Cardiomyocyte Proliferation for Therapeutic Regeneration

  • John P. Leach
  • James F. MartinEmail author
Regenerative Medicine (SM Wu, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Regenerative Medicine


Purpose of Review

Current pharmacologic treatments for cardiovascular disease do not correct the underlying cellular defect, the loss of cardiomyocytes. With recent advancements in cardiac regenerative approaches, the induction of endogenous mature cardiomyocyte proliferation has emerged as a new possibility. Here, we review progress made toward the regeneration of cardiac tissue in the mammalian heart through the stimulation of mature cardiomyocyte renewal.

Recent Findings

The targeting of several developmental and signaling pathways has been shown to stimulate cell cycle re-entry in mature cardiomyocytes. In animal models of cardiac regeneration, various strategies have been used to target these pathways to stimulate cardiomyocyte renewal and have relied on the delivery of signaling factors via systemic delivery, epicardial patches, or direct intramyocardial injection. Gene therapy techniques involving the viral delivery of transgenes by using adenoviral or adeno-associated viral vectors have been used to successfully target cardiac gene expression. The delivery of nucleic acids in the form of anti-microRNAs and microRNA mimetics has also been shown to be effective in stimulating cardiomyocyte renewal.


As the field of cardiac regeneration continues to progress, an important ongoing challenge in developing clinically translatable therapies is limiting the stimulation of growth pathways in non-cardiomyocytes.


Cardiomyocyte Regeneration Proliferation Cell cycle Heart failure Cardiovascular disease 



We apologize to researchers whose work is not cited here because of space constraints. Nicole Stancel, PhD, ELS, of the Section of Scientific Publications at the Texas Heart Institute, provided editorial support.

Funding Information

Supported by the National Institutes of Health (DE 023177, HL 127717, HL 130804, and HL 118761 to J.F.M.), MacDonald Research Fund Award 16RDM001 (J.F.M.), and the Vivian L. Smith Foundation (J.F.M.). J.F.M. was supported by the LeDucq Foundation’s Transatlantic Networks of Excellence in Cardiovascular Research (14CVD01: “Defining the Genomic Topology of Atrial Fibrillation”).

Compliance with Ethical Standards

Conflict of Interest

John P. Leach and James F. Martin report a patent US9732345B2 issued.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human subjects performed by any of the authors.

All mouse procedures were performed in accordance with institutional and governmental guidelines and were approved by the Baylor College of Medicine Institutional Animal Care and Use Committee.


Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major Importance

  1. 1.
    Benjamin EJ, Blaha MJ, Chiuve SE, Cushman M, Das SR, Deo R et al. Heart disease and stroke statistics–2017 update: a report from the American Heart Association. Circulation 2017;135(10), e146, e603.Google Scholar
  2. 2.
    Braunwald E. Heart failure. JACC: Heart Fail. 2013;1(1):1–20.Google Scholar
  3. 3.
    Cahill TJ, Choudhury RP, Riley PR. Heart regeneration and repair after myocardial infarction: translational opportunities for novel therapeutics. Nat Rev Drug Discov. 2017;16(10):699–717.CrossRefPubMedGoogle Scholar
  4. 4.
    Karra R, Poss KD. Redirecting cardiac growth mechanisms for therapeutic regeneration. J Clin Invest. 2017;127(2):427–36.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Soonpaa MH, Kim KK, Pajak L, Franklin M, Field LJ. Cardiomyocyte DNA synthesis and binucleation during murine development. Am J Phys. 1996;271(5 Pt 2):9.Google Scholar
  6. 6.
    Soonpaa MH, Field LJ. Assessment of cardiomyocyte DNA synthesis in normal and injured adult mouse hearts. Am J Phys. 1997;272(1 Pt 2):6.Google Scholar
  7. 7.
    Hesse M, Raulf A, Pilz G-AA, Haberlandt C, Klein AM, Jabs R, et al. Direct visualization of cell division using high-resolution imaging of M-phase of the cell cycle. Nat Commun. 2012;3:1076.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Senyo SE, Steinhauser ML, Pizzimenti CL, Yang VK, Cai L, Wang M, et al. Mammalian heart renewal by pre-existing cardiomyocytes. Nature. 2013;493(7432):433–6.CrossRefPubMedGoogle Scholar
  9. 9.
    Kimura W, Xiao F, Canseco DC, Muralidhar S, Thet S, Zhang HM, et al. Hypoxia fate mapping identifies cycling cardiomyocytes in the adult heart. Nature. 2015;523(7559):226–30.CrossRefPubMedGoogle Scholar
  10. 10.
    Hirai M, Chen J, Evans SM. Tissue-specific cell cycle indicator reveals unexpected findings for cardiac myocyte proliferation. Circ Res. 2016;118(1):20–8.CrossRefPubMedGoogle Scholar
  11. 11.
    • Ali SR, Hippenmeyer S, Saadat LV, Luo L, Weissman IL, Ardehali R. Existing cardiomyocytes generate cardiomyocytes at a low rate after birth in mice. Proc Natl Acad Sci U S A. 2014;111(24):8850–5. This study used the MADM reporter to trace cell division in mature cardiomyocytes.–5.Google Scholar
  12. 12.
    MacMahon EH. Hyperplasia and regeneration of the myocardium in infants and in children. Am J Pathol. 1937;13(5):845–854.5.PubMedPubMedCentralGoogle Scholar
  13. 13.
    Bergmann O, Bhardwaj RD, Bernard S, Zdunek S, Barnabé-Heider F, Walsh S, et al. Evidence for cardiomyocyte renewal in humans. Science (New York, NY). 2009;324(5923):98–102.CrossRefGoogle Scholar
  14. 14.
    Bergmann O, Zdunek S, Felker A, Salehpour M, Alkass K, Bernard S, et al. Dynamics of cell generation and turnover in the human heart. Cell. 2015;161(7):1566–75.CrossRefPubMedGoogle Scholar
  15. 15.
    Mollova M, Bersell K, Walsh S, Savla J, Das LT, S-YY P, et al. Cardiomyocyte proliferation contributes to heart growth in young humans. Proc Natl Acad Sci U S A. 2013;110(4):1446–51.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Poss KD, Wilson LG, Keating MT. Heart regeneration in zebrafish. Science (New York, NY). 2002;298(5601):2188–90.CrossRefGoogle Scholar
  17. 17.
    Porrello ER, Mahmoud AI, Simpson E, Hill JA, Richardson JA, Olson EN, et al. Transient regenerative potential of the neonatal mouse heart. Science (New York, NY). 2011;331(6020):1078–80.CrossRefGoogle Scholar
  18. 18.
    Fratz S, Hager A, Schreiber C, Schwaiger M, Hess J, Stern HC. Long-term myocardial scarring after operation for anomalous left coronary artery from the pulmonary artery. Ann Thorac Surg. 2011;92(5):1761–5.CrossRefPubMedGoogle Scholar
  19. 19.
    Tsang V, Yacoub M, Sridharan S, Lancet B-M. Late donor cardiectomy after paediatric heterotopic cardiac transplantation. Lancet. 2009;374:387–92.CrossRefPubMedGoogle Scholar
  20. 20.
    Haubner BJ, Schneider J, Schweigmann U, Schuetz T, Dichtl W, Velik-Salchner C, et al. Functional recovery of a human neonatal heart after severe myocardial infarction. Circ Res. 2016;118(2):216–21.CrossRefPubMedGoogle Scholar
  21. 21.
    Canseco DC, Kimura W, Garg S, Mukherjee S, Bhattacharya S, Abdisalaam S, et al. Human ventricular unloading induces cardiomyocyte proliferation. J Am Coll Cardiol. 2015;65(9):892–900.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Yahalom-Ronen Y, Rajchman D, Sarig R, Elife G-B. Reduced matrix rigidity promotes neonatal cardiomyocyte dedifferentiation, proliferation and clonal expansion. Elife 2015, 4.Google Scholar
  23. 23.
    Woo YJ, Panlilio CM, Cheng RK, Liao GP, Atluri P, Hsu VM, et al. Therapeutic delivery of cyclin A2 induces myocardial regeneration and enhances cardiac function in ischemic heart failure. Circulation. 2006;114(1 Suppl):13.Google Scholar
  24. 24.
    Mohamed TMA, Ang YS, Radzinsky E, Zhou P, Huang Y, Elfenbein A, Foley A, Magnitsky S, Srivastava D Regulation of cell cycle to stimulate adult cardiomyocyte proliferation and cardiac regeneration. Cell 2018;173(1):104–16 e12, 116.e12.Google Scholar
  25. 25.
    Engel FB, Hsieh PC, Lee RT, Keating MT. FGF1/p38 MAP kinase inhibitor therapy induces cardiomyocyte mitosis, reduces scarring, and rescues function after myocardial infarction. Proc Natl Acad Sci U S A. 2006;103(42):15546–51.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Koudstaal S, Bastings MM, Feyen DA, Waring CD, van Slochteren FJ, Dankers PY, et al. Sustained delivery of insulin-like growth factor-1/hepatocyte growth factor stimulates endogenous cardiac repair in the chronic infarcted pig heart. J Cardiovasc Transl Res. 2014;7(2):232–41.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Bagno LL, of the … KT-RM. Growth hormone–releasing hormone agonists reduce myocardial infarct scar in swine with subacute ischemic cardiomyopathy. Journal of the …. 2015.Google Scholar
  28. 28.
    Ladage D, Yaniz-Galende E, Rapti K, Ishikawa K, Tilemann L, Shapiro S, et al. Stimulating myocardial regeneration with periostin peptide in large mammals improves function post-myocardial infarction but increases myocardial fibrosis. PLoS One. 2013;8(5):e59656.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Wei K, Serpooshan V, Hurtado C, Diez-Cuñado M, Zhao M, Maruyama S, et al. Epicardial FSTL1 reconstitution regenerates the adult mammalian heart. Nature. 2015;525(7570):479–85.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Bersell K, Arab S, Haring B, Kühn B. Neuregulin1/ErbB4 signaling induces cardiomyocyte proliferation and repair of heart injury. Cell. 2009;138(2):257–70.CrossRefPubMedGoogle Scholar
  31. 31.
    Polizzotti BD, Ganapathy B, Walsh S, Choudhury S, Ammanamanchi N, Bennett DG, et al. Neuregulin stimulation of cardiomyocyte regeneration in mice and human myocardium reveals a therapeutic window. Sci Transl Med. 2015;7(281):281ra45.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Garbayo E, Gavira JJ, de Yebenes MG, Pelacho B, Abizanda G, Lana H, et al. Catheter-based intramyocardial injection of FGF1 or NRG1-loaded MPs improves cardiac function in a preclinical model of ischemia-reperfusion. Sci Rep. 2016;6:25932.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Nakada Y, Canseco DC, Thet S, Abdisalaam S, Asaithamby A, Santos CX, et al. Hypoxia induces heart regeneration in adult mice. Nature. 2017;541(7636):222–7.CrossRefPubMedGoogle Scholar
  34. 34.
    Lin Z, von Gise A, Zhou P, Gu F, Ma Q, Jiang J, et al. Cardiac-specific YAP activation improves cardiac function and survival in an experimental murine MI model. Circ Res. 2014;115(3):354–63.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    •• Leach JP, Heallen T, Zhang M, Rahmani M, Morikawa Y, Hill MC et al. Hippo pathway deficiency reverses systolic heart failure after infarction. Nature 0500. This study describes a mouse model of systolic heart failure. Upon deletion of the Hippo pathway, protein Salvador in mice with established systolic heart failure cardiac function improves and over time reaches normal systolic function. Google Scholar
  36. 36.
    Tian Y, Liu Y, Wang T, Zhou N, Kong J, Chen L, et al. A microRNA-Hippo pathway that promotes cardiomyocyte proliferation and cardiac regeneration in mice. Sci Transl Med. 2015;7(279):279ra38.CrossRefPubMedGoogle Scholar
  37. 37.
    •• Bassat E, Mutlak YE, Genzelinakh A, Shadrin IY, Baruch Umansky K, Yifa O, Kain D, Rajchman D, Leach J, Riabov Bassat D, Udi Y, Sarig R, Sagi I, Martin JF, Bursac N, Cohen S, Tzahor E The extracellular matrix protein agrin promotes heart regeneration in mice. Nature 2017;547(7662):179–84. This study demonstrates the utility of a matrix protein, Agrin, to stimulate cardiomyocyte prolieration through an interaction with the dystroglycan complex. Google Scholar
  38. 38.
    Hullinger TG, Montgomery RL, Seto AG, Dickinson BA, Semus HM, Lynch JM, et al. Inhibition of miR-15 protects against cardiac ischemic injurynovelty and significance. Circ Res. 2012;110(1):71–81.CrossRefPubMedGoogle Scholar
  39. 39.
    Chaudhry HW, Dashoush NH, Tang H, Zhang L, Wang X, Wu EX, et al. Cyclin A2 mediates cardiomyocyte mitosis in the postmitotic myocardium. J Biol Chem. 2004;279(34):35858–66.CrossRefPubMedGoogle Scholar
  40. 40.
    Cheng RK, Asai T, Tang H, Dashoush NH, Kara RJ, Costa KD, et al. Cyclin A2 induces cardiac regeneration after myocardial infarction and prevents heart failure. Circ Res. 2007;100(12):1741–8.CrossRefPubMedGoogle Scholar
  41. 41.
    Pasumarthi KB, Nakajima H, Nakajima HO, Soonpaa MH, Field LJ. Targeted expression of cyclin D2 results in cardiomyocyte DNA synthesis and infarct regression in transgenic mice. Circ Res. 2005;96(1):110–8.CrossRefPubMedGoogle Scholar
  42. 42.
    Tane S, Kubota M, Okayama H, Ikenishi A, Yoshitome S, Iwamoto N, et al. Repression of cyclin D1 expression is necessary for the maintenance of cell cycle exit in adult mammalian cardiomyocytes. J Biol Chem. 2014;289(26):18033–44.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Toischer K, Zhu W, Hünlich M, Mohamed BA, Khadjeh S, Reuter SP, et al. Cardiomyocyte proliferation prevents failure in pressure overload but not volume overload. J Clin Investig. 2017;127:4285–96.CrossRefPubMedGoogle Scholar
  44. 44.
    O'Donoghue ML, Glaser R, Cavender MA, Jama APE. Effect of losmapimod on cardiovascular outcomes in patients hospitalized with acute myocardial infarction: a randomized clinical trial. JAMA 2016, 315, 1591, 1599.Google Scholar
  45. 45.
    Kühn B, del Monte F, Hajjar RJ, Chang Y-SS, Lebeche D, Arab S, et al. Periostin induces proliferation of differentiated cardiomyocytes and promotes cardiac repair. Nat Med. 2007;13(8):962–9.CrossRefPubMedGoogle Scholar
  46. 46.
    D'Uva G, Aharonov A, Lauriola M, Kain D, Yahalom-Ronen Y, Carvalho S, et al. ERBB2 triggers mammalian heart regeneration by promoting cardiomyocyte dedifferentiation and proliferation. Nat Cell Biol. 2015;17(5):627–38.CrossRefPubMedGoogle Scholar
  47. 47.
    Puente BN, Kimura W, Muralidhar SA, Moon J, Amatruda JF, Phelps KL, et al. The oxygen-rich postnatal environment induces cardiomyocyte cell-cycle arrest through DNA damage response. Cell. 2014;157(3):565–79.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Mahmoud AI, Kocabas F, Muralidhar SA, Kimura W, Koura AS, Thet S, et al. Meis1 regulates postnatal cardiomyocyte cell cycle arrest. Nature. 2013;497(7448):249–53.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Yu W, Huang X, Tian X, Zhang H, He L, Wang Y, et al. GATA4 regulates Fgf16 to promote heart repair after injury. Development(Cambridge, England). 2016;143(6):936–49.CrossRefGoogle Scholar
  50. 50.
    Xiang F-LL, Guo M, Yutzey KE. Overexpression of Tbx20 in adult cardiomyocytes promotes proliferation and improves cardiac function after myocardial infarction. Circulation. 2016;133(11):1081–92.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Heallen T, Zhang M, Wang J, Bonilla-Claudio M, Klysik E, Johnson RL, et al. Hippo pathway inhibits Wnt signaling to restrain cardiomyocyte proliferation and heart size. Science. 2011;332(6028):458–61.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Heallen T, Morikawa Y, Leach J, Tao G, Willerson JT, Johnson RL, et al. Hippo signaling impedes adult heart regeneration. Development. (Cambridge, England). 2013;140(23):4683–90.CrossRefPubMedCentralGoogle Scholar
  53. 53.
    Morikawa Y, Zhang M, Heallen T, Leach J, Tao G, Xiao Y, et al. Actin cytoskeletal remodeling with protrusion formation is essential for heart regeneration in Hippo-deficient mice. Sci Signal. 2015;8(375):ra41.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    •• Morikawa Y, Heallen T, Leach J, Xiao Y, Martin JF. Dystrophin-glycoprotein complex sequesters Yap to inhibit cardiomyocyte proliferation. Nature 2017;547(7662):227–31. This study describes a novel interaction between the Hippo signaling effector Yap and the dystroglycan complex to limit cardiomyocyte proliferation. Google Scholar
  55. 55.
    von Gise A, Lin Z, Schlegelmilch K, Honor LB, Pan GM, Buck JN, et al. YAP1, the nuclear target of Hippo signaling, stimulates heart growth through cardiomyocyte proliferation but not hypertrophy. Proc Natl Acad Sci U S A. 2012;109(7):2394–9.CrossRefGoogle Scholar
  56. 56.
    Xin M, Kim Y, Sutherland LB, Qi X, McAnally J, Schwartz RJ, et al. Regulation of insulin-like growth factor signaling by Yap governs cardiomyocyte proliferation and embryonic heart size. Sci Signal. 2011;4(196):ra70.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Xin M, Kim Y, Sutherland LB, Murakami M, Qi X, McAnally J, et al. Hippo pathway effector Yap promotes cardiac regeneration. Proc Natl Acad Sci. 2013;110(34):13839–44.CrossRefPubMedGoogle Scholar
  58. 58.
    Lin Z, Zhou P, von Gise A, Gu F, Ma Q, Chen J, et al. Pi3kcb links Hippo-YAP and PI3K-AKT signaling pathways to promote cardiomyocyte proliferation and survival. Circ Res. 2015;116(1):35–45.CrossRefPubMedGoogle Scholar
  59. 59.
    Tao G, Kahr PC, Morikawa Y, Zhang M, Rahmani M, Heallen TR, et al. Pitx2 promotes heart repair by activating the antioxidant response after cardiac injury. Nature. 2016;534(7605):119–23.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Li J, Gao E, Vite A, Yi R, Gomez L, Goossens S, et al. Alpha-catenins control cardiomyocyte proliferation by regulating Yap activity. Circ Res. 2015;116(1):70–9.CrossRefPubMedGoogle Scholar
  61. 61.
    Eulalio A, Mano M, Dal Ferro M, Zentilin L, Sinagra G, Zacchigna S, et al. Functional screening identifies miRNAs inducing cardiac regeneration. Nature. 2012;492(7429):376–81.CrossRefPubMedGoogle Scholar
  62. 62.
    Porrello ER, Johnson BA, Aurora AB, Simpson E, Nam Y-J, Matkovich SJ, et al. MiR-15 family regulates postnatal mitotic arrest of cardiomyocytes. Circ Res. 2011;109:670–9.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Porrello ER, Mahmoud AI, Simpson E, Johnson BA, Grinsfelder D, Canseco D, et al. Regulation of neonatal and adult mammalian heart regeneration by the miR-15 family. Proc Natl Acad Sci U S A. 2013;110(1):187–92.CrossRefPubMedGoogle Scholar
  64. 64.
    Xiao J, Liu H, Cretoiu D, Toader D, Suciu N, Shi J, et al. miR-31a-5p promotes postnatal cardiomyocyte proliferation by targeting RhoBTB1. Exp Mol Med. 2017;49(10):e386.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Molecular Physiology and BiophysicsBaylor College of MedicineHoustonUSA
  2. 2.Department of Medicine, Penn Center for Pulmonary Biology, Penn Cardiovascular Institute, Penn Institute for Regenerative MedicineUniversity of PennsylvaniaPhiladelphiaUSA
  3. 3.Cardiomyocyte Renewal LabTexas Heart InstituteHoustonUSA
  4. 4.Program in Developmental BiologyBaylor College of MedicineHoustonUSA
  5. 5.Cardiovascular Research InstituteBaylor College of MedicineHoustonUSA

Personalised recommendations