Skip to main content
Log in

Functional and Anatomical Imaging in Patients with Ischemic Symptoms and Known Coronary Artery Disease

  • Nuclear Cardiology (V Dilsizian, Section Editor)
  • Published:
Current Cardiology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

This review is aimed at summarizing recent advances in functional, anatomical, and hybrid imaging techniques used in the assessment of ischemic complaints in patients with known coronary artery disease (CAD).

Recent Findings

Cardiovascular imaging has seen significant growth over the last decade in the fields of coronary computed tomography angiography (CCTA), FFR derived from CCTA, cardiac magnetic resonance, radionuclide myocardial perfusion imaging, and hybrid imaging for the purposes of evaluating symptoms concerning for ischemia. This growth stems from refinement of imaging techniques and hardware and software advances that have made current techniques more accurate with less acquisition time. However, every anatomic and functional imaging modality has important technical and patient-specific limitations. This review assesses these issues, guides a patient-centered imaging approach, and identifies important research questions to resolve.

Summary

Recent advances in non-invasive cardiovascular imaging can provide important information in patients with known CAD beyond traditional imaging techniques; the use of these novel tools refines the clinical management of complex patients with ischemic symptoms and known CAD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Mozaffarian D, Benjamin EJ, Go AS, et al. Executive summary: heart disease and stroke statistics-2016 update: a report from the American Heart Association. Circulation. 2016;133(4):447–54. https://doi.org/10.1161/CIR.0000000000000366.

    Article  PubMed  Google Scholar 

  2. •• Ouellette ML, Löffler AI, Beller GA, Workman VK, Holland E, Bourque JM. Clinical characteristics, sex differences, and outcomes in patients with normal or near-normal coronary arteries, non-obstructive or obstructive coronary artery disease. J Am Heart Assoc. 2018;7(10). https://doi.org/10.1161/JAHA.117.007965. This study demonstrated that as many as 44.5% of patients undergoing non-emergent ICA have non-obstructive CAD despite high pretest risk, which raises the concern that CMD may play a significant role in causing angina in certain patients.

  3. Bairey merz CN, Pepine CJ, Walsh MN, Fleg JL. Ischemia and no obstructive coronary artery disease (INOCA): developing evidence-based therapies and research agenda for the next decade. Circulation. 2017;135(11):1075–92. https://doi.org/10.1161/CIRCULATIONAHA.116.024534.

    Article  PubMed  Google Scholar 

  4. Murthy VL, Naya M, Foster CR, Gaber M, Hainer J, Klein J, et al. Association between coronary vascular dysfunction and cardiac mortality in patients with and without diabetes mellitus. Circulation. 2012;126(15):1858–68. https://doi.org/10.1161/CIRCULATIONAHA.112.120402.

    Article  CAS  Google Scholar 

  5. • Marinescu MA, Löffler AI, Ouellette M, Smith L, Kramer CM, Bourque JM. Coronary microvascular dysfunction, microvascular angina, and treatment strategies. JACC Cardiovasc Imaging. 2015;8(2):210–20. https://doi.org/10.1016/j.jcmg.2014.12.008. This is helpful review of what is known regarding treatments for CMD and microvascular angina.

    PubMed  Google Scholar 

  6. • Wolk MJ, Bailey SR, Doherty JU, et al. ACCF/AHA/ASE/ASNC/HFSA/HRS/SCAI/SCCT/SCMR/STS 2013 multimodality appropriate use criteria for the detection and risk assessment of stable ischemic heart disease: a report of the American College of Cardiology Foundation Appropriate Use Criteria Task Force, American Heart Association, American Society of Echocardiography, American Society of Nuclear Cardiology, Heart Failure Society of America, Heart Rhythm Society, Society for Cardiovascular Angiography and Interventions, Society of Cardiovascular Computed Tomography, Society for Cardiovascular Magnetic Resonance, and Society of Thoracic Surgeons. J Am Coll Cardiol. 2014;63(4):380–406. https://doi.org/10.1016/j.jacc.2013.11.009. Most recent AUC document for use of different imaging modalities in the evaluation of stable ischemic heart disease.

    Article  Google Scholar 

  7. Villines TC, Hulten EA, Shaw LJ, Goyal M, Dunning A, Achenbach S, et al. Prevalence and severity of coronary artery disease and adverse events among symptomatic patients with coronary artery calcification scores of zero undergoing coronary computed tomography angiography: results from the CONFIRM (Coronary CT Angiography Evaluation for Clinical Outcomes: An International Multicenter) registry. J Am Coll Cardiol. 2011;58(24):2533–40. https://doi.org/10.1016/j.jacc.2011.10.851.

    Article  Google Scholar 

  8. • Fihn SD, Blankenship JC, Alexander KP, et al. 2014 ACC/AHA/AATS/PCNA/SCAI/STS Focused update of the guideline for the diagnosis and management of patients with stable ischemic heart disease: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines, and the American Association for Thoracic Surgery, Preventive Cardiovascular Nurses Association, Society for Cardiovascular Angiography and Interventions, and Society of Thoracic Surgeons. J Am Coll Cardiol. 2014;64(18):1929–49. https://doi.org/10.1016/j.jacc.2014.07.017. Most recent guidelines regarding diagnosis and management of patients with stable ischemic heart disease.

    Article  Google Scholar 

  9. Beck KS, Kim JA, Choe YH, et al. 2017 multimodality appropriate use criteria for noninvasive cardiac imaging: expert consensus of the Asian Society of Cardiovascular Imaging. Korean J Radiol. 2017;18(6):871–80. https://doi.org/10.3348/kjr.2017.18.6.871.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Miller JM, Rochitte CE, Dewey M, Arbab-Zadeh A, Niinuma H, Gottlieb I, et al. Diagnostic performance of coronary angiography by 64-row CT. N Engl J Med. 2008;359(22):2324–36. https://doi.org/10.1056/NEJMoa0806576.

    Article  CAS  Google Scholar 

  11. Meijboom WB, Meijs MF, Schuijf JD, et al. Diagnostic accuracy of 64-slice computed tomography coronary angiography: a prospective, multicenter, multivendor study. J Am Coll Cardiol. 2008;52(25):2135–44. https://doi.org/10.1016/j.jacc.2008.08.058.

    Article  PubMed  Google Scholar 

  12. Budoff MJ, Dowe D, Jollis JG, Gitter M, Sutherland J, Halamert E, et al. Diagnostic performance of 64-multidetector row coronary computed tomographic angiography for evaluation of coronary artery stenosis in individuals without known coronary artery disease: results from the prospective multicenter ACCURACY (Assessment by Coronary Computed Tomographic Angiography of Individuals Undergoing Invasive Coronary Angiography) trial. J Am Coll Cardiol. 2008;52(21):1724–32. https://doi.org/10.1016/j.jacc.2008.07.031.

    Article  Google Scholar 

  13. Hacker M, Jakobs T, Matthiesen F, Vollmar C, Nikolaou K, Becker C, et al. Comparison of spiral multidetector CT angiography and myocardial perfusion imaging in the noninvasive detection of functionally relevant coronary artery lesions: first clinical experiences. J Nucl Med. 2005;46(8):1294–300.

  14. Rispler S, Keidar Z, Ghersin E, Roguin A, Soil A, Dragu R, et al. Integrated single-photon emission computed tomography and computed tomography coronary angiography for the assessment of hemodynamically significant coronary artery lesions. J Am Coll Cardiol. 2007;49(10):1059–67. https://doi.org/10.1016/j.jacc.2006.10.069.

    Article  Google Scholar 

  15. Di carli MF, Dorbala S, Curillova Z, et al. Relationship between CT coronary angiography and stress perfusion imaging in patients with suspected ischemic heart disease assessed by integrated PET-CT imaging. J Nucl Cardiol. 2007;14(6):799–809. https://doi.org/10.1016/j.nuclcard.2007.07.012.

    Article  PubMed  Google Scholar 

  16. Pache G, Saueressig U, Frydrychowicz A, Foell D, Ghanem N, Kotter E, et al. Initial experience with 64-slice cardiac CT: non-invasive visualization of coronary artery bypass grafts. Eur Heart J. 2006;27(8):976–80. https://doi.org/10.1093/eurheartj/ehi824.

    Article  Google Scholar 

  17. Meyer TS, Martinoff S, Hadamitzky M, Will A, Kastrati A, Schömig A, et al. Improved noninvasive assessment of coronary artery bypass grafts with 64-slice computed tomographic angiography in an unselected patient population. J Am Coll Cardiol. 2007;49(9):946–50. https://doi.org/10.1016/j.jacc.2006.10.066.

    Article  Google Scholar 

  18. Ropers D, Pohle FK, Kuettner A, Pflederer T, Anders K, Daniel WG, et al. Diagnostic accuracy of noninvasive coronary angiography in patients after bypass surgery using 64-slice spiral computed tomography with 330-ms gantry rotation. Circulation. 2006;114(22):2334–41. https://doi.org/10.1161/CIRCULATIONAHA.106.631051.

    Article  Google Scholar 

  19. Barbero U, Iannaccone M, D’ascenzo F, et al. 64 slice-coronary computed tomography sensitivity and specificity in the evaluation of coronary artery bypass graft stenosis: a meta-analysis. Int J Cardiol. 2016;216:52–7. https://doi.org/10.1016/j.ijcard.2016.04.156.

    Article  PubMed  Google Scholar 

  20. Carrabba N, Schuijf JD, De graaf FR, et al. Diagnostic accuracy of 64-slice computed tomography coronary angiography for the detection of in-stent restenosis: a meta-analysis. J Nucl Cardiol. 2010;17(3):470–8. https://doi.org/10.1007/s12350-010-9218-2.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Sun Z, Almutairi AM. Diagnostic accuracy of 64 multislice CT angiography in the assessment of coronary in-stent restenosis: a meta-analysis. Eur J Radiol. 2010;73(2):266–73. https://doi.org/10.1016/j.ejrad.2008.10.025.

    Article  PubMed  Google Scholar 

  22. • Li Y, Yu M, Li W, Lu Z, Wei M, Zhang J. Third generation dual-source CT enables accurate diagnosis of coronary restenosis in all size stents with low radiation dose and preserved image quality. Eur Radiol. 2018;28(6):2647–54. https://doi.org/10.1007/s00330-017-5256-3. The study demonstrated preserved sensitivity and reduced specificity for assessing in-stent restenosis in coronary stents < 3 mm with CCTA.

    Article  Google Scholar 

  23. Harding SA, Wu EB, Lo S, Lim ST, Ge L, Chen JY, et al. A new algorithm for crossing chronic total occlusions from the Asia Pacific Chronic Total Occlusion Club. JACC Cardiovasc Interv. 2017;10(21):2135–43. https://doi.org/10.1016/j.jcin.2017.06.071.

    PubMed  Google Scholar 

  24. • Luo C, Huang M, Li J, Liang C, Zhang Q, Liu H, et al. Predictors of interventional success of antegrade PCI for CTO. JACC Cardiovasc Imaging. 2015;8(7):804–13. https://doi.org/10.1016/j.jcmg.2015.04.008. This study identified significant lesion characteristics of CTOs that predicted failure of antegrade PCI using pre-procedure CCTA.

    PubMed  Google Scholar 

  25. Rolf A, Werner GS, Schuhbäck A, Rixe J, Möllmann H, Nef HM, et al. Preprocedural coronary CT angiography significantly improves success rates of PCI for chronic total occlusion. Int J Cardiovasc Imaging. 2013;29(8):1819–27. https://doi.org/10.1007/s10554-013-0258-y.

    Article  Google Scholar 

  26. Opolski MP, Achenbach S, Schuhbäck A, Rolf A, Möllmann H, Nef H, et al. Coronary computed tomographic prediction rule for time-efficient guidewire crossing through chronic total occlusion: insights from the CT-RECTOR multicenter registry (Computed Tomography Registry of Chronic Total Occlusion Revascularization). JACC Cardiovasc Interv. 2015;8(2):257–67. https://doi.org/10.1016/j.jcin.2014.07.031.

    PubMed  Google Scholar 

  27. Opolski MP, Achenbach SCT. Angiography for revascularization of CTO: crossing the borders of diagnosis and treatment. JACC Cardiovasc Imaging. 2015;8(7):846–58. https://doi.org/10.1016/j.jcmg.2015.05.001.

    Article  PubMed  Google Scholar 

  28. De bruyne B, Fearon WF, Pijls NH, et al. Fractional flow reserve-guided PCI for stable coronary artery disease. N Engl J Med. 2014;371(13):1208–17. https://doi.org/10.1056/NEJMoa1408758.

    Article  CAS  PubMed  Google Scholar 

  29. Taylor CA, Fonte TA, Min JK. Computational fluid dynamics applied to cardiac computed tomography for noninvasive quantification of fractional flow reserve: scientific basis. J Am Coll Cardiol. 2013;61(22):2233–41. https://doi.org/10.1016/j.jacc.2012.11.083.

    Article  PubMed  Google Scholar 

  30. Nørgaard BL, Leipsic J, Gaur S, Seneviratne S, Ko BS, Ito H, et al. Diagnostic performance of noninvasive fractional flow reserve derived from coronary computed tomography angiography in suspected coronary artery disease: the NXT trial (Analysis of Coronary Blood Flow Using CT Angiography: Next Steps). J Am Coll Cardiol. 2014;63(12):1145–55. https://doi.org/10.1016/j.jacc.2013.11.043.

    Article  Google Scholar 

  31. Gonzalez JA, Lipinski MJ, Flors L, Shaw PW, Kramer CM, Salerno M. Meta-analysis of diagnostic performance of coronary computed tomography angiography, computed tomography perfusion, and computed tomography-fractional flow reserve in functional myocardial ischemia assessment versus invasive fractional flow reserve. Am J Cardiol. 2015;116(9):1469–78. https://doi.org/10.1016/j.amjcard.2015.07.078.

    Article  PubMed  PubMed Central  Google Scholar 

  32. •• Nørgaard BL, Terkelsen CJ, Mathiassen ON, et al. Coronary CT angiographic and flow reserve-guided management of patients with stable ischemic heart disease. J Am Coll Cardiol. 2018;72(18):2123–34. https://doi.org/10.1016/j.jacc.2018.07.043. This study showed that FFR CT can be an effective method in differentiating patients with epicardial CAD (FFR CT cut-off of 0.80) who do not require further diagnostic testing or intervention.

    Article  PubMed  Google Scholar 

  33. • Neumann FJ, Sousa-uva M, Ahlsson A, et al. 2018 ESC/EACTS guidelines on myocardial revascularization. Eur Heart J. 2018;40:87–165. https://doi.org/10.1093/eurheartj/ehy394. Most recent European guidelines for myocardial revascularization.

    Article  Google Scholar 

  34. Dweck MR, Puntman V, Vesey AT, Fayad ZA, Nagel E. MR imaging of coronary arteries and plaques. JACC Cardiovasc Imaging. 2016;9(3):306–16. https://doi.org/10.1016/j.jcmg.2015.12.003.

    Article  PubMed  Google Scholar 

  35. Hundley WG, Bluemke DA, Finn JP, et al. ACCF/ACR/AHA/NASCI/SCMR 2010 expert consensus document on cardiovascular magnetic resonance: a report of the American College of Cardiology Foundation Task Force on Expert Consensus Documents. J Am Coll Cardiol. 2010;55(23):2614–62. https://doi.org/10.1016/j.jacc.2009.11.011.

    Article  PubMed  Google Scholar 

  36. Gibbons RJ, Balady GJ, Bricker JT, Chaitman BR, Fletcher GF, Froelicher VF, et al. ACC/AHA 2002 guideline update for exercise testing: summary article: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee to Update the 1997 Exercise Testing Guidelines). Circulation. 2002;106(14):1883–92.

  37. Myers J, Prakash M, Froelicher V, Do D, Partington S, Atwood JE. Exercise capacity and mortality among men referred for exercise testing. N Engl J Med. 2002;346(11):793–801. https://doi.org/10.1056/NEJMoa011858.

    Article  PubMed  Google Scholar 

  38. Bourque JM, Holland BH, Watson DD, Beller GA. Achieving an exercise workload of > or = 10 metabolic equivalents predicts a very low risk of inducible ischemia: does myocardial perfusion imaging have a role? J Am Coll Cardiol. 2009;54(6):538–45. https://doi.org/10.1016/j.jacc.2009.04.042.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Smith L, Myc L, Watson D, Beller GA, Bourque JM. A high exercise workload of ≥ 10 METS predicts a low risk of significant ischemia and cardiac events in older adults. J Nucl Cardiol. 2018. https://doi.org/10.1007/s12350-018-1376-7.

  40. • Balfour PC, Gonzalez JA, Shaw PW, Caminero MP, Holland EM, Melson JW, Sobczak M, Izarnotegui V, Watson DD, Beller GA, Bourque JM High-frequency QRS analysis to supplement ST evaluation in exercise stress electrocardiography: incremental diagnostic accuracy and net reclassification. J Nucl Cardiol. 2018. https://doi.org/10.1007/s12350-018-01530-w. This study utilized high-frequency QRS analysis to supplement ST evaluation during stress electrocardiography and demonstrated that this technique can be employed to avoid unnecessary imaging in certain patients referred for stress testing.

  41. Metz LD, Beattie M, Hom R, Redberg RF, Grady D, Fleischmann KE. The prognostic value of normal exercise myocardial perfusion imaging and exercise echocardiography: a meta-analysis. J Am Coll Cardiol. 2007;49(2):227–37. https://doi.org/10.1016/j.jacc.2006.08.048.

    Article  PubMed  Google Scholar 

  42. Ottenhof MJ, Wai MC, Boiten HJ, et al. 12-year outcome after normal myocardial perfusion SPECT in patients with known coronary artery disease. J Nucl Cardiol. 2013;20(5):748–54. https://doi.org/10.1007/s12350-013-9713-3.

    Article  PubMed  Google Scholar 

  43. Pellikka PA, Nagueh SF, Elhendy AA, Kuehl CA, Sawada SG. American Society of Echocardiography recommendations for performance, interpretation, and application of stress echocardiography. J Am Soc Echocardiogr. 2007;20(9):1021–41. https://doi.org/10.1016/j.echo.2007.07.003.

    Article  PubMed  Google Scholar 

  44. Hachamovitch R, Hayes SW, Friedman JD, Cohen I, Berman DS. Comparison of the short-term survival benefit associated with revascularization compared with medical therapy in patients with no prior coronary artery disease undergoing stress myocardial perfusion single photon emission computed tomography. Circulation. 2003;107(23):2900–7. https://doi.org/10.1161/01.CIR.0000072790.23090.41.

    Article  PubMed  Google Scholar 

  45. Sorajja P, Chareonthaitawee P, Rajagopalan N, et al. Improved survival in asymptomatic diabetic patients with high-risk SPECT imaging treated with coronary artery bypass grafting. Circulation. 2005;112(9 Suppl):I311–6. https://doi.org/10.1161/CIRCULATIONAHA.104.525022.

    Article  PubMed  Google Scholar 

  46. Hachamovitch R, Kang X, Amanullah AM, Abidov A, Hayes SW, Friedman JD, et al. Prognostic implications of myocardial perfusion single-photon emission computed tomography in the elderly. Circulation. 2009;120(22):2197–206. https://doi.org/10.1161/CIRCULATIONAHA.108.817387.

    Article  Google Scholar 

  47. Agostini D, Marie PY, Ben-haim S, et al. Performance of cardiac cadmium-zinc-telluride gamma camera imaging in coronary artery disease: a review from the cardiovascular committee of the European Association of Nuclear Medicine (EANM). Eur J Nucl Med Mol Imaging. 2016;43(13):2423–32. https://doi.org/10.1007/s00259-016-3467-5.

    Article  CAS  PubMed  Google Scholar 

  48. Einstein AJ, Blankstein R, Andrews H, Fish M, Padgett R, Hayes SW, et al. Comparison of image quality, myocardial perfusion, and left ventricular function between standard imaging and single-injection ultra-low-dose imaging using a high-efficiency SPECT camera: the MILLISIEVERT study. J Nucl Med. 2014;55(9):1430–7. https://doi.org/10.2967/jnumed.114.138222.

    Article  CAS  Google Scholar 

  49. Chang SM, Nabi F, Xu J, Raza U, Mahmarian JJ. Normal stress-only versus standard stress/rest myocardial perfusion imaging: similar patient mortality with reduced radiation exposure. J Am Coll Cardiol. 2010;55(3):221–30. https://doi.org/10.1016/j.jacc.2009.09.022.

    Article  PubMed  Google Scholar 

  50. Mc ardle BA, Dowsley TF, Dekemp RA, Wells GA, Beanlands RS. Does rubidium-82 PET have superior accuracy to SPECT perfusion imaging for the diagnosis of obstructive coronary disease?: a systematic review and meta-analysis. J Am Coll Cardiol. 2012;60(18):1828–37. https://doi.org/10.1016/j.jacc.2012.07.038.

    Article  PubMed  Google Scholar 

  51. Parker MW, Iskandar A, Limone B, Perugini A, Kim H, Jones C, et al. Diagnostic accuracy of cardiac positron emission tomography versus single photon emission computed tomography for coronary artery disease: a bivariate meta-analysis. Circ Cardiovasc Imaging. 2012;5(6):700–7. https://doi.org/10.1161/CIRCIMAGING.112.978270.

    Google Scholar 

  52. Dorbala S, Di carli MF, Beanlands RS, et al. Prognostic value of stress myocardial perfusion positron emission tomography: results from a multicenter observational registry. J Am Coll Cardiol. 2013;61(2):176–84. https://doi.org/10.1016/j.jacc.2012.09.043.

    Article  PubMed  Google Scholar 

  53. Dorbala S, Hachamovitch R, Curillova Z, Thomas D, Vangala D, Kwong RY, et al. Incremental prognostic value of gated Rb-82 positron emission tomography myocardial perfusion imaging over clinical variables and rest LVEF. JACC Cardiovasc Imaging. 2009;2(7):846–54. https://doi.org/10.1016/j.jcmg.2009.04.009.

    PubMed  Google Scholar 

  54. Ziadi MC, Dekemp RA, Williams K, et al. Does quantification of myocardial flow reserve using rubidium-82 positron emission tomography facilitate detection of multivessel coronary artery disease? J Nucl Cardiol. 2012;19(4):670–80. https://doi.org/10.1007/s12350-011-9506-5.

    Article  PubMed  Google Scholar 

  55. Naya M, Murthy VL, Taqueti VR, Foster CR, Klein J, Garber M, et al. Preserved coronary flow reserve effectively excludes high-risk coronary artery disease on angiography. J Nucl Med. 2014;55(2):248–55. https://doi.org/10.2967/jnumed.113.121442.

    Article  Google Scholar 

  56. Taqueti VR, Hachamovitch R, Murthy VL, Naya M, Foster CR, Hainer J, et al. Global coronary flow reserve is associated with adverse cardiovascular events independently of luminal angiographic severity and modifies the effect of early revascularization. Circulation. 2015;131(1):19–27. https://doi.org/10.1161/CIRCULATIONAHA.114.011939.

    Article  Google Scholar 

  57. Slomka P, Berman DS, Germano G. Myocardial blood flow from SPECT. J Nucl Cardiol. 2017;24(1):278–81. https://doi.org/10.1007/s12350-015-0386-y.

    Article  PubMed  Google Scholar 

  58. •• Bateman TM, Dilsizian V, Beanlands RS, Depuey EG, Heller GV, Wolinsky DA. American Society of Nuclear Cardiology and Society of Nuclear Medicine and Molecular Imaging joint position statement on the clinical indications for myocardial perfusion PET. J Nucl Cardiol. 2016;23(5):1227–31. https://doi.org/10.1007/s12350-016-0626-9. Very important position statement stating that PET MPI is the preferred and recommended over SPECT MPI in patients requiring pharmacologic stress.

    Article  PubMed  Google Scholar 

  59. •• Calnon DA. Will 18F flurpiridaz replace 82rubidium as the most commonly used perfusion tracer for PET myocardial perfusion imaging?. J Nucl Cardiol. 2018. https://doi.org/10.1007/s12350-017-1153-z. This paper is a very helpful review regarding the favorable properties of the new perfusion tracer 18 F flurpiridaz currently undergoing a phase 3 clinical trial. For more information regarding this clinical trial, visit https://clinicaltrials.gov/ct2/show/NCT03354273.

  60. Bax JJ, Delgado V. Detection of viable myocardium and scar tissue. Eur Heart J Cardiovasc Imaging. 2015;16(10):1062–4. https://doi.org/10.1093/ehjci/jev200.

    Article  PubMed  Google Scholar 

  61. Greenwood JP, Motwani M, Maredia N, et al. Comparison of cardiovascular magnetic resonance and single-photon emission computed tomography in women with suspected coronary artery disease from the Clinical Evaluation of Magnetic Resonance Imaging in Coronary Heart Disease (CE-MARC) trial. Circulation. 2013;129:1129–38.

    Article  Google Scholar 

  62. Mordini FE, Haddad T, Hsu LY, Kellman P, Lowrey TB, Aletras AH, et al. Diagnostic accuracy of stress perfusion CMR in comparison with quantitative coronary angiography: fully quantitative, semiquantitative, and qualitative assessment. JACC Cardiovasc Imaging. 2014;7(1):14–22. https://doi.org/10.1016/j.jcmg.2013.08.014.

    PubMed  Google Scholar 

  63. •• Zorach B, Shaw PW, Bourque J, et al. Quantitative cardiovascular magnetic resonance perfusion imaging identifies reduced flow reserve in microvascular coronary artery disease. J Cardiovasc Magn Reson. 2018;20(1):14. https://doi.org/10.1186/s12968-018-0435-1. This study showed that patients with risk factors for CMD with non-obstructive epicardial CAD on ICA have reduced MPR on CMR MPI compared with healthy controls.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Liu A, Wijesurendra RS, Liu JM, Forfar JC, Channon KM, Jerosch-Herold M, et al. Diagnosis of microvascular angina using cardiac magnetic resonance. J Am Coll Cardiol. 2018;71(9):969–79. https://doi.org/10.1016/j.jacc.2017.12.046.

    Article  CAS  Google Scholar 

  65. Murthy VL, Naya M, Taqueti VR, Foster CR, Gaber M, Hainer J, et al. Effects of sex on coronary microvascular dysfunction and cardiac outcomes. Circulation. 2014;129(24):2518–27. https://doi.org/10.1161/CIRCULATIONAHA.113.008507.

    Article  Google Scholar 

  66. Taqueti VR, Shaw LJ, Cook NR, Murthy VL, Shah NR, Foster CR, et al. Excess cardiovascular risk in women relative to men referred for coronary angiography is associated with severely impaired coronary flow reserve, not obstructive disease. Circulation. 2017;135(6):566–77. https://doi.org/10.1161/CIRCULATIONAHA.116.023266.

    Article  Google Scholar 

  67. Löffler AI, Bourque JM. Coronary microvascular dysfunction, microvascular angina, and management. Curr Cardiol Rep. 2016;18(1):1. https://doi.org/10.1007/s11886-015-0682-9.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Ragosta M, Beller GA, Watson DD, Kaul S, Gimple LW. Quantitative planar rest-redistribution 201Tl imaging in detection of myocardial viability and prediction of improvement in left ventricular function after coronary bypass surgery in patients with severely depressed left ventricular function. Circulation. 1993;87(5):1630–41.

    Article  CAS  Google Scholar 

  69. Allman KC, Shaw LJ, Hachamovitch R, Udelson JE. Myocardial viability testing and impact of revascularization on prognosis in patients with coronary artery disease and left ventricular dysfunction: a meta-analysis. J Am Coll Cardiol. 2002;39(7):1151–8. https://doi.org/10.1016/S0735-1097(02)01726-6.

    Article  PubMed  Google Scholar 

  70. Bourque JM, Hasselblad V, Velazquez EJ, Borges-neto S, O’Connor CM. Revascularization in patients with coronary artery disease, left ventricular dysfunction, and viability: a meta-analysis. Am Heart J. 2003;146(4):621–7. https://doi.org/10.1016/S0002-8703(03)00428-9.

    Article  PubMed  Google Scholar 

  71. • Patel MR, White RD, Abbara S, et al. 2013 ACCF/ACR/ASE/ASNC/SCCT/SCMR appropriate utilization of cardiovascular imaging in heart failure: a joint report of the American College of Radiology Appropriateness Criteria Committee and the American College of Cardiology Foundation Appropriate Use Criteria Task Force. J Am Coll Cardiol. 2013;61(21):2207–31. https://doi.org/10.1016/j.jacc.2013.02.005. Most recent AUC document for car diovascular imaging in heart failure.

    Article  Google Scholar 

  72. • Bonow RO, Maurer G, Lee KL, Holly TA, Binkley PF, Desvigne-Nickens P, et al. Myocardial viability and survival in ischemic left ventricular dysfunction. N Engl J Med. 2011;364(17):1617–25. https://doi.org/10.1056/NEJMoa1100358. The frequently referenced STICH trial showed no differential survival benefit with a strategy of CABG-based revascularization guided by viability testing versus optimal medical therapy.

    Article  CAS  Google Scholar 

  73. Beanlands RS, Nichol G, Huszti E, Humen D, Racine N, Freeman M, et al. F-18-fluorodeoxyglucose positron emission tomography imaging-assisted management of patients with severe left ventricular dysfunction and suspected coronary disease: a randomized, controlled trial (PARR-2). J Am Coll Cardiol. 2007;50(20):2002–12. https://doi.org/10.1016/j.jacc.2007.09.006.

    Article  Google Scholar 

  74. • Yancy CW, Jessup M, Bozkurt B, Butler J, Casey de Jr, Drazner MH, et al. 2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol. 2013;62(16):e147–239. https://doi.org/10.1016/j.jacc.2013.05.019. Most recent guidelines for the management of heart failure.

    Article  Google Scholar 

  75. • Rizvi A, Han D, Danad I, et al. Diagnostic performance of hybrid cardiac imaging methods for assessment of obstructive coronary artery disease compared with stand-alone coronary computed tomography angiography: a meta-analysis. JACC Cardiovasc Imaging. 2018;11(4):589–99. https://doi.org/10.1016/j.jcmg.2017.05.020. An important study demonstrating how hybrid cardiac imaging may improve diagnostic specificity for detection of obstructive coronary artery disease compared with stand-alone CCTA.

    PubMed  Google Scholar 

  76. • Danad I, Raijmakers PG, Driessen RS, Leipsic J, Raju R, Naoum C, et al. Comparison of coronary CT angiography, SPECT, PET, and hybrid imaging for diagnosis of ischemic heart disease determined by fractional flow reserve. JAMA Cardiol. 2017;2(10):1100–7. https://doi.org/10.1001/jamacardio.2017.2471. This prospective study demonstrated that PET MPI exhibits the highest diagnostic accuracy for diagnosis of myocardial ischemia. The authors suggest that a combined anatomical and functional assessment does not add incremental diagnostic value.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jamieson M. Bourque.

Ethics declarations

Conflict of Interest

Christopher A. Hanson declares that he has no conflict of interest.

Jamieson M. Bourque reports research grant support from Astellas, consulting with Pfizer, and stock ownership in Locus Health.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Nuclear Cardiology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hanson, C.A., Bourque, J.M. Functional and Anatomical Imaging in Patients with Ischemic Symptoms and Known Coronary Artery Disease. Curr Cardiol Rep 21, 79 (2019). https://doi.org/10.1007/s11886-019-1155-3

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11886-019-1155-3

Keywords

Navigation