Preparticipation Cardiovascular Screening of Student-Athletes with Echocardiography: Ethical, Clinical, Economic, and Legal Considerations

  • Zachary R. Paterick
  • Timothy E. PaterickEmail author
Echocardiography (JM Gardin and AH Waller, Section Editors)
Part of the following topical collections:
  1. Topical Collection on Echocardiography


Purpose of Review

To identify whether the use of echocardiography is a viable approach for the screening of athletes for the prevention of sudden cardiac death when considering ethical, clinical, economic, and legal issues.

Recent Findings

Ethical musings, echocardiographic findings, economic calculations, and legal analysis suggest that echocardiographic screening may reduce sudden cardiac death on the athletic field.


Ethical, clinical, economic, and legal considerations suggest echocardiographic screening is a viable option to meet the societal goal to prevent athletic field sudden death.


Preparticipation screening Echocardiography Ethics Economics Liability Sudden athlete cardiac death 


Compliance with Ethical Standards

Conflict of Interest

Zachary R. Paterick and Timothy E. Paterick declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.


Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Maron BJ, Friedman RA, Kligfield P, Levine BD, Viskin S, Chaitman BR, et al. Assessment of the 12-lead electrocardiogram as a screening test for detection of cardiovascular disease in healthy general populations of young people (12–25 years of age): a scientific statement from the American Heart Association and the American College of Cardiology. J Am Coll Cardiol. 2014;64(14):1479–514.PubMedCrossRefGoogle Scholar
  2. 2.
    Corrado D, Basso C, Schiavon M, Pelliccia A, Thiene G. Pre-participation screening of young competitive athletes for prevention of sudden cardiac death. J Am Coll Cardiol. 2008;52(24):1981–9.PubMedCrossRefGoogle Scholar
  3. 3.
    Pearl J. Casual inference in statistics: an overview. Statistics Survey. 2009;3:96–146.CrossRefGoogle Scholar
  4. 4.
    Dallal GE. The little handbook of statistical practice. (Updated 2007 Aug 8; cited 2014 Oct 8); Available from:
  5. 5.
    Lucas RM, McMichael AJ. Association or causation: evaluating links between “environment and disease”. Bull World Health Organ. 2005;83(10):792–5.PubMedPubMedCentralGoogle Scholar
  6. 6.
    Selhon J. Models of causation and tools for causal inference. UC Berkeley (updated; cited); Available from:
  7. 7.
    Witherell v Weimer, 421 NE2d 869 (1981).Google Scholar
  8. 8.
    Pluim BM, Zwinderman AH, van der Laarse A, van der Wall EE. The athlete’s heart. A meta-analysis of cardiac structure and function. Circulation. 2000;101:336–44.PubMedCrossRefGoogle Scholar
  9. 9.
    D’Andrea A, Limongelli G, Caso P, Sarubbi B, Della Pietra A, Brancassio P, et al. Association between left ventricular structure and cardiac performance during effort in two morphological forms of athlete’s hear. Int. J. Cardiol. 2002;86:177–84.PubMedCrossRefGoogle Scholar
  10. 10.
    Fagard RH. Impact of different sports and training on cardiac structure and function. Cardiol Clin. 1997;15:397–412.PubMedCrossRefGoogle Scholar
  11. 11.
    Michelson JK, Byrd BF, Bouchard A, Botvinick EH, Schiller NB. Left ventricular dimensions and mechanics in distance runners. Am Heart Journal. 1986;112:1251–6.CrossRefGoogle Scholar
  12. 12.
    •• Paterick TE, Jan MF, Paterick ZR, Umland MM, Kramer C, Lake P, et al. Cardiac evaluation of college student athletes: a medical and legal perspective. Am J Med. 2012;125:742–52 Assessing the clinical, economic, and legal aspects of preparticipation screening. PubMedCrossRefGoogle Scholar
  13. 13.
    Caso P, D’Andrea A, Galderisi M, Liccardo B, Severino S, De Simone L, et al. Pulse Doppler tissue imaging in endurance athletes: relationship between left ventricular preload and myocardial regional diastolic function. Am. J. Cardiol. 200(85):131–6.Google Scholar
  14. 14.
    Mockel M, Stork T. Diastolic function in various forms of left ventricular hypertrophy: contribution of active Doppler stress echo. Int J Sports Med. 1996;17:S184–90.PubMedCrossRefGoogle Scholar
  15. 15.
    Nagueh SF, Bachinski LL, Meyer D, Hill R, Zoghbi WA, Tam JW, et al. Tissue Doppler imaging consistently detects myocardial abnormalities in patients with hypertrophic cardiomyopathy and provides a novel means for an early diagnosis before and independently of hypertrophy. Circulation. 2001;104:128–30.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Weiner RB, Wang F, Hutter AM Jr, Wood MJ, Berkstresser B, McClanahan C, et al. The feasibility, diagnostic yield, and learning curve of portable echocardiography for out-of-hospital cardiovascular disease screening. J Am Soc Echocardiography. 2012;25(5):568–75.CrossRefGoogle Scholar
  17. 17.
    •• Tajik AJ, Jan MF. The heart of the matter: prime time E/e′ prime! JACC Cardiovascular Imaging. 2014;7(8):759–61 An excellent description of diastolic parameters. PubMedCrossRefGoogle Scholar
  18. 18.
    Baggish AL, Wood MR. Athlete’s heart and cardiovascular care of the athlete: scientific and clinical update. Circulation. 2011;123(23):2723–35.PubMedCrossRefGoogle Scholar
  19. 19.
    D’Andrea A, D’Andrea L, Caso P, Scherillo M, Calbaro R. The usefulness of Doppler myocardial imaging in the study of athlete’s heart and in the differential diagnosis between physiological and pathological ventricular hypertrophy. Echocardiography. 2006;23:149–57.PubMedCrossRefGoogle Scholar
  20. 20.
    Link MS, Estes NA 3rd. Sudden cardiac death in the athlete: bridging the gaps between evidence, policy, and practice. Circulation. 2012;125(20):2511–6.PubMedCrossRefGoogle Scholar
  21. 21.
    Hood L, Flores M. A personal view on systems medicine and the emergence of proactive P4 medicine: predictive, preventive, personalized, and participatory. New Biotechnol. 2012;29(6):613–24.CrossRefGoogle Scholar
  22. 22.
    Lee WC. Selecting diagnostic tests for ruling out or ruling in disease: the use of the Kullback-Leibler distance. Int J Epidemiology. 1999;28(3):521–5.CrossRefGoogle Scholar
  23. 23.
    Loscalzo J, Barabasi AL. Systems biology and the future of medicine. Wiley Interdiscip. Rev System Biol. Med. 2011;3(6):619–217.CrossRefGoogle Scholar
  24. 24.
    Fani MF, Stafford RS. From sick care to health care- reengineering prevention into the U.S. system. NEJM. 2012;367(10):889–91.CrossRefGoogle Scholar
  25. 25.
    Smith M, Halvorson G, Kaplan G. What’s needed is a health care system that learns: recommendations from an IOM report. JAMA. 2012;308(16):1637–8.PubMedCrossRefGoogle Scholar
  26. 26.
    Siegel A, Etzkorn I. Simple: conquering the crisis of complexity. New York: Hachette Book Group. 2013.Google Scholar
  27. 27.
    •• Timothy E Paterick, Tia Gordon, Denise Spiegel. Echocardiography: echocardiography. Profiling of the Athlete’s Journal of American Society of Echocardiography, 2014, vol 27, Issue 9, pages: 940–48. A detailed assessment of the morphology and physiology of an athletic heart. Google Scholar
  28. 28.
    Baggis AL, Yarek K, Weiner RB, Fang F, Demes R, Picard MH, et al. Differences in cardiac parameters among elite rowers and subelite rowers. Med. Sci Sports Exerc. 2010;42:1215–20.Google Scholar
  29. 29.
    Pellicia A, Maron BJ, Shapiro A, Proshan MA, SPirinto P. The upper limits of physiologic cardiac hypertrophy in highly trained elite athletes. NEJM. 1991;324:295–301.CrossRefGoogle Scholar
  30. 30.
    Grossman W, Jones D, McLaurin LP. Wall stress and patterns of hypertrophy in the human left ventricle. J Clin Invest. 1975;56:56–64.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Milani RV, Lavie DJ, Mehra MR, Ventura HO, Kurtz JD, Messerli FH. Left ventricular geometry and survival in patients with normal left ventricular ejection fraction. Am J Cardiol. 2006;97:959–63.PubMedCrossRefGoogle Scholar
  32. 32.
    Douglas PS, O’Toole ML, Katz SE, Ginsburg GS, Hiller WD, Laird RH. Left ventricular hypertrophy in athletes. Am J Cardiol. 1997;80:1384–8.PubMedCrossRefGoogle Scholar
  33. 33.
    Pellicia A, Culasso F, DiPaolo FM, Marion BN. Physiologic left ventricular cavity dilation in elite athletes. Ann Int Med. 1999;130:23–31.CrossRefGoogle Scholar
  34. 34.
    Pelliccia A, Maron BJ, De Luca R, Di Paolo FM, Spataro A, Culasso F. Remoldeling of left ventricular hypertrophy in elite athletes after long-term deconditioning. Circulation. 2002;105:944–9.PubMedCrossRefGoogle Scholar
  35. 35.
    D’Andrea A, Cocchia R, Riegler L, Scarafile R, Salerno G, Gravino R, et al. Left ventricular myhocardial velocities and deformation indexes in top- level athletes. J Am Soc Echocardiogr. 2010;23:1281–8.PubMedCrossRefGoogle Scholar
  36. 36.
    Claessens PJ, Claessens CW, Claessens MM, Claessens MC, Claessens JE. Supernormal left ventricular diastolic dysfunction in triathletes. Tex Heart Inst J. 2001;28:102–10.PubMedPubMedCentralGoogle Scholar
  37. 37.
    Weiner RB, Hutter AM Jr, Wang F, Kim J, Weyman AE, Wood MJ, et al. The impact of endurance exercise training on left ventricular torsion. JACC Cardiovasc Imaging. 2010;3:1001–9.PubMedCrossRefGoogle Scholar
  38. 38.
    Baggish AL, Wang F, Weiner RB, Elinoff JM, Tournoux F, Boland A, et al. Training specific changes in cardiac structure and function: a prospective and longitudinal assessment of competitive athletes. J Appl Physiol. 2008;1995:1121–8.CrossRefGoogle Scholar
  39. 39.
    Simsek Z, Hakan Tas M, Degirmenci H, Gokhan Yazici A, Ipek E, Duman H, et al. Speckle tracking echocardiographic analysis of left ventricular systolic and diastolic functions of young elite athletes with eccentric and concentric type of cardia remodeling. Echocardiography. 2013;30:1202–8.PubMedCrossRefGoogle Scholar
  40. 40.
    Gilber CA, Nutter DO, Felner JM, Perkins JV, Heymsfield SB, Schlant RC. Echocardiographyic study of cardiac dimensions and function in the endurance-trained athlete. Am J Cardiol. 1977;40:528–33.CrossRefGoogle Scholar
  41. 41.
    Abergel E, Chatellier G, Hagege AA, Oblak A, Linhart A, Ducardonnet A, et al. Serial left ventricular adaptations in world- class professional cyclists: implications for disease screening and follow -up. J Am Coll Cardiol. 2004;44:144–9.PubMedCrossRefGoogle Scholar
  42. 42.
    Saghir M, Areces M, Makan M. Strain rate imaging differentiates hypertensive cardiac hypertrophy from physiologic cardiac hypertrophy (athlete’s heart). J Am Society Echocardiogr. 2007;20:151–7.CrossRefGoogle Scholar
  43. 43.
    Sengupta PP, Tajik AJ, Chandrasekaran K, Khandheria BK. Twist mechanics of the left ventricle: principles and application. JACC Cardiovasc Imaging. 2008;1:366–79.PubMedCrossRefGoogle Scholar
  44. 44.
    Notomi Y, Martin-Miklovic MG, Oryszak SJ, Shiota T, Deserranno D, Popovic ZB, et al. Enhanced ventricular untwisting during exercise: a mechanistic manifestation of elastic recoil described by Doppler tissue imaging. Circulation. 2006;113:2524–33.PubMedCrossRefGoogle Scholar
  45. 45.
    Hauser AM, Dressendorfer RH, Vos M, Hashimoto T, Gordon S, Timmis GC. Symmetric cardiac enlargement in highly trained endurance athletes: a two-dimensional echocardiographic study. Am Heart J. 1985;109:1038–44.PubMedCrossRefGoogle Scholar
  46. 46.
    La Gerche A, Burns AT, D’Hooge J, Macisaac AI, Heidb€uchel H, Prior DL. Exercise strain rate imaging demonstrates normal right ventricular contractile reserve and clarifies ambiguous resting measures in endurance athletes. J Am Soc Echocardiog. 2012;25:253–62.CrossRefGoogle Scholar
  47. 47.
    D’Andrea A, Caso P, Bossone E, Sacrafile R, Riegler L, Di Salvo G, et al. Right ventricular myocardial involvement in either physiological or pathological left ventricular hypertrophy: an ultrasound speckle-tracking two-dimensional strain analysis. Eur J Echocardiog. 2010;11:492–500.CrossRefGoogle Scholar
  48. 48.
    Scharf M, Brem MH, Wilhelm M, Schoepf UJ, Uder M, Lell MM. Cardiac magnetic resonance assessment of left and right ventricular morphologic and functional adaptations in professional soccer players. Am. Heart J. 2010;159:911–8.PubMedCrossRefGoogle Scholar
  49. 49.
    Maron BJ, Thompson PD, Ackerman JF, Balady G, Berger S, Cohen D, et al. Recommendations and considerations related to preparticipation screening for cardiovascular abnormalities in competitive athletes: 2007 update: a scientific statement from the America Heart Association Council on Nutrition, Physical Activity, and Metabolism: endorsed by the American College of Cardiology Foundation. Circulation. 2007;115:1643–455.PubMedCrossRefGoogle Scholar
  50. 50.
    Pagourelias ED, Kouidi E, Efthimiadis GK, Deligiannis A, Geleris P, Vassilikos V. Right atrial and ventricular adaptations to training in male Caucasian athletes: an echocardiographic study. J Am Soc Echocardiog. 2013;26:1344–52.CrossRefGoogle Scholar
  51. 51.
    Oxborough D, Sharma S, Shave R, Whyte G, Birch K, Artis N, et al. The right ventricle of the endurance athlete: the relationship between morphology and deformation. J Am Soc Echocardiog. 2012;25:263–71.CrossRefGoogle Scholar
  52. 52.
    Marcus FI, Fontaine GH, Guiraudon G, Frank R, Laurenceau JL, Marlergue C, et al. Right ventricular dysplasia: a report of 24 adult cases. Circulation. 1982;65:384–98.PubMedCrossRefGoogle Scholar
  53. 53.
    Heidbuechel H, Hoogsteen J, Fagard R, Vanhees L, Ector H, Willems R, et al. High prevalence of right ventricular involvement in endurance athletes with ventricular arrhythmias. Role of an electrophysiologic study in risk stratification. Eur Heart J. 2003;24:1473–80.CrossRefGoogle Scholar
  54. 54.
    Aziz EF, Kukin M, Javed F, Mustat D, Nader A, Pratap B, et al. Right ventricular dysfunction is a strong predictor of developing atrial fibrillation in acutely decompensated heart failure patient, ACAP-HF data analysis. J Card Fail. 2010;16:827–34.PubMedCrossRefGoogle Scholar
  55. 55.
    D’Andrea A, Riegler L, Golia E, Cocchia R, Scarafile R, Salerno G, et al. Range of right heart measurements in top- level athletes: the training impact. Int J Cardiol. 2013;164:48–57.PubMedCrossRefGoogle Scholar
  56. 56.
    Bauce B, Frig G, Benini G, Michile P, Basso C, Folino AF, et al. Differences and similarities between arrhythmogenic right ventricular cardiomyopathy and athlete’s heart adaptations. Br J Sports Med. 2010;44:148–54.PubMedCrossRefGoogle Scholar
  57. 57.
    Pagourelias ED, Efthimiadis GK, Parcharidou DG, Gossios TD, Kamperidis V, Karoulas T, et al. Prognostic value of right ventricular diastolic function indices in hypertrophic cardiomyopathy. Eur J Echocardiogr. 2011;12:809–17.PubMedCrossRefGoogle Scholar
  58. 58.
    D’Andrea A, Cocchia R, Riegler L, Scarafile R, Salerno G, Gravino R, et al. Aortic root dimensions in elite athletes. Am J Cardiol. 2010;105:1629–34.PubMedCrossRefGoogle Scholar
  59. 59.
    Pelliccia A, Di Paolo FM, De Blasiis E, Quattrini FM, Pisicchio C, Guerra E, et al. Prevalence and clinical significance of aortic root dilation in highly trained competitive athletes. Circulation. 2010;122:689–706.CrossRefGoogle Scholar
  60. 60.
    Timothy E, Paterick JH, Ammar KA, Jan MF, Loberg R, Biush M, et al. Aortopathies: etiologies, genetics, differential diagnosis, prognosis, management. Am J Me. 2013;126:670–8.CrossRefGoogle Scholar
  61. 61.
    Nistri S, Galderisi M, Ballo P, Olivotto I, D’Andrea A, Pagliani L, et al. Determinants of echocardiographic left atrial volume: implications for normalcy. Eur J Echocardiogr. 2011;12:826–33.PubMedCrossRefGoogle Scholar
  62. 62.
    D’Andrea A, Riegler L, Cocchia R, Scarafile R, Salerno G, Gravino R, et al. Left atrial volume index in highly trained athletes. Am Heart J. 2010;159:1155–61.PubMedCrossRefGoogle Scholar
  63. 63.
    D’Ascenzi F, Cameli M, Zaca V, Lisi M, Santoro A, Causarano A, et al. Supernormal diastolic function and role of left atrial myocardial deformation analysis by 2D speckle tracking echocardiography in elite soccer players. Echocardiography. 2011;28:320–6.PubMedCrossRefGoogle Scholar
  64. 64.
    Gabrielli L, Enriquez A, Cordova S, Yanez F, Godoy I, Corbalan R. Assessment of left atrial function in hypertrophic cardiomyopathy and athlete’s heart: a left atrial myocardial deformation study. Echocardiography. 2012;29:943–9.PubMedCrossRefGoogle Scholar
  65. 65.
    De Keulenaer GW, Brutsaert DL. Systolic and diastolic heart failure are overlapping phenotypes within the heart failure spectrum. Circulation. 2011;123(18):1996–2004.PubMedCrossRefGoogle Scholar
  66. 66.
    Maron BJ. The 2006 American Heart Association classification of cardiomyopathies is the gold standard. Circ Heart Fail. 2008;1(1):72–6.PubMedCrossRefGoogle Scholar
  67. 67.
    De Ferrari GM, Schwartz PJ. Long QT syndrome, a purely electrical disease? Not anymore. Eur Heart J. 2009;30(3):253–5.PubMedCrossRefGoogle Scholar
  68. 68.
    Rihal CS, Nishimura RA, Hatle LK, Bailey KR, Rajik AJ. Systolic and diastolic dysfunction in patients with clinical diagnosis of dilated cardiomyopathy. Relation to symptoms and prognosis. Circulation. 1994;90(6):2772–9.PubMedCrossRefGoogle Scholar
  69. 69.
    O’Hanlon R, Grasso A, Roughton M, Moon JC, Clark S, Wage R, et al. Prognostic significance of myocardial fibrosis in hypertrophic cardiomyopathy. J Am Coll Cardiol. 2010;56(11):867–74.PubMedCrossRefGoogle Scholar
  70. 70.
    Mandinov L, Eberli FR, Seiler C, Hess OM. Diastolic heart failure. Cardiovasc Res. 2000;45(4):813–25.PubMedCrossRefGoogle Scholar
  71. 71.
    Ha JW, Lulic F, Bailey KR, Pellikka PA, Seward JB, Tajik AJ, et al. Effects of treadmill exercise of mitral inflow and annular velocities in healthy adults. Am J Cardiol. 2003;91(1):114–5.PubMedCrossRefGoogle Scholar
  72. 72.
    Nagueh SF, Appleton CP, Gillebert TC, Marino PN, OH JK, Smiseth OA, et al. Recommendations for the evaluation of left ventricular diastolic function by echocardiography. J Am Soc Echocardiogr. 2009;22(2):107–33.PubMedCrossRefGoogle Scholar
  73. 73.
    Sebastian-Leon P, Vidal E, Minguez P, Conesa A, Tarazona S, Amadoz A, et al. Understanding disease mechanisms with models of signaling pathway activities. BMC syst Biol. 2014;8(1):121.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Elliott P, Andersson B, Arbustini E, Bilinska Z, Cecchi F, Charron P, et al. Classification of the cardiomyopathies: a position statement from the European Society of Cardiology Working Group on Myocardial and Pericardial Diseases. Eur Heart J. 2008;29(2):270–6.PubMedCrossRefGoogle Scholar
  75. 75.
    Red MM, Jacobsen SJ, Burnett JC Jr, Mahoney DW, Bailey KR, Rodeheffer RJ. Burden of systolic and diastolic ventricular dysfunction in the community: appreciating the scope of the heart failure epidemic. JAMA. 2003;289(2):194–202.CrossRefGoogle Scholar
  76. 76.
    Drezner JA, Ackerman MJ, Cannon BC, Corrado D, Heidbuchel H, Prutkin JM, et al. Abnormal electrocardiographic findings in athletes: recognizing changes suggestive of primary electrical disease. Br J Sports Med. 2013;47(3):153–67.PubMedCrossRefGoogle Scholar
  77. 77.
    Alfonso L, Kondur A, Simegn M, Ashutosh Niraj, Pawan Hari, Ramanjit Kaur, et al. Two-dimensional strain profiles in patients with physiological and pathological hypertrophy and preserved left ventricular systolic function: a comparative analyses, 2012.
  78. 78.
    Seward JB. Physiologic aging: window of opportunity. JACC Cardiovasc Imaging. 2011;4(3):243–5.PubMedCrossRefGoogle Scholar
  79. 79.
    Seward JB, Casaclang-Verosa G. Infiltrative cardiovascular diseases: cardiomyopathies that look alike. J Am Coll Cardiol. 2010;55(17):1769–79.PubMedCrossRefGoogle Scholar
  80. 80.
    Eckart RE, Shry EA, Burke AP, McNear JA, Appel DA, Castillo-Rojas LM, et al. Sudden death in young adults: an autopsy-based series of a population undergoing active surveillance. J Am Coll Cardiol. 2011;58(12):1254–61.PubMedCrossRefGoogle Scholar
  81. 81.
    Nesto RW, Kowalchuk GJ. The ischemic cascade: temporal sequence of hemodynamic, electrocardiographic and symptomatic expressions of ischemia. Am J Cardiol. 1987;59(7):23C–30C.PubMedCrossRefGoogle Scholar
  82. 82.
    Lim LS, Haq N, Mahmood S, Hoeksema L. Atherosclerotic cardiovascular disease screening in adults: American College Of preventative Medicine position statement on preventative practice. Am J Prev Med. 2011;40(3):381.PubMedGoogle Scholar
  83. 83.
    Greenland P, Alpert JS, Beller GA, Emelia JB, Matthew JB, Zahi AF, et al. 2010 ACCF/AHA Guideline for Assessment of Cardiovascular Risk in Asymptomatic Adults: executive summary. A report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. Circulation. 2010;122(25):2748–64.PubMedCrossRefGoogle Scholar
  84. 84.
    Pearson TA, Blair SN, Daniels SR, Eckel RH, Fair JM, Fortmann SP, et al. AHA Guidelines for Primary Prevention of Cardiovascular Disease and Stroke: 2002 update: consensus panel guide to comprehensive risk reduction for adult patients without coronary or other atherosclerotic vascular diseases. American Association Science Advisory and Coordinating Committee. Circulation. 2002;103(3):388–91.CrossRefGoogle Scholar
  85. 85.
    Haugaa KH, Johnson JN, Bos JM, Phillips BL, Eidem BW, Ackerman MJ. Subclinical cardiomyopathy and long QT syndrome: an echocardiographic observation. Congenit Heart Dis. 2013;8(4):352–9.PubMedCrossRefGoogle Scholar
  86. 86.
    Silvilairat S, Cetta F, Biliciler-Denktas G, Ammash NM, Cabalka AK, Hagler DJ, et al. Abdominal aortic pulsed wave Doppler patterns reliably reflect clinical severity in patients with coarctation of the aorta. Congenit Heart Dis. 2008;3(6):422–30.PubMedCrossRefGoogle Scholar
  87. 87.
    Pelliccia A, Spataro A, Maron BJ. Prospective echocardiographic screening for coronary artery anomalies in 1,360 elite competitive athletes. Am J Cardiol. 1993;72(12):978–89.PubMedCrossRefGoogle Scholar
  88. 88.
    Maron BJ, Hass TS, Doerer JJ, Thompson PD, Hodges JS. Comparison of US and Italian experience with sudden cardiac deaths in young competitive athletes and implications for preparticipation screening strategies. Am J Cardiol. 2009;104(2):276–80.PubMedCrossRefGoogle Scholar
  89. 89.
    Siu SC, Silversides CK. Bicuspid aortic valve disease. J Am Coll Cardiol. 2010;55(25):2789–800.PubMedCrossRefGoogle Scholar
  90. 90.
    Braverman AC. Aortic involvement in patients with a bicuspid aortic valve. Heart. 2011;97(6):506–13.PubMedCrossRefGoogle Scholar
  91. 91.
    Davies RR, Gallo A, Coady MA, Tellides G, Botta DM, Burke B, et al. Novel measurement of relative aortic size predicts rupture of thoracic aortic aneurysms. Ann Thorac Surg. 2006;81(1):169–77.PubMedCrossRefGoogle Scholar
  92. 92.
    Gautier M, Detaint D, Fermanian C, Aegerter P, Delorme G, Arnoult F, et al. Nomograms for aortic root diameters in children using two-dimensional echocardiography. Am J Cardiol. 2010;105(6):888–94.PubMedCrossRefGoogle Scholar
  93. 93.
    Ashton HA, Buxton MJ, Day NE, Kim LG, Marteau TM, Scott RA, et al. The Multicentre Aneurysm Screening Study (MASS) into the effect of abdominal aortic aneurysm screening on mortality in men: a randomized controlled trial. Lancet. 2002;360(9345):1531–9.PubMedCrossRefGoogle Scholar
  94. 94.
    Nishimura RA, Otto CM, Bonow RO, Blasé AC, John PE, Robert AG, et al. 2014 AHA/ACC Guideline for the Management of Patients With Valvular Heart Disease: executive summary: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. Circulation. 2014;129(23):2440–92.PubMedCrossRefGoogle Scholar
  95. 95.
    Little WC, Oh JK. Echocardiographic evaluation of diastolic function can be used to guide clinical care. Circulation. 2009;120(9):802–9.PubMedCrossRefGoogle Scholar
  96. 96.
    Overview of the uninsured in the United States: an analysis of the 2005 current population survey. Department of Health and Human Services. Office of the Assistant Secretary for Planning and Evaluation. September 22, 2005. Available at . Accessed June 12, 2018.
  97. 97.
    Kimberly G Harmon, Irfan M, Joseph J Maleszewski, David S, Jordan M Prutkin, Jack C Salerno, Monica L Zigman Ashwin Rao, Johnathon A Dezner. Incidence, etiology and comparative frequency of sudden cardiac death in NCAA athletes: a decade in review. Circulation 2015;132(1): 10–19. Google Scholar
  98. 98.
    Paterick TE, Jan MF, Seward JB, Tajik AJ. March madness 2011: for whom the bell tolls? Am J Med. 2012;125(3):231–5.PubMedCrossRefGoogle Scholar
  99. 99. NCAA catastrophic injury insurance program: 2004–05 benefit summary [2004]. Available at
  100. 100.
    Appelbaum B. As U.S. agencies put more value on a life, businesses fret. New York Times. Feb. 16, 2011. Available at Accessed on July 13, 2011.
  101. 101.
    Cutler DM, Richardson E. Your money and your life: the value of health and what affects it. In: Garber AM, editor. Frontiers in health policy research. Cambridge, MA: MIT Press; 1999. p. 99–132.Google Scholar
  102. 102.
    Knapp v. Northwestern University, 938 F. Supp. 508 (N.D. Ill. 1996) U.S. District Court for the Northern District of Illinois - 938 F. Supp. 508 (N.D. Ill. 1996) September 13, 1996.Google Scholar
  103. 103.
    Kleinknecht v. Gettysburg college, 989 F.2d 1360 (3d Cir. 1993).Google Scholar
  104. 104.
    Davidson v. University of NC at Chapel Hill, 543 S.E.2d 920 142 (NC App. 2001).Google Scholar
  105. 105.
    Kennedy v. Syracuse University, No. 94-CV-269, 1995 WL 548710 (N.D.N.Y Sept. 12, 1995).Google Scholar
  106. 106.
    Orr v. Brigham Young University, 960 F. Supp. 1522 (D. Utah 1994).Google Scholar
  107. 107.
    Beach v. University of Utah, 726 P.2d U.S. 413 (1986).Google Scholar
  108. 108.
    Webb v. University of Utah, 88 P.3d 364 (Utah App. 2004).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.University of Michigan LawAnn ArborUSA
  2. 2.Bay Care ClinicGreen BayUSA

Personalised recommendations