Advertisement

Current Cardiology Reports

, 20:115 | Cite as

Non-coding RNA in Ischemic and Non-ischemic Cardiomyopathy

  • Yao Wei Lu
  • Da-Zhi Wang
Myocardial Disease (A Abbate, Section Editor)
  • 155 Downloads
Part of the following topical collections:
  1. Topical Collection on Myocardial Disease

Abstract

Purpose of Review

This review aims to summarize and discuss the function and molecular mechanism of miRNA and lncRNA in the heart, focusing on ischemic and non-ischemic cardiomyopathy.

Recent Findings

Extensive studies in the past decades have identified numerous protein-coding genes that are highly expressed in the heart, playing essential roles in the regulation of cardiac gene expression, heart development, and function. Furthermore, mutations in many of these genes have been identified and are linked to cardiovascular disease. Intriguingly, it is now recognized that majority of our genome is “non-coding,” which produces a large amount of non-coding RNAs (ncRNAs), including microRNAs (miRNAs) and long non-coding RNAs (lncRNAs). Emerging evidence has indicated that these classes of non-coding RNAs participate in most (if not all) aspects of cardiac gene expression, cardiomyocyte proliferation, differentiation, and cardiac remodeling in response to stress.

Summary

Recent findings have demonstrated important functions for non-coding RNA in ischemic and non-ischemic cardiomyopathy. It is expected that non-coding RNAs will become promising therapeutic targets for cardiovascular diseases.

Keywords

miRNA lncRNA Ischemic cardiomyopathy Non-ischemic cardiomyopathy Heart failure 

Notes

Compliance with Ethical Standards

Conflict of Interest

Yao Wei Lu and Da-Zhi Wang declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Felker GM, Shaw LK, O'Connor CM. A standardized definition of ischemic cardiomyopathy for use in clinical research. J Am Coll Cardiol. 2002;39(2):210–8.PubMedGoogle Scholar
  2. 2.
    Benjamin EJ, Virani SS, Callaway CW, Chamberlain AM, Chang AR, Cheng S, et al. Heart Disease and Stroke Statistics-2018 update: a report from the American Heart Association. Circulation. 2018;137(12):e67–e492.PubMedGoogle Scholar
  3. 3.
    da Luz PL et al. Endothelium in atherosclerosis: plaque formation and its complications. In: Endothelium and Cardiovascular Diseases. 2018. Elsevier. p. 493–512.Google Scholar
  4. 4.
    Arroyo LH, Lee RT. Mechanisms of plaque rupture: mechanical and biologic interactions. Cardiovasc Res. 1999;41(2):369–75.PubMedGoogle Scholar
  5. 5.
    Phatharajaree W, Phrommintikul A, Chattipakorn N. Matrix metalloproteinases and myocardial infarction. Can J Cardiol. 2007;23(9):727–33.PubMedPubMedCentralGoogle Scholar
  6. 6.
    Porrello ER, Mahmoud AI, Simpson E, Hill JA, Richardson JA, Olson EN, et al. Transient regenerative potential of the neonatal mouse heart. Science. 2011;331(6020):1078–80.PubMedPubMedCentralGoogle Scholar
  7. 7.
    van Berlo JH, et al. c-kit+ cells minimally contribute cardiomyocytes to the heart. Nature. 2014;509(7500):337–41.PubMedPubMedCentralGoogle Scholar
  8. 8.
    Talman V, Ruskoaho H. Cardiac fibrosis in myocardial infarction—from repair and remodeling to regeneration. Cell Tissue Res. 2016;365(3):563–81.PubMedPubMedCentralGoogle Scholar
  9. 9.
    Cleutjens JP, et al. Collagen remodeling after myocardial infarction in the rat heart. Am J Pathol. 1995;147(2):325–38.PubMedPubMedCentralGoogle Scholar
  10. 10.
    Cohn JN, Ferrari R, Sharpe N. Cardiac remodeling—concepts and clinical implications: a consensus paper from an international forum on cardiac remodeling. J Am Coll Cardiol. 2000;35(3):569–82.PubMedGoogle Scholar
  11. 11.
    Braunwald E. Cardiomyopathies: an overview. Circ Res. 2017;121(7):711–21.PubMedGoogle Scholar
  12. 12.
    Hein S, et al. Progression from compensated hypertrophy to failure in the pressure-overloaded human heart: structural deterioration and compensatory mechanisms. Circulation. 2003;107(7):984–91.PubMedGoogle Scholar
  13. 13.
    Gaasch WH, Zile MR. Left ventricular structural remodeling in health and disease. J Am Coll Cardiol. 2011;58(17):1733–40.PubMedGoogle Scholar
  14. 14.
    Mathers CD, Loncar D. Projections of global mortality and burden of disease from 2002 to 2030. PLoS Med. 2006;3(11):e442.PubMedPubMedCentralGoogle Scholar
  15. 15.
    Lander ES, et al. Initial sequencing and analysis of the human genome. Nature. 2001;409(6822):860–921.PubMedGoogle Scholar
  16. 16.
    Dahlberg AE. The functional role of ribosomal RNA in protein synthesis. Cell. 1989;57(4):525–9.PubMedGoogle Scholar
  17. 17.
    Schimmel P. The emerging complexity of the tRNA world: mammalian tRNAs beyond protein synthesis. Nat Rev Mol Cell Biol. 2017;19:45–58.PubMedGoogle Scholar
  18. 18.
    Carthew RW, Sontheimer EJ. Origins and mechanisms of miRNAs and siRNAs. Cell. 2009;136(4):642–55.PubMedPubMedCentralGoogle Scholar
  19. 19.
    Dieci G, Preti M, Montanini B. Eukaryotic snoRNAs: a paradigm for gene expression flexibility. Genomics. 2009;94(2):83–8.PubMedGoogle Scholar
  20. 20.
    Ishizu H, Siomi H, Siomi MC. Biology of PIWI-interacting RNAs: new insights into biogenesis and function inside and outside of germlines. Genes Dev. 2012;26(21):2361–73.PubMedPubMedCentralGoogle Scholar
  21. 21.
    Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116(2):281–97.PubMedGoogle Scholar
  22. 22.
    Pillai RS. MicroRNA function: multiple mechanisms for a tiny RNA? RNA. 2005;11(12):1753–61.PubMedPubMedCentralGoogle Scholar
  23. 23.
    Ambros V. The functions of animal microRNAs. Nature. 2004;431(7006):350–5.PubMedGoogle Scholar
  24. 24.
    Hausser J, Zavolan M. Identification and consequences of miRNA-target interactions--beyond repression of gene expression. Nat Rev Genet. 2014;15(9):599–612.PubMedGoogle Scholar
  25. 25.
    Olena AF, Patton JG. Genomic organization of microRNAs. J Cell Physiol. 2010;222(3):540–5.PubMedPubMedCentralGoogle Scholar
  26. 26.
    Rodriguez A, et al. Identification of mammalian microRNA host genes and transcription units. Genome Res. 2004;14(10A):1902–10.PubMedPubMedCentralGoogle Scholar
  27. 27.
    Lee Y, Kim M, Han J, Yeom KH, Lee S, Baek SH, et al. MicroRNA genes are transcribed by RNA polymerase II. EMBO J. 2004;23(20):4051–60.PubMedPubMedCentralGoogle Scholar
  28. 28.
    Kim VN, Han J, Siomi MC. Biogenesis of small RNAs in animals. Nat Rev Mol Cell Biol. 2009;10(2):126–39.PubMedGoogle Scholar
  29. 29.
    Hata A. Functions of microRNAs in cardiovascular biology and disease. Annu Rev Physiol. 2013;75:69–93.PubMedGoogle Scholar
  30. 30.
    Novák J, et al. Mechanistic role of MicroRNAs in coupling lipid metabolism and atherosclerosis. In: Santulli G, editor. microRNA: basic science: from molecular biology to clinical practice. Cham: Springer International Publishing; 2015. p. 79–100.Google Scholar
  31. 31.
    Callis TE, Wang D-Z. Taking microRNAs to heart. Trends Mol Med. 2008;14(6):254–60.PubMedGoogle Scholar
  32. 32.
    Saxena A, Tabin CJ. miRNA-processing enzyme Dicer is necessary for cardiac outflow tract alignment and chamber septation. Proc Natl Acad Sci U S A. 2010;107(1):87–91.PubMedGoogle Scholar
  33. 33.
    Chen J-F, Murchison EP, Tang R, Callis TE, Tatsuguchi M, Deng Z, et al. Targeted deletion of Dicer in the heart leads to dilated cardiomyopathy and heart failure. Proc Natl Acad Sci U S A. 2008;105(6):2111–6.PubMedPubMedCentralGoogle Scholar
  34. 34.
    da Costa Martins PA, Bourajjaj M, Gladka M, Kortland M, van Oort RJ, Pinto YM, et al. Conditional dicer gene deletion in the postnatal myocardium provokes spontaneous cardiac remodeling. Circulation. 2008;118(15):1567–76.PubMedGoogle Scholar
  35. 35.
    Chen J-F, et al. The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nat Genet. 2006;38(2):228–33.PubMedGoogle Scholar
  36. 36.
    Wystub K, et al. miR-1/133a clusters cooperatively specify the cardiomyogenic lineage by adjustment of myocardin levels during embryonic heart development. PLoS Genet. 2013;9(9):e1003793.PubMedPubMedCentralGoogle Scholar
  37. 37.
    Zhao Y, Samal E, Srivastava D. Serum response factor regulates a muscle-specific microRNA that targets Hand2 during cardiogenesis. Nature. 2005;436(7048):214–20.PubMedGoogle Scholar
  38. 38.
    Liu N, et al. microRNA-133a regulates cardiomyocyte proliferation and suppresses smooth muscle gene expression in the heart. Genes Dev. 2008;22(23):3242–54.PubMedPubMedCentralGoogle Scholar
  39. 39.
    Morton SU, et al. microRNA-138 modulates cardiac patterning during embryonic development. Proc Natl Acad Sci U S A. 2008;105(46):17830–5.PubMedPubMedCentralGoogle Scholar
  40. 40.
    van Rooij E, Sutherland LB, Liu N, Williams AH, McAnally J, Gerard RD, et al. A signature pattern of stress-responsive microRNAs that can evoke cardiac hypertrophy and heart failure. Proc Natl Acad Sci U S A. 2006;103(48):18255–60.PubMedPubMedCentralGoogle Scholar
  41. 41.
    Lompre AM, Nadal-Ginard B, Mahdavi V. Expression of the cardiac ventricular alpha-and beta-myosin heavy chain genes is developmentally and hormonally regulated. J Biol Chem. 1984.Google Scholar
  42. 42.
    Chien KR. Genomic circuits and the integrative biology of cardiac diseases. Nature. 2000;407(6801):227–32.PubMedGoogle Scholar
  43. 43.
    Callis TE, Pandya K, Seok HY, Tang RH, Tatsuguchi M, Huang ZP, et al. MicroRNA-208a is a regulator of cardiac hypertrophy and conduction in mice. J Clin Invest. 2009;119(9):2772–86.PubMedPubMedCentralGoogle Scholar
  44. 44.
    van Rooij E, et al. A family of microRNAs encoded by myosin genes governs myosin expression and muscle performance. Dev Cell. 2009;17(5):662–73.PubMedPubMedCentralGoogle Scholar
  45. 45.
    van Rooij E, Sutherland LB, Qi X, Richardson JA, Hill J, Olson EN. Control of stress-dependent cardiac growth and gene expression by a microRNA. Science. 2007;316(5824):575–9.PubMedGoogle Scholar
  46. 46.
    • Ding J, et al. Trbp regulates heart function through microRNA-mediated Sox6 repression. Nat Genet. 2015;47(7):776–83. This study thoroughly demonstrated a unique Trbp/miR-208a/Sox6 pathway that controls fast- and slow-twitch myofiber balance in the heart, and cardiomyopathy. PubMedPubMedCentralGoogle Scholar
  47. 47.
    Aguirre A, Montserrat N, Zacchigna S, Nivet E, Hishida T, Krause MN, et al. In vivo activation of a conserved microRNA program induces mammalian heart regeneration. Cell Stem Cell. 2014;15(5):589–604.PubMedPubMedCentralGoogle Scholar
  48. 48.
    Hodgkinson CP, Dzau VJ. Conserved microRNA program as key to mammalian cardiac regeneration: insights from zebrafish. Circ Res. 2015;116(7):1109–11.PubMedGoogle Scholar
  49. 49.
    Chen J, et al. mir-17-92 cluster is required for and sufficient to induce cardiomyocyte proliferation in postnatal and adult hearts. Circ Res. 2013;112(12):1557–66.  https://doi.org/10.1161/CIRCRESAHA.112.300658.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Porrello ER, et al. MiR-15 family regulates postnatal mitotic arrest of cardiomyocytes. Circ Res. 2011;109(6):670–9.PubMedPubMedCentralGoogle Scholar
  51. 51.
    Porrello ER, Mahmoud AI, Simpson E, Johnson BA, Grinsfelder D, Canseco D, et al. Regulation of neonatal and adult mammalian heart regeneration by the miR-15 family. Proc Natl Acad Sci U S A. 2013;110(1):187–92.PubMedGoogle Scholar
  52. 52.
    Eulalio A, Mano M, Ferro MD, Zentilin L, Sinagra G, Zacchigna S, et al. Functional screening identifies miRNAs inducing cardiac regeneration. Nature. 2012;492(7429):376–81.PubMedGoogle Scholar
  53. 53.
    Huang Z-P, et al. Long non-coding RNAs link extracellular matrix gene expression to ischemic cardiomyopathy. Cardiovasc Res. 2016;112(2):543–54.PubMedPubMedCentralGoogle Scholar
  54. 54.
    He C, et al. Systematic characterization of long noncoding RNAs reveals the contrasting coordination of cis- and trans-molecular regulation in human fetal and adult hearts. Circ Cardiovasc Genet. 2016;9(2):110–8.PubMedPubMedCentralGoogle Scholar
  55. 55.
    Greco S, Zaccagnini G, Perfetti A, Fuschi P, Valaperta R, Voellenkle C, et al. Long noncoding RNA dysregulation in ischemic heart failure. J Transl Med. 2016;14(1):183.PubMedPubMedCentralGoogle Scholar
  56. 56.
    Gao L, et al. Circulating long noncoding RNA HOTAIR is an essential mediator of acute myocardial infarction. Cell Physiol Biochemist. 2017;44(4):1497–508.Google Scholar
  57. 57.
    Zhang Z, et al. Increased plasma levels of lncRNA H19 and LIPCAR are associated with increased risk of coronary artery disease in a Chinese population. Sci Rep. 2017;7(1):7491.PubMedPubMedCentralGoogle Scholar
  58. 58.
    Pasmant E, Sabbagh A, Vidaud M, Bièche I. ANRIL, a long, noncoding RNA, is an unexpected major hotspot in GWAS. FASEB J. 2011;25(2):444–8.PubMedGoogle Scholar
  59. 59.
    Vausort M, Wagner DR, Devaux Y. Long noncoding RNAs in patients with acute myocardial infarction. Circ Res. 2014;115(7):668–77.PubMedGoogle Scholar
  60. 60.
    Arslan S, Berkan Ö, Lalem T, Özbilüm N, Göksel S, Korkmaz Ö, et al. Long non-coding RNAs in the atherosclerotic plaque. Atherosclerosis. 2017;266:176–81.PubMedGoogle Scholar
  61. 61.
    Burd CE, et al. Expression of linear and novel circular forms of an INK4/ARF-associated non-coding RNA correlates with atherosclerosis risk. PLoS Genet. 2010;6(12):e1001233.PubMedPubMedCentralGoogle Scholar
  62. 62.
    Klattenhoff CA, Scheuermann JC, Surface LE, Bradley RK, Fields PA, Steinhauser ML, et al. Braveheart, a long noncoding RNA required for cardiovascular lineage commitment. Cell. 2013;152(3):570–83.PubMedPubMedCentralGoogle Scholar
  63. 63.
    Xue Z, et al. A G-rich motif in the lncRNA Braveheart interacts with a zinc-finger transcription factor to specify the cardiovascular lineage. Mol Cell. 2016;64(1):37–50.PubMedGoogle Scholar
  64. 64.
    Liu C-Y, et al. LncRNA CAIF inhibits autophagy and attenuates myocardial infarction by blocking p53-mediated myocardin transcription. Nat Commun. 2018;9(1):29.PubMedPubMedCentralGoogle Scholar
  65. 65.
    Yu L, et al. The circular RNA Cdr1as act as an oncogene in hepatocellular carcinoma through targeting miR-7 expression. PLoS One. 2016;11(7):e0158347.PubMedPubMedCentralGoogle Scholar
  66. 66.
    Zhang Y, Sun L, Xuan L, Pan Z, Li K, Liu S, et al. Reciprocal changes of circulating long non-coding RNAs ZFAS1 and CDR1AS predict acute myocardial infarction. Sci Rep. 2016;6:22384.PubMedPubMedCentralGoogle Scholar
  67. 67.
    • Wang Z, et al. The long noncoding RNA Chaer defines an epigenetic checkpoint in cardiac hypertrophy. Nat Med. 2016;22(10):1131–9. This study provided convincing evidence for a novel lncRNA Chaer in regulating cardiac hypertrophy through interaction with the PRC2 complex to modulate epigenetic state of cardiac hypertrophic gene expression. PubMedPubMedCentralGoogle Scholar
  68. 68.
    Wang K, et al. The long noncoding RNA CHRF regulates cardiac hypertrophy by targeting miR-489. Circ Res. 2014;114(9):1377–88.PubMedGoogle Scholar
  69. 69.
    Holdt LM, Stahringer A, Sass K, Pichler G, Kulak NA, Wilfert W, et al. Circular non-coding RNA ANRIL modulates ribosomal RNA maturation and atherosclerosis in humans. Nat Commun. 2016;7:12429.PubMedPubMedCentralGoogle Scholar
  70. 70.
    Du WW, et al. Foxo3 circular RNA promotes cardiac senescence by modulating multiple factors associated with stress and senescence responses. Eur Heart J. 2017;38(18):1402–12.PubMedGoogle Scholar
  71. 71.
    Khan MAF, et al. RBM20 regulates circular RNA production from the Titin gene. Circ Res. 2016;119(9):996–1003.PubMedGoogle Scholar
  72. 72.
    Werfel S, Nothjunge S, Schwarzmayr T, Strom TM, Meitinger T, Engelhardt S. Characterization of circular RNAs in human, mouse and rat hearts. J Mol Cell Cardiol. 2016;98:103–7.PubMedGoogle Scholar
  73. 73.
    Tan WLW, et al. A landscape of circular RNA expression in the human heart. Cardiovasc Res. 2017;113(3):298–309.PubMedGoogle Scholar
  74. 74.
    Grote P, et al. The tissue-specific lncRNA Fendrr is an essential regulator of heart and body wall development in the mouse. Dev Cell. 2013;24(2):206–14.PubMedPubMedCentralGoogle Scholar
  75. 75.
    Sauvageau M, Goff LA, Lodato S, Bonev B, Groff AF, Gerhardinger C, et al. Multiple knockout mouse models reveal lincRNAs are required for life and brain development. Elife. 2013;2:e01749.PubMedPubMedCentralGoogle Scholar
  76. 76.
    Leighton PA, et al. Disruption of imprinting caused by deletion of the H19 gene region in mice. Nature. 1995;375(6526):34–9.PubMedGoogle Scholar
  77. 77.
    Gabory A, Ripoche MA, le Digarcher A, Watrin F, Ziyyat A, Forne T, et al. H19 acts as a trans regulator of the imprinted gene network controlling growth in mice. Development. 2009;136(20):3413–21.PubMedGoogle Scholar
  78. 78.
    Kallen AN, et al. The imprinted H19 lncRNA antagonizes let-7 microRNAs. Mol Cell. 2013;52(1):101–12.PubMedGoogle Scholar
  79. 79.
    Li X, Wang H, Yao B, Xu W, Chen J, Zhou X. lncRNA H19/miR-675 axis regulates cardiomyocyte apoptosis by targeting VDAC1 in diabetic cardiomyopathy. Sci Rep. 2016;6:36340.PubMedPubMedCentralGoogle Scholar
  80. 80.
    Liu L, et al. The H19 long noncoding RNA is a novel negative regulator of cardiomyocyte hypertrophy. Cardiovasc Res. 2016;111(1):56–65.PubMedGoogle Scholar
  81. 81.
    Wang K, Long B, Liu F, Wang JX, Liu CY, Zhao B, et al. A circular RNA protects the heart from pathological hypertrophy and heart failure by targeting miR-223. Eur Heart J. 2016;37(33):2602–11.PubMedGoogle Scholar
  82. 82.
    •• Anderson KM, et al. Transcription of the non-coding RNA upperhand controls Hand2 expression and heart development. Nature. 2016;539(7629):433–6. This study demonstrated elegantly that the divergent transcription of lncRNA upperhand (Uph), but not the RNA product from the lncRNA locus, regulates neighboring gene Hand2 in cardiac development. This is an important example for the divergently transcribed lncRNA and coding RNA pairs present in the genome.PubMedPubMedCentralGoogle Scholar
  83. 83.
    Wu G, Cai J, Han Y, Chen J, Huang ZP, Chen C, et al. LincRNA-p21 regulates neointima formation, vascular smooth muscle cell proliferation, apoptosis, and atherosclerosis by enhancing p53 activity. Circulation. 2014;130(17):1452–65.PubMedPubMedCentralGoogle Scholar
  84. 84.
    Groff AF, Sanchez-Gomez DB, Soruco MML, Gerhardinger C, Barutcu AR, Li E, et al. In vivo characterization of Linc-p21 reveals functional cis-regulatory DNA elements. Cell Rep. 2016;16(8):2178–86.PubMedPubMedCentralGoogle Scholar
  85. 85.
    Dimitrova N, et al. LincRNA-p21 activates p21 in cis to promote Polycomb target gene expression and to enforce the G1/S checkpoint. Mol Cell. 2014;54(5):777–90.PubMedPubMedCentralGoogle Scholar
  86. 86.
    Wang K, Gan TY, Li N, Liu CY, Zhou LY, Gao JN, et al. Circular RNA mediates cardiomyocyte death via miRNA-dependent upregulation of MTP18 expression. Cell Death Differ. 2017;24(6):1111–20.PubMedPubMedCentralGoogle Scholar
  87. 87.
    Zhou X, et al. lncRNA MIAT functions as a competing endogenous RNA to upregulate DAPK2 by sponging miR-22-3p in diabetic cardiomyopathy. Cell Death Dis. 2017;8(7):e2929.PubMedPubMedCentralGoogle Scholar
  88. 88.
    Yan B, et al. LncRNA-MIAT regulates microvascular dysfunction by functioning as a competing endogenous RNA. Circ Res. 2015;  https://doi.org/10.1161/CIRCRESAHA.114.305510.
  89. 89.
    Qu X, du Y, Shu Y, Gao M, Sun F, Luo S, et al. MIAT is a pro-fibrotic long non-coding RNA governing cardiac fibrosis in post-infarct myocardium. Sci Rep. 2017;7:42657.PubMedPubMedCentralGoogle Scholar
  90. 90.
    Jiang Y, et al. Downregulation of long non-coding RNA Kcnq1ot1: an important mechanism of arsenic trioxide-induced long qt syndrome. Cell Physiol Biochemist. 2018;45(1):192–202.Google Scholar
  91. 91.
    Korostowski L, Sedlak N, Engel N. The Kcnq1ot1 long non-coding RNA affects chromatin conformation and expression of Kcnq1, but does not regulate its imprinting in the developing heart. PLoS Genet. 2012;8(9):e1002956.PubMedPubMedCentralGoogle Scholar
  92. 92.
    Yang K-C, Yamada KA, Patel AY, Topkara VK, George I, Cheema FH, et al. Deep RNA sequencing reveals dynamic regulation of myocardial noncoding RNAs in failing human heart and remodeling with mechanical circulatory support. Circulation. 2014;129(9):1009–21.PubMedPubMedCentralGoogle Scholar
  93. 93.
    Li H, et al. Identification of cardiac long non-coding RNA profile in human dilated cardiomyopathy. Cardiovasc Res. 2018;114(5):747–58.PubMedGoogle Scholar
  94. 94.
    Ponting CP, Oliver PL, Reik W. Evolution and functions of long noncoding RNAs. Cell. 2009;136(4):629–41.PubMedGoogle Scholar
  95. 95.
    Wang KC, Chang HY. Molecular mechanisms of long noncoding RNAs. Mol Cell. 2011;43(6):904–14.PubMedPubMedCentralGoogle Scholar
  96. 96.
    Schuettengruber B, Chourrout D, Vervoort M, Leblanc B, Cavalli G. Genome regulation by polycomb and trithorax proteins. Cell. 2007;128(4):735–45.PubMedGoogle Scholar
  97. 97.
    Margueron R, Reinberg D. The Polycomb complex PRC2 and its mark in life. Nature. 2011;469(7330):343–9.PubMedPubMedCentralGoogle Scholar
  98. 98.
    Schuettengruber B, Martinez AM, Iovino N, Cavalli G. Trithorax group proteins: switching genes on and keeping them active. Nat Rev Mol Cell Biol. 2011;12(12):799–814.PubMedGoogle Scholar
  99. 99.
    Rinn JL, Kertesz M, Wang JK, Squazzo SL, Xu X, Brugmann SA, et al. Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell. 2007;129(7):1311–23.PubMedPubMedCentralGoogle Scholar
  100. 100.
    Srivastava D, et al. Regulation of cardiac mesodermal and neural crest development by the bHLH transcription factor, dHAND. Nat Genet. 1997;16(2):154–60.PubMedGoogle Scholar
  101. 101.
    Yamagishi H, Olson EN, Srivastava D. The basic helix-loop-helix transcription factor, dHAND, is required for vascular development. J Clin Invest. 2000;105(3):261–70.PubMedPubMedCentralGoogle Scholar
  102. 102.
    Han Z, et al. Hand, an evolutionarily conserved bHLH transcription factor required for Drosophila cardiogenesis and hematopoiesis. Development. 2006;133(6):1175–82.PubMedGoogle Scholar
  103. 103.
    Charité J, et al. Role of Dlx6 in regulation of an endothelin-1-dependent, dHAND branchial arch enhancer. Genes Dev. 2001;15(22):3039–49.PubMedPubMedCentralGoogle Scholar
  104. 104.
    McFadden DG, et al. A GATA-dependent right ventricular enhancer controls dHAND transcription in the developing heart. Development. 2000;127(24):5331–41.PubMedGoogle Scholar
  105. 105.
    Lepoivre C, Belhocine M, Bergon A, Griffon A, Yammine M, Vanhille L, et al. Divergent transcription is associated with promoters of transcriptional regulators. BMC Genomics. 2013;14:914.PubMedPubMedCentralGoogle Scholar
  106. 106.
    Cai X, Cullen BR. The imprinted H19 noncoding RNA is a primary microRNA precursor. RNA. 2007;13(3):313–6.PubMedPubMedCentralGoogle Scholar
  107. 107.
    Pant V, et al. The nucleotides responsible for the direct physical contact between the chromatin insulator protein CTCF and the H19 imprinting control region manifest parent of origin-specific long-distance insulation and methylation-free domains. Genes Dev. 2003;17(5):586–90.PubMedPubMedCentralGoogle Scholar
  108. 108.
    Fedoriw AM, et al. Transgenic RNAi reveals essential function for CTCF in H19 gene imprinting. Science. 2004;303(5655):238–40.PubMedGoogle Scholar
  109. 109.
    Monnier P, Martinet C, Pontis J, Stancheva I, Ait-Si-Ali S, Dandolo L. H19 lncRNA controls gene expression of the imprinted gene network by recruiting MBD1. Proc Natl Acad Sci U S A. 2013;110(51):20693–8.PubMedPubMedCentralGoogle Scholar
  110. 110.
    Ripoche MA, Kress C, Poirier F, Dandolo L. Deletion of the H19 transcription unit reveals the existence of a putative imprinting control element. Genes Dev. 1997;11(12):1596–604.PubMedGoogle Scholar
  111. 111.
    Zhou J, Yang L, Zhong T, Mueller M, Men Y, Zhang N, et al. H19 lncRNA alters DNA methylation genome wide by regulating S-adenosylhomocysteine hydrolase. Nat Commun. 2015;6:10221.PubMedPubMedCentralGoogle Scholar
  112. 112.
    Hadji F, Boulanger MC, Guay SP, Gaudreault N, Amellah S, Mkannez G, et al. Altered DNA methylation of long noncoding RNA H19 in calcific aortic valve disease promotes mineralization by silencing NOTCH1. Circulation. 2016;134(23):1848–62.PubMedGoogle Scholar
  113. 113.
    Ishii N, Ozaki K, Sato H, Mizuno H, Susumu Saito, Takahashi A, et al. Identification of a novel non-coding RNA, MIAT, that confers risk of myocardial infarction. J Hum Genet. 2006;51(12):1087–99.PubMedGoogle Scholar
  114. 114.
    Rybak-Wolf A, et al. Circular RNAs in the mammalian brain are highly abundant, conserved, and dynamically expressed. Mol Cell. 2015;58(5):870–85.PubMedGoogle Scholar
  115. 115.
    Li Z, Huang C, Bao C, Chen L, Lin M, Wang X, et al. Exon-intron circular RNAs regulate transcription in the nucleus. Nat Struct Mol Biol. 2015;22(3):256–64.PubMedGoogle Scholar
  116. 116.
    Piwecka M, Glažar P, Hernandez-Miranda LR, Memczak S, Wolf SA, Rybak-Wolf A, et al. Loss of a mammalian circular RNA locus causes miRNA deregulation and affects brain function. Science. 2017;357(6357):eaam8526.PubMedGoogle Scholar
  117. 117.
    Brauch KM, Karst ML, Herron KJ, de Andrade M, Pellikka PA, Rodeheffer RJ, et al. Mutations in ribonucleic acid binding protein gene cause familial dilated cardiomyopathy. J Am Coll Cardiol. 2009;54(10):930–41.PubMedPubMedCentralGoogle Scholar
  118. 118.
    Li D, et al. Identification of novel mutations in RBM20 in patients with dilated cardiomyopathy. Clin Transl Sci. 2010;3(3):90–7.PubMedPubMedCentralGoogle Scholar
  119. 119.
    Guo W, et al. RBM20, a gene for hereditary cardiomyopathy, regulates titin splicing. Nat Med. 2012;18(5):766–73.PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Cardiology, Boston Children’s HospitalHarvard Medical SchoolBostonUSA

Personalised recommendations