Advertisement

Current Cardiology Reports

, 19:132 | Cite as

HDL Cholesterol Metabolism and the Risk of CHD: New Insights from Human Genetics

  • Cecilia Vitali
  • Sumeet A. Khetarpal
  • Daniel J. Rader
Cardiovascular Genomics (TL Assimes, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Cardiovascular Genomics

Abstract

Purpose of Review

Elevated high-density lipoprotein cholesterol levels in the blood (HDL-C) represent one of the strongest epidemiological surrogates for protection against coronary heart disease (CHD), but recent human genetic and pharmacological intervention studies have raised controversy about the causality of this relationship. Here, we review recent discoveries from human genome studies using new analytic tools as well as relevant animal studies that have both addressed, and in some cases, fueled this controversy.

Recent Findings

Methodologic developments in genotyping and sequencing, such as genome-wide association studies (GWAS), exome sequencing, and exome array genotyping, have been applied to the study of HDL-C and risk of CHD in large, multi-ethnic populations. Some of these efforts focused on population-wide variation in common variants have uncovered new polymorphisms at novel loci associated with HDL-C and, in some cases, CHD risk. Other efforts have discovered loss-of-function variants for the first time in genes previously implicated in HDL metabolism through common variant studies or animal models. These studies have allowed the genetic relationship between these pathways, HDL-C and CHD to be explored in humans for the first time through analysis tools such as Mendelian randomization. We explore these discoveries for selected key HDL-C genes CETP, LCAT, LIPG, SCARB1, and novel loci implicated from GWAS including GALNT2, KLF14, and TTC39B.

Summary

Recent human genetics findings have identified new nodes regulating HDL metabolism while reshaping our current understanding of known candidate genes to HDL and CHD risk through the study of critical variants across model systems. Despite their effect on HDL-C, variants in many of the reviewed genes were found to lack any association with CHD. These data collectively indicate that HDL-C concentration, which represents a static picture of a very dynamic and heterogeneous metabolic milieu, is unlikely to be itself causally protective against CHD. In this context, human genetics represent an extremely valuable tool to further explore the biological mechanisms regulating HDL metabolism and investigate what role, if any, HDL plays in the pathogenesis of CHD.

Keywords

High-density lipoprotein cholesterol (HDL-C) Reverse cholesterol transport Atherosclerosis Coronary heart disease (CHD) Cholesterol efflux capacity Genomics Single nucleotide polymorphism (SNP) Genome-wide association study (GWAS) Exome sequencing Targeted resequencing Exome array genotyping 

Notes

Acknowledgements

This work was supported by grants HL055323, HL111398, and HL133502 from the National Institutes of Health. Additionally, SAK has been supported by a fellowship 5F30HL124967 from the National Institutes of Health and the Medical Scientist Training Program of the Perelman School of Medicine, University of Pennsylvania. The content is solely the responsibility of the authors and does not necessarily represent the official viewpoints of the NIH.

Compliance with Ethical Standards

Conflict of Interest

Cecilia Vitali and Sumeet A. Khetarpal declare that they have no conflict of interest. Daniel J. Rader serves as consultant to the following companies: Alnylam, CSL-Behring, DalCor, Eli Lilly, Novartis, and Pfizer.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. 1.
    Assmann G, Cullen P, Schulte H. Simple scoring scheme for calculating the risk of acute coronary events based on the 10-year follow-up of the prospective cardiovascular Munster (PROCAM) study. Circulation. 2002;105:310–5.PubMedCrossRefGoogle Scholar
  2. 2.
    Di Angelantonio E, Sarwar N, Perry P, et al. Major lipids, apolipoproteins, and risk of vascular disease. JAMA. 2009;302:1993–2000.PubMedCrossRefGoogle Scholar
  3. 3.
    Kannel WB, Dawber TR, Friedman GD, Glennon WE, McNamara PM. Risk factors in coronary heart disease. an evaluation of several serum lipids as predictors of coronary heart disease; the Framingham study. Ann Intern Med. 1964;61:888–99.PubMedCrossRefGoogle Scholar
  4. 4.
    Navab M, Reddy ST, Van Lenten BJ, Fogelman AM. HDL and cardiovascular disease: atherogenic and atheroprotective mechanisms. Nat Rev Cardiol. 2011;8:222–32.PubMedCrossRefGoogle Scholar
  5. 5.
    Holmes MV, Ala-Korpela M, Smith GD. Mendelian randomization in cardiometabolic disease: challenges in evaluating causality. Nat Rev Cardiol. 2017;Google Scholar
  6. 6.
    Voight BF, Peloso GM, Orho-Melander M, et al. Plasma HDL cholesterol and risk of myocardial infarction: a mendelian randomisation study. Lancet (London, England). 2012;380:572–80.CrossRefGoogle Scholar
  7. 7.
    Lincoff AM, Nicholls SJ, Riesmeyer JS, et al. Evacetrapib and cardiovascular outcomes in high-risk vascular disease. N Engl J Med. 2017;376:1933–42.PubMedCrossRefGoogle Scholar
  8. 8.
    Barter PJ, Caulfield M, Eriksson M, et al. Effects of torcetrapib in patients at high risk for coronary events. N Engl J Med. 2007;357:2109–22.PubMedCrossRefGoogle Scholar
  9. 9.
    Schwartz GG, Olsson AG, Abt M, et al. Effects of dalcetrapib in patients with a recent acute coronary syndrome. N Engl J Med. 2012;367:2089–99.PubMedCrossRefGoogle Scholar
  10. 10.
    Weissglas-Volkov D, Pajukanta P. Genetic causes of high and low serum HDL-cholesterol. J Lipid Res. 2010;51:2032–57.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Hegele RA. Plasma lipoproteins: genetic influences and clinical implications. Nat Rev Genet. 2009;10:109–21.PubMedCrossRefGoogle Scholar
  12. 12.
    Larach DB, Cuchel M, Rader DJ. Monogenic causes of elevated HDL cholesterol and implications for development of new therapeutics. Clinical Lipidology. 2013;8:635–48.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    • Zanoni P, Khetarpal SA, Larach DB, et al. Rare variant in scavenger receptor BI raises HDL cholesterol and increases risk of coronary heart disease. Science (New York, NY). 2016;351:1166–71. This paper describes the paradoxical association of a loss-of-function mutation in SCARB1 gene that confers incresed HDL-C but is associated with incresed CHD risk and supports the role of a functional SR-BI in HDL metabolism and RCT CrossRefGoogle Scholar
  14. 14.
    McCarthy MI, Abecasis GR, Cardon LR, et al. Genome-wide association studies for complex traits: consensus, uncertainty and challenges. Nat Rev Genet. 2008;9:356–69.PubMedCrossRefGoogle Scholar
  15. 15.
    McCarthy MI, Hirschhorn JN. Genome-wide association studies: past, present and future. Hum Mol Genet. 2008;17:R100–1.PubMedCrossRefGoogle Scholar
  16. 16.
    Peters DT, Musunuru K. Functional evaluation of genetic variation in complex human traits. Hum Mol Genet. 2012;21:R18–23.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Willer CJ, Mohlke KL. Finding genes and variants for lipid levels after genome-wide association analysis. Curr Opin Lipidol. 2012;23:98–103.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Khetarpal SA, Rader DJ. Genetics of lipid traits: genome-wide approaches yield new biology and clues to causality in coronary artery disease. Biochim Biophys Acta. 1842;2014:2010–20.Google Scholar
  19. 19.
    Morrison AC, Voorman A, Johnson AD, et al. Whole-genome sequence-based analysis of high-density lipoprotein cholesterol. Nat Genet. 2013;45:899–901.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Voight BF, Kang HM, Ding J, et al. The metabochip, a custom genotyping array for genetic studies of metabolic, cardiovascular, and anthropometric traits. PLoS Genet. 2012;8:e1002793.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Peloso GM, Timofeev N, Lunetta KL. Principal-component-based population structure adjustment in the North American Rheumatoid Arthritis Consortium data: impact of single-nucleotide polymorphism set and analysis method. BMC Proc. 2009;3(Suppl 7):S108.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Page CM, Baranzini SE, Mevik BH, Bos SD, Harbo HF, Andreassen BK. Assessing the power of exome chips. PLoS One. 2015;10:e0139642.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Thanassoulis G, O'Donnell CJ. Mendelian randomization: nature's randomized trial in the post-genome era. JAMA. 2009;301:2386–8.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Jonas A. Lecithin cholesterol acyltransferase. Biochim Biophys Acta. 2000;1529:245–56.PubMedCrossRefGoogle Scholar
  25. 25.
    Kunnen S, Van Eck M. Lecithin:cholesterol acyltransferase: old friend or foe in atherosclerosis? J Lipid Res. 2012;53:1783–99.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Mehlum A, Gjernes E, Solberg LA, Hagve TA, Prydz H. Overexpression of human lecithin:cholesterol acyltransferase in mice offers no protection against diet-induced atherosclerosis. APMIS : acta pathologica, microbiologica, et immunologica Scandinavica. 2000;108:336–42.PubMedCrossRefGoogle Scholar
  27. 27.
    Berard AM, Foger B, Remaley A, et al. High plasma HDL concentrations associated with enhanced atherosclerosis in transgenic mice overexpressing lecithin-cholesteryl acyltransferase. Nat Med. 1997;3:744–9.PubMedCrossRefGoogle Scholar
  28. 28.
    Mehlum A, Muri M, Hagve TA, Solberg LA, Prydz H. Mice overexpressing human lecithin: cholesterol acyltransferase are not protected against diet-induced atherosclerosis. APMIS : acta pathologica, microbiologica, et immunologica Scandinavica. 1997;105:861–8.PubMedCrossRefGoogle Scholar
  29. 29.
    Tanigawa H, Billheimer JT, Tohyama J, et al. Lecithin: cholesterol acyltransferase expression has minimal effects on macrophage reverse cholesterol transport in vivo. Circulation. 2009;120:160–9.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Brousseau ME, Kauffman RD, Herderick EE, et al. LCAT modulates atherogenic plasma lipoproteins and the extent of atherosclerosis only in the presence of normal LDL receptors in transgenic rabbits. Arterioscler Thromb Vasc Biol. 2000;20(2):450–8.PubMedCrossRefGoogle Scholar
  31. 31.
    Hoeg JM, Vaisman BL, Demosky SJ Jr, et al. Lecithin:cholesterol acyltransferase overexpression generates hyperalpha-lipoproteinemia and a nonatherogenic lipoprotein pattern in transgenic rabbits. J Biol Chem. 1996;271:4396–402.PubMedCrossRefGoogle Scholar
  32. 32.
    Amar MJ, Shamburek RD, Vaisman B, et al. Adenoviral expression of human lecithin-cholesterol acyltransferase in nonhuman primates leads to an antiatherogenic lipoprotein phenotype by increasing high-density lipoprotein and lowering low-density lipoprotein. Metab Clin Exp. 2009;58:568–75.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Lambert G, Sakai N, Vaisman BL, et al. Analysis of glomerulosclerosis and atherosclerosis in lecithin cholesterol acyltransferase-deficient mice. J Biol Chem. 2001;276:15090–8.PubMedCrossRefGoogle Scholar
  34. 34.
    Furbee JW Jr, Sawyer JK, Parks JS. Lecithin:cholesterol acyltransferase deficiency increases atherosclerosis in the low density lipoprotein receptor and apolipoprotein E knockout mice. J Biol Chem. 2002;277:3511–9.PubMedCrossRefGoogle Scholar
  35. 35.
    Ng DS, Maguire GF, Wylie J, et al. Oxidative stress is markedly elevated in lecithin:cholesterol acyltransferase-deficient mice and is paradoxically reversed in the apolipoprotein E knockout background in association with a reduction in atherosclerosis. J Biol Chem. 2002;277:11715–20.PubMedCrossRefGoogle Scholar
  36. 36.
    Maugeais C, Tietge UJ, Broedl UC, et al. Dose-dependent acceleration of high-density lipoprotein catabolism by endothelial lipase. Circulation. 2003;108:2121–6.PubMedCrossRefGoogle Scholar
  37. 37.
    Jaye M, Lynch KJ, Krawiec J, et al. A novel endothelial-derived lipase that modulates HDL metabolism. Nat Genet. 1999;21:424–8.PubMedCrossRefGoogle Scholar
  38. 38.
    Ishida T, Choi S, Kundu RK, et al. Endothelial lipase is a major determinant of HDL level. J Clin Invest. 2003;111:347–55.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Broedl UC, Maugeais C, Millar JS, et al. Endothelial lipase promotes the catabolism of ApoB-containing lipoproteins. Circ Res. 2004;94:1554–61.PubMedCrossRefGoogle Scholar
  40. 40.
    Wiersma H, Gatti A, Nijstad N, Kuipers F, Tietge UJ. Hepatic SR-BI, not endothelial lipase, expression determines biliary cholesterol secretion in mice. J Lipid Res. 2009;50:1571–80.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Wang C, Nishijima K, Kitajima S, et al. Increased hepatic expression of endothelial lipase inhibits cholesterol diet-induced hypercholesterolemia and atherosclerosis in transgenic rabbits. Arterioscler Thromb Vasc Biol. 2017;Google Scholar
  42. 42.
    Edmondson AC, Brown RJ, Kathiresan S, et al. Loss-of-function variants in endothelial lipase are a cause of elevated HDL cholesterol in humans. J Clin Invest. 2009;119:1042–50.PubMedPubMedCentralGoogle Scholar
  43. 43.
    Brown RJ, Lagor WR, Sankaranaravanan S, et al. Impact of combined deficiency of hepatic lipase and endothelial lipase on the metabolism of both high-density lipoproteins and apolipoprotein B-containing lipoproteins. Circ Res. 2010;107:357–64.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Ko KW, Paul A, Ma K, Li L, Chan L. Endothelial lipase modulates HDL but has no effect on atherosclerosis development in apoE-/- and LDLR-/- mice. J Lipid Res. 2005;46:2586–94.PubMedCrossRefGoogle Scholar
  45. 45.
    Ishida T, Choi SY, Kundu RK, et al. Endothelial lipase modulates susceptibility to atherosclerosis in apolipoprotein-E-deficient mice. J Biol Chem. 2004;279:45085–92.PubMedCrossRefGoogle Scholar
  46. 46.
    Ma K, Cilingiroglu M, Otvos JD, Ballantyne CM, Marian AJ, Chan L. Endothelial lipase is a major genetic determinant for high-density lipoprotein concentration, structure, and metabolism. Proc Natl Acad Sci U S A. 2003;100:2748–53.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Zhang Y, Da Silva JR, Reilly M, Billheimer JT, Rothblat GH, Rader DJ. Hepatic expression of scavenger receptor class B type I (SR-BI) is a positive regulator of macrophage reverse cholesterol transport in vivo. J Clin Invest. 2005;115:2870–4.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Wang N, Arai T, Ji Y, Rinninger F, Tall AR. Liver-specific overexpression of scavenger receptor BI decreases levels of very low density lipoprotein ApoB, low density lipoprotein ApoB, and high density lipoprotein in transgenic mice. J Biol Chem. 1998;273:32920–6.PubMedCrossRefGoogle Scholar
  49. 49.
    Ueda Y, Royer L, Gong E, et al. Lower plasma levels and accelerated clearance of high density lipoprotein (HDL) and non-HDL cholesterol in scavenger receptor class B type I transgenic mice. J Biol Chem. 1999;274:7165–71.PubMedCrossRefGoogle Scholar
  50. 50.
    Kozarsky KF, Donahee MH, Rigotti A, Iqbal SN, Edelman ER, Krieger M. Overexpression of the HDL receptor SR-BI alters plasma HDL and bile cholesterol levels. Nature. 1997;387:414–7.PubMedCrossRefGoogle Scholar
  51. 51.
    Kozarsky KF, Donahee MH, Glick JM, Krieger M, Rader DJ. Gene transfer and hepatic overexpression of the HDL receptor SR-BI reduces atherosclerosis in the cholesterol-fed LDL receptor-deficient mouse. Arterioscler Thromb Vasc Biol. 2000;20:721–7.PubMedCrossRefGoogle Scholar
  52. 52.
    Arai T, Wang N, Bezouevski M, Welch C, Tall AR. Decreased atherosclerosis in heterozygous low density lipoprotein receptor-deficient mice expressing the scavenger receptor BI transgene. J Biol Chem. 1999;274:2366–71.PubMedCrossRefGoogle Scholar
  53. 53.
    Varban ML, Rinninger F, Wang N, et al. Targeted mutation reveals a central role for SR-BI in hepatic selective uptake of high density lipoprotein cholesterol. Proc Natl Acad Sci U S A. 1998;95:4619–24.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Rigotti A, Trigatti BL, Penman M, Rayburn H, Herz J, Krieger M. A targeted mutation in the murine gene encoding the high density lipoprotein (HDL) receptor scavenger receptor class B type I reveals its key role in HDL metabolism. Proc Natl Acad Sci U S A. 1997;94:12610–5.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Brundert M, Ewert A, Heeren J, et al. Scavenger receptor class B type I mediates the selective uptake of high-density lipoprotein-associated cholesteryl ester by the liver in mice. Arterioscler Thromb Vasc Biol. 2005;25:143–8.PubMedCrossRefGoogle Scholar
  56. 56.
    Huszar D, Varban ML, Rinninger F, et al. Increased LDL cholesterol and atherosclerosis in LDL receptor-deficient mice with attenuated expression of scavenger receptor B1. Arterioscler Thromb Vasc Biol. 2000;20:1068–73.PubMedCrossRefGoogle Scholar
  57. 57.
    Braun A, Trigatti BL, Post MJ, et al. Loss of SR-BI expression leads to the early onset of occlusive atherosclerotic coronary artery disease, spontaneous myocardial infarctions, severe cardiac dysfunction, and premature death in apolipoprotein E-deficient mice. Circ Res. 2002;90:270–6.PubMedCrossRefGoogle Scholar
  58. 58.
    Marotti KR, Castle CK, Boyle TP, Lin AH, Murray RW, Melchior GW. Severe atherosclerosis in transgenic mice expressing simian cholesteryl ester transfer protein. Nature. 1993;364:73–5.PubMedCrossRefGoogle Scholar
  59. 59.
    Plump AS, Masucci-Magoulas L, Bruce C, Bisgaier CL, Breslow JL, Tall AR. Increased atherosclerosis in ApoE and LDL receptor gene knock-out mice as a result of human cholesteryl ester transfer protein transgene expression. Arterioscler Thromb Vasc Biol. 1999;19:1105–10.PubMedCrossRefGoogle Scholar
  60. 60.
    Hayek T, Masucci-Magoulas L, Jiang X, et al. Decreased early atherosclerotic lesions in hypertriglyceridemic mice expressing cholesteryl ester transfer protein transgene. J Clin Invest. 1995;96:2071–4.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Harder C, Lau P, Meng A, Whitman SC, McPherson R. Cholesteryl ester transfer protein (CETP) expression protects against diet induced atherosclerosis in SR-BI deficient mice. Arterioscler Thromb Vasc Biol. 2007;27:858–64.PubMedCrossRefGoogle Scholar
  62. 62.
    Tanigawa H, Billheimer JT, Tohyama J, Zhang Y, Rothblat G, Rader DJ. Expression of cholesteryl ester transfer protein in mice promotes macrophage reverse cholesterol transport. Circulation. 2007;116:1267–73.PubMedCrossRefGoogle Scholar
  63. 63.
    Okamoto H, Yonemori F, Wakitani K, Minowa T, Maeda K, Shinkai H. A cholesteryl ester transfer protein inhibitor attenuates atherosclerosis in rabbits. Nature. 2000;406:203–7.PubMedCrossRefGoogle Scholar
  64. 64.
    Rittershaus CW, Miller DP, Thomas LJ, et al. Vaccine-induced antibodies inhibit CETP activity in vivo and reduce aortic lesions in a rabbit model of atherosclerosis. Arterioscler Thromb Vasc Biol. 2000;20:2106–12.PubMedCrossRefGoogle Scholar
  65. 65.
    Huang Z, Inazu A, Nohara A, Higashikata T, Mabuchi H. Cholesteryl ester transfer protein inhibitor (JTT-705) and the development of atherosclerosis in rabbits with severe hypercholesterolaemia. Clinical Science (London, England: 1979). 2002;103:587–94.CrossRefGoogle Scholar
  66. 66.
    Sugano M, Makino N, Sawada S, et al. Effect of antisense oligonucleotides against cholesteryl ester transfer protein on the development of atherosclerosis in cholesterol-fed rabbits. J Biol Chem. 1998;273:5033–6.PubMedCrossRefGoogle Scholar
  67. 67.
    Zhang J, Niimi M, Yang D, et al. Deficiency of cholesteryl ester transfer protein protects against atherosclerosis in rabbits. Arterioscler Thromb Vasc Biol. 2017;37:1068–75.PubMedCrossRefGoogle Scholar
  68. 68.
    Willer CJ, Schmidt EM, Sengupta S, et al. Discovery and refinement of loci associated with lipid levels. Nat Genet. 2013;45:1274–83.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Teslovich TM, Musunuru K, Smith AV, et al. Biological, clinical and population relevance of 95 loci for blood lipids. Nature. 2010;466:707–13.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Howson JMM, Zhao W, Barnes DR, et al. Fifteen new risk loci for coronary artery disease highlight arterial-wall-specific mechanisms. Nat Genet. 2017;Google Scholar
  71. 71.
    Webb TR, Erdmann J, Stirrups KE, et al. Systematic evaluation of pleiotropy identifies 6 further loci associated with coronary artery disease. J Am Coll Cardiol. 2017;69:823–36.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Keavney B, Palmer A, Parish S, et al. Lipid-related genes and myocardial infarction in 4685 cases and 3460 controls: discrepancies between genotype, blood lipid concentrations, and coronary disease risk. Int J Epidemiol. 2004;33:1002–13.PubMedCrossRefGoogle Scholar
  73. 73.
    Niu W, Qi Y. Circulating cholesteryl ester transfer protein and coronary heart disease: mendelian randomization meta-analysis. Circ Cardiovasc Genet. 2015;8:114–21.PubMedCrossRefGoogle Scholar
  74. 74.
    Haase CL, Tybjaerg-Hansen A, Qayyum AA, Schou J, Nordestgaard BG, Frikke-Schmidt R. LCAT, HDL cholesterol and ischemic cardiovascular disease: a Mendelian randomization study of HDL cholesterol in 54,500 individuals. J Clin Endocrinol Metab. 2012;97:E248–56.PubMedCrossRefGoogle Scholar
  75. 75.
    • Nomura A, Won HH, Khera AV, et al. Protein truncating variants at the cholesteryl ester transfer protein gene and risk for coronary heart disease. Circ Res. 2017; This paper showed for the first time that loss-of-function coding mutations in CETP that raise HDL-C are associated with reduced risk of coronary heart disease Google Scholar
  76. 76.
    Wu Z, Lou Y, Qiu X, et al. Association of cholesteryl ester transfer protein (CETP) gene polymorphism, high density lipoprotein cholesterol and risk of coronary artery disease: a meta-analysis using a Mendelian randomization approach. BMC Medical Genetics. 2014;15:118.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Calabresi L, Baldassarre D, Castelnuovo S, et al. Functional lecithin: cholesterol acyltransferase is not required for efficient atheroprotection in humans. Circulation. 2009;120:628–35.PubMedCrossRefGoogle Scholar
  78. 78.
    Calabresi L, Pisciotta L, Costantin A, et al. The molecular basis of lecithin:cholesterol acyltransferase deficiency syndromes: a comprehensive study of molecular and biochemical findings in 13 unrelated Italian families. Arterioscler Thromb Vasc Biol. 2005;25:1972–8.PubMedCrossRefGoogle Scholar
  79. 79.
    Ayyobi AF, McGladdery SH, Chan S, John Mancini GB, Hill JS, Frohlich JJ. Lecithin: cholesterol acyltransferase (LCAT) deficiency and risk of vascular disease: 25 year follow-up. Atherosclerosis. 2004;177:361–6.PubMedCrossRefGoogle Scholar
  80. 80.
    Calabresi L, Favari E, Moleri E, et al. Functional LCAT is not required for macrophage cholesterol efflux to human serum. Atherosclerosis. 2009;204:141–6.PubMedCrossRefGoogle Scholar
  81. 81.
    Hovingh GK, Hutten BA, Holleboom AG, et al. Compromised LCAT function is associated with increased atherosclerosis. Circulation. 2005;112:879–84.PubMedCrossRefGoogle Scholar
  82. 82.
    Duivenvoorden R, Holleboom AG, van den Bogaard B, et al. Carriers of lecithin cholesterol acyltransferase gene mutations have accelerated atherogenesis as assessed by carotid 3.0-T magnetic resonance imaging [corrected]. J Am Coll Cardiol. 2011;58:2481–7.PubMedCrossRefGoogle Scholar
  83. 83.
    Hirano K, Yamashita S, Nakajima N, et al. Genetic cholesteryl ester transfer protein deficiency is extremely frequent in the Omagari area of Japan. Marked hyperalphalipoproteinemia caused by CETP gene mutation is not associated with longevity. Arterioscler Thromb Vasc Biol. 1997;17:1053–9.PubMedCrossRefGoogle Scholar
  84. 84.
    Mabuchi H, Nohara A, Inazu A. Cholesteryl Ester Transfer Protein (CETP) Deficiency and CETP Inhibitors. Mol Cells. 2014;37(11):777–84.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Holleboom AG, Kuivenhoven JA, Vergeer M, et al. Plasma levels of lecithin:cholesterol acyltransferase and risk of future coronary artery disease in apparently healthy men and women: a prospective case-control analysis nested in the EPIC-Norfolk population study. J Lipid Res. 2010;51:416–21.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Peloso GM, Auer PL, Bis JC, et al. Association of low-frequency and rare coding-sequence variants with blood lipids and coronary heart disease in 56,000 whites and blacks. Am J Hum Genet. 2014;94:223–32.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Tietjen I, Hovingh GK, Singaraja R, et al. Increased risk of coronary artery disease in Caucasians with extremely low HDL cholesterol due to mutations in ABCA1, APOA1, and LCAT. Biochim Biophys Acta. 1821;2012:416–24.Google Scholar
  88. 88.
    Kiss RS, Kavaslar N, Okuhira K, et al. Genetic etiology of isolated low HDL syndrome: incidence and heterogeneity of efflux defects. Arterioscler Thromb Vasc Biol. 2007;27:1139–45.PubMedCrossRefGoogle Scholar
  89. 89.
    Kuivenhoven JA, Pritchard H, Hill J, Frohlich J, Assmann G, Kastelein J. The molecular pathology of lecithin:cholesterol acyltransferase (LCAT) deficiency syndromes. J Lipid Res. 1997;38:191–205.PubMedGoogle Scholar
  90. 90.
    van den Bogaard B, Holleboom AG, Duivenvoorden R, et al. Patients with low HDL-cholesterol caused by mutations in LCAT have increased arterial stiffness. Atherosclerosis. 2012;225:481–5.PubMedCrossRefGoogle Scholar
  91. 91.
    Holleboom AG, Kuivenhoven JA, Peelman F, et al. High prevalence of mutations in LCAT in patients with low HDL cholesterol levels in The Netherlands: identification and characterization of eight novel mutations. Hum Mutat. 2011;32:1290–8.PubMedCrossRefGoogle Scholar
  92. 92.
    Yasuda T, Ishida T, Rader DJ. Update on the role of endothelial lipase in high-density lipoprotein metabolism, reverse cholesterol transport, and atherosclerosis. Circulation journal : official journal of the Japanese Circulation Society. 2010;74:2263–70.CrossRefGoogle Scholar
  93. 93.
    Strauss JG, Hayn M, Zechner R, Levak-Frank S, Frank S. Fatty acids liberated from high-density lipoprotein phospholipids by endothelial-derived lipase are incorporated into lipids in HepG2 cells. The Biochemical Journal. 2003;371:981–8.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Jahangiri A, Rader DJ, Marchadier D, Curtiss LK, Bonnet DJ, Rye KA. Evidence that endothelial lipase remodels high density lipoproteins without mediating the dissociation of apolipoprotein A-I. J Lipid Res. 2005;46:896–903.PubMedCrossRefGoogle Scholar
  95. 95.
    McCoy MG, Sun GS, Marchadier D, Maugeais C, Glick JM, Rader DJ. Characterization of the lipolytic activity of endothelial lipase. J Lipid Res. 2002;43:921–9.PubMedGoogle Scholar
  96. 96.
    deLemos AS, Wolfe ML, Long CJ, Sivapackianathan R, Rader DJ. Identification of genetic variants in endothelial lipase in persons with elevated high-density lipoprotein cholesterol. Circulation. 2002;106:1321–6.PubMedCrossRefGoogle Scholar
  97. 97.
    Singaraja RR, Tietjen I, Hovingh GK, et al. Identification of four novel genes contributing to familial elevated plasma HDL cholesterol in humans. J Lipid Res. 2014;55:1693–701.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Singaraja RR, Sivapalaratnam S, Hovingh K, et al. The impact of partial and complete loss-of-function mutations in endothelial lipase on high-density lipoprotein levels and functionality in humans. Circ Cardiovasc Genet. 2013;6:54–62.PubMedCrossRefGoogle Scholar
  99. 99.
    Tietjen I, Hovingh GK, Singaraja RR, et al. Segregation of LIPG, CETP, and GALNT2 mutations in Caucasian families with extremely high HDL cholesterol. PLoS One. 2012;7:e37437.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Khetarpal SA, Edmondson AC, Raghavan A, et al. Mining the LIPG allelic spectrum reveals the contribution of rare and common regulatory variants to HDL cholesterol. PLoS Genet. 2011;7:e1002393.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Paradis ME, Couture P, Bosse Y, et al. The T111I mutation in the EL gene modulates the impact of dietary fat on the HDL profile in women. J Lipid Res. 2003;44:1902–8.PubMedCrossRefGoogle Scholar
  102. 102.
    Jensen MK, Rimm EB, Mukamal KJ, et al. The T111I variant in the endothelial lipase gene and risk of coronary heart disease in three independent populations. Eur Heart J. 2009;30:1584–9.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Smith CE, Arnett DK, Tsai MY, et al. Physical inactivity interacts with an endothelial lipase polymorphism to modulate high density lipoprotein cholesterol in the GOLDN study. Atherosclerosis. 2009;206:500–4.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Razzaghi H, Santorico SA, Kamboh MI. Population-based resequencing of LIPG and ZNF202 genes in subjects with extreme HDL levels. Front Genet. 2012;3:89.PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Vergeer M, Cohn DM, Boekholdt SM, et al. Lack of association between common genetic variation in endothelial lipase (LIPG) and the risk for CAD and DVT. Atherosclerosis. 2010;211:558–64.PubMedCrossRefGoogle Scholar
  106. 106.
    Kathiresan S, Willer CJ, Peloso GM, et al. Common variants at 30 loci contribute to polygenic dyslipidemia. Nat Genet. 2009;41:56–65.PubMedCrossRefGoogle Scholar
  107. 107.
    Nikpay M, Goel A, Won HH, et al. A comprehensive 1,000 genomes-based genome-wide association meta-analysis of coronary artery disease. Nat Genet. 2015;47:1121–30.PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Deloukas P, Kanoni S, Willenborg C, et al. Large-scale association analysis identifies new risk loci for coronary artery disease. Nat Genet. 2013;45:25–33.PubMedCrossRefGoogle Scholar
  109. 109.
    Helgadottir A, Gretarsdottir S, Thorleifsson G, et al. Variants with large effects on blood lipids and the role of cholesterol and triglycerides in coronary disease. Nat Genet. 2016;48:634–9.PubMedCrossRefGoogle Scholar
  110. 110.
    Acton S, Rigotti A, Landschulz KT, Xu S, Hobbs HH, Krieger M. Identification of scavenger receptor SR-BI as a high density lipoprotein receptor. Science (New York, NY). 1996;271:518–20.CrossRefGoogle Scholar
  111. 111.
    Hoekstra M. SR-BI as target in atherosclerosis and cardiovascular disease–a comprehensive appraisal of the cellular functions of SR-BI in physiology and disease. Atherosclerosis. 2017;258:153–61.PubMedCrossRefGoogle Scholar
  112. 112.
    Ji Y, Wang N, Ramakrishnan R, et al. Hepatic scavenger receptor BI promotes rapid clearance of high density lipoprotein free cholesterol and its transport into bile. J Biol Chem. 1999;274:33398–402.PubMedCrossRefGoogle Scholar
  113. 113.
    Ueda Y, Gong E, Royer L, Cooper PN, Francone OL, Rubin EM. Relationship between expression levels and atherogenesis in scavenger receptor class B, type I transgenics. J Biol Chem. 2000;275:20368–73.PubMedCrossRefGoogle Scholar
  114. 114.
    Van Eck M, Twisk J, Hoekstra M, et al. Differential effects of scavenger receptor BI deficiency on lipid metabolism in cells of the arterial wall and in the liver. J Biol Chem. 2003;278:23699–705.PubMedCrossRefGoogle Scholar
  115. 115.
    Trigatti B, Rayburn H, Vinals M, et al. Influence of the high density lipoprotein receptor SR-BI on reproductive and cardiovascular pathophysiology. Proc Natl Acad Sci U S A. 1999;96:9322–7.PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Acton S, Osgood D, Donoghue M, et al. Association of polymorphisms at the SR-BI gene locus with plasma lipid levels and body mass index in a white population. Arterioscler Thromb Vasc Biol. 1999;19:1734–43.PubMedCrossRefGoogle Scholar
  117. 117.
    Osgood D, Corella D, Demissie S, et al. Genetic variation at the scavenger receptor class B type I gene locus determines plasma lipoprotein concentrations and particle size and interacts with type 2 diabetes: the framingham study. J Clin Endocrinol Metab. 2003;88:2869–79.PubMedCrossRefGoogle Scholar
  118. 118.
    Morabia A, Ross BM, Costanza MC, et al. Population-based study of SR-BI genetic variation and lipid profile. Atherosclerosis. 2004;175:159–68.PubMedCrossRefGoogle Scholar
  119. 119.
    Niemsiri V, Wang X, Pirim D, et al. Impact of genetic variants in human scavenger receptor class B type I (SCARB1) on plasma lipid traits. Circ Cardiovasc Genet. 2014;7:838–47.PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Manichaikul A, Naj AC, Herrington D, Post W, Rich SS, Rodriguez A. Association of SCARB1 variants with subclinical atherosclerosis and incident cardiovascular disease: the multi-ethnic study of atherosclerosis. Arterioscler Thromb Vasc Biol. 2012;32:1991–9.PubMedCrossRefGoogle Scholar
  121. 121.
    Ritsch A, Sonderegger G, Sandhofer A, et al. Scavenger receptor class B type I polymorphisms and peripheral arterial disease. Metab Clin Exp. 2007;56:1135–41.PubMedCrossRefGoogle Scholar
  122. 122.
    Naj AC, West M, Rich SS, et al. Association of scavenger receptor class B type I polymorphisms with subclinical atherosclerosis: the multi-ethnic study of atherosclerosis. Circ Cardiovasc Genet. 2010;3:47–52.PubMedCrossRefGoogle Scholar
  123. 123.
    Manichaikul A, Wang XQ, Musani SK, et al. Association of the lipoprotein receptor SCARB1 common missense variant rs4238001 with incident coronary heart disease. PLoS One. 2015;10:e0125497.PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Vergeer M, Korporaal SJ, Franssen R, et al. Genetic variant of the scavenger receptor BI in humans. N Engl J Med. 2011;364:136–45.PubMedCrossRefGoogle Scholar
  125. 125.
    Do R, Willer CJ, Schmidt EM, et al. Common variants associated with plasma triglycerides and risk for coronary artery disease. Nat Genet. 2013;45:1345–52.PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Tang CS, Zhang H, Cheung CY, et al. Exome-wide association analysis reveals novel coding sequence variants associated with lipid traits in Chinese. Nat Commun. 2015;6:10206.PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Thompson A, Di Angelantonio E, Sarwar N, et al. Association of cholesteryl ester transfer protein genotypes with CETP mass and activity, lipid levels, and coronary risk. JAMA. 2008;299:2777–88.PubMedCrossRefGoogle Scholar
  128. 128.
    Eiriksdottir G, Bolla MK, Thorsson B, Sigurdsson G, Humphries SE, Gudnason V. The -629C>A polymorphism in the CETP gene does not explain the association of TaqIB polymorphism with risk and age of myocardial infarction in Icelandic men. Atherosclerosis. 2001;159:187–92.PubMedCrossRefGoogle Scholar
  129. 129.
    Kappelle PJ, Gansevoort RT, Hillege HJ, Wolffenbuttel BH, Dullaart RP. Common variation in cholesteryl ester transfer protein: relationship of first major adverse cardiovascular events with the apolipoprotein B/apolipoprotein A-I ratio and the total cholesterol/high-density lipoprotein cholesterol ratio. Journal of Clinical Lipidology. 2013;7:56–64.PubMedCrossRefGoogle Scholar
  130. 130.
    Ikewaki K, Rader DJ, Sakamoto T, et al. Delayed catabolism of high density lipoprotein apolipoproteins A-I and A-II in human cholesteryl ester transfer protein deficiency. J Clin Invest. 1993;92:1650–8.PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    Inazu A, Brown ML, Hesler CB, et al. Increased high-density lipoprotein levels caused by a common cholesteryl-ester transfer protein gene mutation. N Engl J Med. 1990;323:1234–8.PubMedCrossRefGoogle Scholar
  132. 132.
    Inazu A, Jiang XC, Haraki T, et al. Genetic cholesteryl ester transfer protein deficiency caused by two prevalent mutations as a major determinant of increased levels of high density lipoprotein cholesterol. J Clin Invest. 1994;94:1872–82.PubMedPubMedCentralCrossRefGoogle Scholar
  133. 133.
    Koizumi J, Mabuchi H, Yoshimura A, et al. Deficiency of serum cholesteryl-ester transfer activity in patients with familial hyperalphalipoproteinaemia. Atherosclerosis. 1985;58:175–86.PubMedCrossRefGoogle Scholar
  134. 134.
    The HPS3/TIMI55-REVEAL Collaborative Group: effects of anacetrapib in patients with atherosclerotic vascular disease. The New England Journal of Medicine 2017; August 29, 2017DOI:  https://doi.org/10.1056/NEJMoa1706444
  135. 135.
    • Hsieh J, Koseki M, Molusky MM, et al. TTC39B deficiency stabilizes LXR reducing both atherosclerosis and steatohepatitis. Nature. 2016;535:303–7. This manuscript elucidated the functional genomics by which a novel GWAS locus for HDL-C at the gene TTC39B influences LXR, lipid metabolism, and atherosclerosis PubMedPubMedCentralCrossRefGoogle Scholar
  136. 136.
    Kathiresan S, Melander O, Guiducci C, et al. Six new loci associated with blood low-density lipoprotein cholesterol, high-density lipoprotein cholesterol or triglycerides in humans. Nat Genet. 2008;40:189–97.PubMedPubMedCentralCrossRefGoogle Scholar
  137. 137.
    Holleboom AG, Karlsson H, Lin RS, et al. Heterozygosity for a loss-of-function mutation in GALNT2 improves plasma triglyceride clearance in man. Cell Metab. 2011;14:811–8.PubMedPubMedCentralCrossRefGoogle Scholar
  138. 138.
    Roman TS, Marvelle AF, Fogarty MP, et al. Multiple hepatic regulatory variants at the GALNT2 GWAS locus associated with high-density lipoprotein cholesterol. Am J Hum Genet. 2015;97:801–15.PubMedPubMedCentralCrossRefGoogle Scholar
  139. 139.
    Khetarpal SA, Schjoldager KT, Christoffersen C, et al. Loss of function of GALNT2 lowers high-density lipoproteins in humans, nonhuman primates, and rodents. Cell Metab. 2016;24:234–45.PubMedPubMedCentralCrossRefGoogle Scholar
  140. 140.
    Small KS, Hedman AK, Grundberg E, et al. Identification of an imprinted master trans regulator at the KLF14 locus related to multiple metabolic phenotypes. Nat Genet. 2011;43:561–4.PubMedPubMedCentralCrossRefGoogle Scholar
  141. 141.
    Voight BF, Scott LJ, Steinthorsdottir V, et al. Twelve type 2 diabetes susceptibility loci identified through large-scale association analysis. Nat Genet. 2010;42:579–89.PubMedPubMedCentralCrossRefGoogle Scholar
  142. 142.
    Kong A, Steinthorsdottir V, Masson G, et al. Parental origin of sequence variants associated with complex diseases. Nature. 2009;462:868–74.PubMedPubMedCentralCrossRefGoogle Scholar
  143. 143.
    Guo Y, Fan Y, Zhang J, et al. Perhexiline activates KLF14 and reduces atherosclerosis by modulating ApoA-I production. J Clin Invest. 2015;125:3819–30.PubMedPubMedCentralCrossRefGoogle Scholar
  144. 144.
    Franzen O, Ermel R, Cohain A, et al. Cardiometabolic risk loci share downstream cis- and trans-gene regulation across tissues and diseases. Science (New York, NY). 2016;353:827–30.CrossRefGoogle Scholar
  145. 145.
    Innocenti F, Cooper GM, Stanaway IB, et al. Identification, replication, and functional fine-mapping of expression quantitative trait loci in primary human liver tissue. PLoS Genet. 2011;7:e1002078.PubMedPubMedCentralCrossRefGoogle Scholar
  146. 146.
    Civelek M, Wu Y, Pan C, et al. Genetic regulation of adipose gene expression and cardio-metabolic traits. Am J Hum Genet. 2017;100:428–43.PubMedPubMedCentralCrossRefGoogle Scholar
  147. 147.
    Ellison RC, Zhang Y, Qureshi MM, Knox S, Arnett DK, Province MA. Lifestyle determinants of high-density lipoprotein cholesterol: the National Heart, Lung, and Blood Institute Family Heart Study. Am Heart J. 2004;147:529–35.PubMedCrossRefGoogle Scholar
  148. 148.
    Barter P. Raising HDL-C can be achieved by both lifestyle changes and pharmacological means. Introduction Atherosclerosis Supplements. 2011;12:265–6.PubMedCrossRefGoogle Scholar
  149. 149.
    Rader DJ, Tall AR. The not-so-simple HDL story: is it time to revise the HDL cholesterol hypothesis? Nat Med. 2012;18:1344–6.PubMedCrossRefGoogle Scholar
  150. 150.
    Khera AV, Cuchel M, de la Llera-Moya M, et al. Cholesterol efflux capacity, high-density lipoprotein function, and atherosclerosis. N Engl J Med. 2011;364:127–35.PubMedPubMedCentralCrossRefGoogle Scholar
  151. 151.
    • Rohatgi A, Khera A, Berry JD, et al. HDL cholesterol efflux capacity and incident cardiovascular events. N Engl J Med. 2014;371:2383–93. This paper was the first to report an inverse association between HDL cholesterol efflux capacity and incident CV events and showed that this was independent of HDL-C. PubMedPubMedCentralCrossRefGoogle Scholar
  152. 152.
    Saleheen D, Scott R, Javad S, et al. Association of HDL cholesterol efflux capacity with incident coronary heart disease events: a prospective case-control study. The Lancet Diabetes & Endocrinology. 2015;3:507–13.CrossRefGoogle Scholar
  153. 153.
    Ishikawa T, Ayaori M, Uto-Kondo H, Nakajima T, Mutoh M, Ikewaki K. High-density lipoprotein cholesterol efflux capacity as a relevant predictor of atherosclerotic coronary disease. Atherosclerosis. 2015;242:318–22.PubMedCrossRefGoogle Scholar
  154. 154.
    Li XM, Tang WH, Mosior MK, et al. Paradoxical association of enhanced cholesterol efflux with increased incident cardiovascular risks. Arterioscler Thromb Vasc Biol. 2013;33:1696–705.PubMedPubMedCentralCrossRefGoogle Scholar
  155. 155.
    Landray MJ, Haynes R, Hopewell JC, et al. Effects of extended-release niacin with laropiprant in high-risk patients. N Engl J Med. 2014;371:203–12.PubMedCrossRefGoogle Scholar
  156. 156.
    El Khoury P, Waldmann E, Huby T, et al. Extended-Release niacin/laropiprant improves overall efficacy of postprandial reverse cholesterol transport. Arterioscler Thromb Vasc Biol. 2016;36:285–94.PubMedCrossRefGoogle Scholar
  157. 157.
    Nanjee MN, Cooke CJ, Garvin R, et al. Intravenous apoA-I/lecithin discs increase pre-beta-HDL concentration in tissue fluid and stimulate reverse cholesterol transport in humans. J Lipid Res. 2001;42:1586–93.PubMedGoogle Scholar
  158. 158.
    Shaw JA, Bobik A, Murphy A, et al. Infusion of reconstituted high-density lipoprotein leads to acute changes in human atherosclerotic plaque. Circ Res. 2008;103:1084–91.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Cecilia Vitali
    • 1
  • Sumeet A. Khetarpal
    • 1
  • Daniel J. Rader
    • 1
    • 2
  1. 1.Perelman School of Medicine at the University of PennsylvaniaPhiladelphiaUSA
  2. 2.Departments of Genetics and Medicine, Cardiovascular Institute, and Institute for Translational Medicine and TherapeuticsPerelman School of Medicine at the University of PennsylvaniaPhiladelphiaUSA

Personalised recommendations