/10.1210/jc.2009-0354.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Gaal J, van Nederveen FH, Erlic Z, Korpershoek E, Oldenburg R, Boedeker CC, et al. Parasympathetic paragangliomas are part of the Von Hippel-Lindau syndrome. J Clin Endocrinol Metab. 2009;94(11):4367–71.  https://doi.org/10.1210/jc.2009-1479.CrossRefPubMedGoogle Scholar
  32. 32.
    Maher ER, Neumann HP, Richard S. von Hippel-Lindau disease: a clinical and scientific review. Eur J Hum Genet. 2011;19(6):617–23.  https://doi.org/10.1038/ejhg.2010.175.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Ong KR, Woodward ER, Killick P, Lim C, Macdonald F, Maher ER. Genotype-phenotype correlations in von Hippel-Lindau disease. Hum Mutat. 2007;28(2):143–9.  https://doi.org/10.1002/humu.20385.CrossRefPubMedGoogle Scholar
  34. 34.
    Wells SA Jr. Advances in the management of MEN2: from improved surgical and medical treatment to novel kinase inhibitors. Endocr Relat Cancer. 2018;25(2):T1–T13.  https://doi.org/10.1530/ERC-17-0325.CrossRefPubMedGoogle Scholar
  35. 35.
    Wells SA Jr, Asa SL, Dralle H, Elisei R, Evans DB, Gagel RF, et al. Revised American Thyroid Association guidelines for the management of medullary thyroid carcinoma. Thyroid. 2015;25(6):567–610.  https://doi.org/10.1089/thy.2014.0335.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Castinetti F, Qi XP, Walz MK, Maia AL, Sanso G, Peczkowska M, et al. Outcomes of adrenal-sparing surgery or total adrenalectomy in phaeochromocytoma associated with multiple endocrine neoplasia type 2: an international retrospective population-based study. Lancet Oncol. 2014;15(6):648–55.  https://doi.org/10.1016/S1470-2045(14)70154-8.CrossRefPubMedGoogle Scholar
  37. 37.
    Selak MA, Armour SM, MacKenzie ED, Boulahbel H, Watson DG, Mansfield KD, et al. Succinate links TCA cycle dysfunction to oncogenesis by inhibiting HIF-alpha prolyl hydroxylase. Cancer Cell. 2005;7(1):77–85.  https://doi.org/10.1016/j.ccr.2004.11.022.CrossRefPubMedGoogle Scholar
  38. 38.
    Xiao M, Yang H, Xu W, Ma S, Lin H, Zhu H, et al. Inhibition of alpha-KG-dependent histone and DNA demethylases by fumarate and succinate that are accumulated in mutations of FH and SDH tumor suppressors. Genes Dev. 2012;26(12):1326–38.  https://doi.org/10.1101/gad.191056.112.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    • Rednam SP, Erez A, Druker H, Janeway KA, Kamihara J, Kohlmann WK, et al. Von Hippel-Lindau and hereditary pheochromocytoma/paraganglioma syndromes: clinical features, genetics, and surveillance recommendations in childhood. Clin Cancer Res. 2017;23(12):e68–75.  https://doi.org/10.1158/1078-0432.CCR-17-0547 Expert recommendation guidelines for screening patients with hereditary paraganglioma-pheochromocytoma syndrome. CrossRefPubMedGoogle Scholar
  40. 40.
    Burnichon N, Briere JJ, Libe R, Vescovo L, Riviere J, Tissier F, et al. SDHA is a tumor suppressor gene causing paraganglioma. Hum Mol Genet. 2010;19(15):3011–20.  https://doi.org/10.1093/hmg/ddq206.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Parfait B, Chretien D, Rotig A, Marsac C, Munnich A, Rustin P. Compound heterozygous mutations in the flavoprotein gene of the respiratory chain complex II in a patient with Leigh syndrome. Hum Genet. 2000;106(2):236–43.CrossRefGoogle Scholar
  42. 42.
    Bausch B, Schiavi F, Ni Y, Welander J, Patocs A, Ngeow J, et al. Clinical characterization of the pheochromocytoma and paraganglioma susceptibility genes SDHA, TMEM127, MAX, and SDHAF2 for gene-informed prevention. JAMA Oncol. 2017;3(9):1204–12.  https://doi.org/10.1001/jamaoncol.2017.0223.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    van der Tuin K, Mensenkamp AR, Tops CMJ, Corssmit EPM, Dinjens WN, van de Horst-Schrivers ANA, et al. Clinical aspects of SDHA-related pheochromocytoma and paraganglioma: a nationwide study. J Clin Endocrinol Metab. 2018;103(2):438–45.  https://doi.org/10.1210/jc.2017-01762.CrossRefPubMedGoogle Scholar
  44. 44.
    Boikos SA, Pappo AS, Killian JK, LaQuaglia MP, Weldon CB, George S, et al. Molecular subtypes of KIT/PDGFRA wild-type gastrointestinal stromal tumors: a report from the National Institutes of Health Gastrointestinal Stromal Tumor Clinic. JAMA Oncol. 2016;2(7):922–8.  https://doi.org/10.1001/jamaoncol.2016.0256.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Horvath R, Abicht A, Holinski-Feder E, Laner A, Gempel K, Prokisch H, et al. Leigh syndrome caused by mutations in the flavoprotein (Fp) subunit of succinate dehydrogenase (SDHA). J Neurol Neurosurg Psychiatry. 2006;77(1):74–6.  https://doi.org/10.1136/jnnp.2005.067041.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Astuti D, Latif F, Dallol A, Dahia PL, Douglas F, George E, et al. Gene mutations in the succinate dehydrogenase subunit SDHB cause susceptibility to familial pheochromocytoma and to familial paraganglioma. Am J Hum Genet. 2001;69(1):49–54.  https://doi.org/10.1086/321282.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Pasini B, Stratakis CA. SDH mutations in tumorigenesis and inherited endocrine tumours: lesson from the phaeochromocytoma-paraganglioma syndromes. J Intern Med. 2009;266(1):19–42.  https://doi.org/10.1111/j.1365-2796.2009.02111.x.CrossRefPubMedGoogle Scholar
  48. 48.
    • Andrews KA, Ascher DB, Pires DEV, Barnes DR, Vialard L, Casey RT, et al. Tumour risks and genotype-phenotype correlations associated with germline variants in succinate dehydrogenase subunit genes SDHB, SDHC and SDHD. J Med Genet. 2018;55(6):384–94.  https://doi.org/10.1136/jmedgenet-2017-105127. This is one of the largest studies with index and non-index patients evaluating penetrance of SDHx gene pathogenic variants.
  49. 49.
    Jochmanova I, Wolf KI, King KS, Nambuba J, Wesley R, Martucci V, et al. SDHB-related pheochromocytoma and paraganglioma penetrance and genotype-phenotype correlations. J Cancer Res Clin Oncol. 2017;143(8):1421–35.  https://doi.org/10.1007/s00432-017-2397-3.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Jafri M, Whitworth J, Rattenberry E, Vialard L, Kilby G, Kumar AV, et al. Evaluation of SDHB, SDHD and VHL gene susceptibility testing in the assessment of individuals with non-syndromic phaeochromocytoma, paraganglioma and head and neck paraganglioma. Clin Endocrinol. 2013;78(6):898–906.  https://doi.org/10.1111/cen.12074.CrossRefGoogle Scholar
  51. 51.
    Niemeijer ND, Rijken JA, Eijkelenkamp K, van der Horst-Schrivers ANA, Kerstens MN, Tops CMJ, et al. The phenotype of SDHB germline mutation carriers: a nationwide study. Eur J Endocrinol. 2017;177(2):115–25.  https://doi.org/10.1530/EJE-17-0074.CrossRefPubMedGoogle Scholar
  52. 52.
    van Hulsteijn LT, Dekkers OM, Hes FJ, Smit JW, Corssmit EP. Risk of malignant paraganglioma in SDHB-mutation and SDHD-mutation carriers: a systematic review and meta-analysis. J Med Genet. 2012;49(12):768–76.  https://doi.org/10.1136/jmedgenet-2012-101192.CrossRefPubMedGoogle Scholar
  53. 53.
    Baysal BE, Ferrell RE, Willett-Brozick JE, Lawrence EC, Myssiorek D, Bosch A, et al. Mutations in SDHD, a mitochondrial complex II gene, in hereditary paraganglioma. Science. 2000;287(5454):848–51.CrossRefGoogle Scholar
  54. 54.
    Neumann HP, Erlic Z. Maternal transmission of symptomatic disease with SDHD mutation: fact or fiction? J Clin Endocrinol Metab. 2008;93(5):1573–5.  https://doi.org/10.1210/jc.2008-0569.CrossRefPubMedGoogle Scholar
  55. 55.
    Yeap PM, Tobias ES, Mavraki E, Fletcher A, Bradshaw N, Freel EM, et al. Molecular analysis of pheochromocytoma after maternal transmission of SDHD mutation elucidates mechanism of parent-of-origin effect. J Clin Endocrinol Metab. 2011;96(12):E2009–13.  https://doi.org/10.1210/jc.2011-1244.CrossRefPubMedGoogle Scholar
  56. 56.
    Bayley JP, Oldenburg RA, Nuk J, Hoekstra AS, van der Meer CA, Korpershoek E, et al. Paraganglioma and pheochromocytoma upon maternal transmission of SDHD mutations. BMC Med Genet. 2014;15:111.  https://doi.org/10.1186/s12881-014-0111-8.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Ricketts CJ, Forman JR, Rattenberry E, Bradshaw N, Lalloo F, Izatt L, et al. Tumor risks and genotype-phenotype-proteotype analysis in 358 patients with germline mutations in SDHB and SDHD. Hum Mutat. 2010;31(1):41–51.  https://doi.org/10.1002/humu.21136.CrossRefPubMedGoogle Scholar
  58. 58.
    Niemann S, Muller U. Mutations in SDHC cause autosomal dominant paraganglioma, type 3. Nat Genet. 2000;26(3):268–70.  https://doi.org/10.1038/81551.CrossRefPubMedGoogle Scholar
  59. 59.
    Else T, Marvin ML, Everett JN, Gruber SB, Arts HA, Stoffel EM, et al. The clinical phenotype of SDHC-associated hereditary paraganglioma syndrome (PGL3). J Clin Endocrinol Metab. 2014;99(8):E1482–6.  https://doi.org/10.1210/jc.2013-3853.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Bayley JP, Kunst HP, Cascon A, Sampietro ML, Gaal J, Korpershoek E, et al. SDHAF2 mutations in familial and sporadic paraganglioma and phaeochromocytoma. Lancet Oncol. 2010;11(4):366–72.  https://doi.org/10.1016/S1470-2045(10)70007-3.CrossRefPubMedGoogle Scholar
  61. 61.
    Kunst HP, Rutten MH, de Monnink JP, Hoefsloot LH, Timmers HJ, Marres HA, et al. SDHAF2 (PGL2-SDH5) and hereditary head and neck paraganglioma. Clin Cancer Res. 2011;17(2):247–54.  https://doi.org/10.1158/1078-0432.CCR-10-0420.CrossRefPubMedGoogle Scholar
  62. 62.
    Qin Y, Yao L, King EE, Buddavarapu K, Lenci RE, Chocron ES, et al. Germline mutations in TMEM127 confer susceptibility to pheochromocytoma. Nat Genet. 2010;42(3):229–33.  https://doi.org/10.1038/ng.533.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Yao L, Schiavi F, Cascon A, Qin Y, Inglada-Perez L, King EE, et al. Spectrum and prevalence of FP/TMEM127 gene mutations in pheochromocytomas and paragangliomas. JAMA. 2010;304(23):2611–9.  https://doi.org/10.1001/jama.2010.1830.CrossRefPubMedGoogle Scholar
  64. 64.
    Qin Y, Deng Y, Ricketts CJ, Srikantan S, Wang E, Maher ER, et al. The tumor susceptibility gene TMEM127 is mutated in renal cell carcinomas and modulates endolysosomal function. Hum Mol Genet. 2014;23(9):2428–39.  https://doi.org/10.1093/hmg/ddt638.CrossRefPubMedGoogle Scholar
  65. 65.
    Burnichon N, Cascon A, Schiavi F, Morales NP, Comino-Mendez I, Abermil N, et al. MAX mutations cause hereditary and sporadic pheochromocytoma and paraganglioma. Clin Cancer Res. 2012;18(10):2828–37.  https://doi.org/10.1158/1078-0432.CCR-12-0160.CrossRefPubMedGoogle Scholar
  66. 66.
    Comino-Mendez I, Gracia-Aznarez FJ, Schiavi F, Landa I, Leandro-Garcia LJ, Leton R, et al. Exome sequencing identifies MAX mutations as a cause of hereditary pheochromocytoma. Nat Genet. 2011;43(7):663–7.  https://doi.org/10.1038/ng.861.CrossRefPubMedGoogle Scholar
  67. 67.
    Zhuang Z, Yang C, Lorenzo F, Merino M, Fojo T, Kebebew E, et al. Somatic HIF2A gain-of-function mutations in paraganglioma with polycythemia. N Engl J Med. 2012;367(10):922–30.  https://doi.org/10.1056/NEJMoa1205119.CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Comino-Mendez I, de Cubas AA, Bernal C, Alvarez-Escola C, Sanchez-Malo C, Ramirez-Tortosa CL, et al. Tumoral EPAS1 (HIF2A) mutations explain sporadic pheochromocytoma and paraganglioma in the absence of erythrocytosis. Hum Mol Genet. 2013;22(11):2169–76.  https://doi.org/10.1093/hmg/ddt069.CrossRefPubMedGoogle Scholar
  69. 69.
    Lorenzo FR, Yang C, Ng Tang Fui M, Vankayalapati H, Zhuang Z, Huynh T, et al. A novel EPAS1/HIF2A germline mutation in a congenital polycythemia with paraganglioma. J Mol Med (Berl). 2013;91(4):507–12.  https://doi.org/10.1007/s00109-012-0967-z.CrossRefGoogle Scholar
  70. 70.
    Yang C, Sun MG, Matro J, Huynh TT, Rahimpour S, Prchal JT, et al. Novel HIF2A mutations disrupt oxygen sensing, leading to polycythemia, paragangliomas, and somatostatinomas. Blood. 2013;121(13):2563–6.  https://doi.org/10.1182/blood-2012-10-460972.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Buffet A, Smati S, Mansuy L, Menara M, Lebras M, Heymann MF, et al. Mosaicism in HIF2A-related polycythemia-paraganglioma syndrome. J Clin Endocrinol Metab. 2014;99(2):E369–73.  https://doi.org/10.1210/jc.2013-2600.CrossRefPubMedGoogle Scholar
  72. 72.
    Tomlinson IP, Alam NA, Rowan AJ, Barclay E, Jaeger EE, Kelsell D, et al. Germline mutations in FH predispose to dominantly inherited uterine fibroids, skin leiomyomata and papillary renal cell cancer. Nat Genet. 2002;30(4):406–10.  https://doi.org/10.1038/ng849.CrossRefPubMedGoogle Scholar
  73. 73.
    Castro-Vega LJ, Buffet A, De Cubas AA, Cascon A, Menara M, Khalifa E, et al. Germline mutations in FH confer predisposition to malignant pheochromocytomas and paragangliomas. Hum Mol Genet. 2014;23(9):2440–6.  https://doi.org/10.1093/hmg/ddt639.CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Clark GR, Sciacovelli M, Gaude E, Walsh DM, Kirby G, Simpson MA, et al. Germline FH mutations presenting with pheochromocytoma. J Clin Endocrinol Metab. 2014;99(10):E2046–50.  https://doi.org/10.1210/jc.2014-1659.CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Calsina B, Curras-Freixes M, Buffet A, Pons T, Contreras L, Leton R, et al. Role of MDH2 pathogenic variant in pheochromocytoma and paraganglioma patients. Genet Med. 2018;20(12):1652–62.  https://doi.org/10.1038/s41436-018-0068-7.CrossRefPubMedGoogle Scholar
  76. 76.
    Cascon A, Comino-Mendez I, Curras-Freixes M, de Cubas AA, Contreras L, Richter S, et al. Whole-exome sequencing identifies MDH2 as a new familial paraganglioma gene. J Natl Cancer Inst. 2015;107(5):djv053.  https://doi.org/10.1093/jnci/djv053.CrossRefPubMedGoogle Scholar
  77. 77.
    Buffet A, Morin A, Castro-Vega LJ, Habarou F, Lussey-Lepoutre C, Letouze E, et al. Germline mutations in the mitochondrial 2-oxoglutarate/malate carrier SLC25A11 gene confer a predisposition to metastatic paragangliomas. Cancer Res. 2018;78(8):1914–22.  https://doi.org/10.1158/0008-5472.CAN-17-2463.CrossRefPubMedGoogle Scholar
  78. 78.
    Remacha L, Comino-Mendez I, Richter S, Contreras L, Curras-Freixes M, Pita G, et al. Targeted exome sequencing of Krebs cycle genes reveals candidate cancer-predisposing mutations in pheochromocytomas and paragangliomas. Clin Cancer Res. 2017;23(20):6315–24.  https://doi.org/10.1158/1078-0432.CCR-16-2250.CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Remacha L, Curras-Freixes M, Torres-Ruiz R, Schiavi F, Torres-Perez R, Calsina B, et al. Gain-of-function mutations in DNMT3A in patients with paraganglioma. Genet Med. 2018;20(12):1644–51.  https://doi.org/10.1038/s41436-018-0003-y.CrossRefPubMedGoogle Scholar
  80. 80.
    Remacha L, Pirman D, Mahoney CE, Coloma J, Calsina B, Curras-Freixes M, et al. Recurrent germline DLST mutations in individuals with multiple pheochromocytomas and paragangliomas. Am J Hum Genet. 2019;104(4):651–64.  https://doi.org/10.1016/j.ajhg.2019.02.017.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Medicine, Division of Endocrinology, Metabolism and Diabetes, Division of Biomedical Informatics and Personalized MedicineUniversity of Colorado School of MedicineAuroraUSA

Personalised recommendations