Current Cardiology Reports

, 19:108 | Cite as

Pulmonic Valve Disease: Review of Pathology and Current Treatment Options

  • Mouhammad Fathallah
  • Richard A. KrasuskiEmail author
Valvular Heart Disease (T Kiefer, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Valvular Heart Disease


Purpose of Review

Our review is intended to provide readers with an overview of disease processes involving the pulmonic valve, highlighting recent outcome studies and guideline-based recommendations; with focus on the two most common interventions for treating pulmonic valve disease, balloon pulmonary valvuloplasty and pulmonic valve replacement.

Recent Findings

The main long-term sequelae of balloon pulmonary valvuloplasty, the gold standard treatment for pulmonic stenosis, remain pulmonic regurgitation and valvular restenosis. The balloon:annulus ratio is a major contributor to both, with high ratios resulting in greater degrees of regurgitation, and small ratios increasing risk for restenosis. Recent studies suggest that a ratio of approximately 1.2 may provide the most optimal results. Pulmonic valve replacement is currently the procedure of choice for patients with severe pulmonic regurgitation and hemodynamic sequelae or symptoms, yet it remains uncertain how it impacts long-term survival. Transcatheter pulmonic valve replacement is a rapidly evolving field and recent outcome studies suggest short and mid-term results at least equivalent to surgery. The Melody valve® was FDA approved for failing pulmonary surgical conduits in 2010 and for failing bioprosthetic surgical pulmonic valves in 2017 and has been extensively studied, whereas the Sapien XT valve®, offering larger diameters, was approved for failing pulmonary conduits in 2016 and has been less extensively studied.


Patients with pulmonic valve disease deserve lifelong surveillance for complications. Transcatheter pulmonic valve replacement is a novel and attractive therapeutic option, but is currently only FDA approved for patients with failing pulmonary conduits or dysfunctional surgical bioprosthetic valves. New advances will undoubtedly increase the utilization of this rapidly expanding technology.


Pulmonic valve (PV) Pulmonic stenosis (PS) Pulmonic regurgitation (PR) Balloon pulmonary valvuloplasty (BPV) Pulmonic valve replacement (PVR) Transcatheter pulmonic valve replacement (TPVR) 


Compliance with Ethical Standards

Conflict of Interest

Mouhammad Fathallah declares no conflict of interest.

Richard A. Krasuski reports grants and personal fees from Actelion, grants from Abbott Laboratories, and grants from Edwards Life Sciences.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.


Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Lloyd TR, Marvin WJ, Mahoney LT, Lauer RM. Balloon dilation valvuloplasty of bioprosthetic valves in extracardiac conduits. Am Heart J. 1987;114(2):268–74.PubMedCrossRefGoogle Scholar
  2. 2.
    •• Devanagondi R, Peck D, Sagi J, Donohue J, Yu S, Pasquali SK, et al. Long-term outcomes of balloon Valvuloplasty for isolated pulmonary valve stenosis. Pediatr Cardiol. 2017;38(2):247–54. The largest study to date providing BPV outcome data in the pediatric population over a period of >10 years. 103 patients were followed for a mean of 14.4 years. 60% developed ≥moderate PR, 5% had systolic RV dysfunction, and 3% underwent PVR for symptomatic severe PR and RV enlargement. Small body surface area and increased baseline RV-PA systolic ejection gradient at time of initial BPV were risk factors for developing PR PubMedCrossRefGoogle Scholar
  3. 3.
    Waller BF, Howard J, Fess S. Pathology of pulmonic valve stenosis and pure regurgitation. Clin Cardiol. 1995;18(1):45–50.PubMedCrossRefGoogle Scholar
  4. 4.
    Shaw AC, Kalidas K, Crosby AH, Jeffery S, Patton MA. The natural history of Noonan syndrome: a long-term follow-up study. Arch Dis Child. 2007;92(2):128–32.PubMedCrossRefGoogle Scholar
  5. 5.
    Lin AE, Basson CT, Goldmuntz E, Magoulas PL, McDermott DA, McDonald-McGinn DM, et al. Adults with genetic syndromes and cardiovascular abnormalities: clinical history and management. Genet Med. 2008;10(7):469–94.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Kumar A, Stalker HJ, Williams CA. Concurrence of supravalvular aortic stenosis and peripheral pulmonary stenosis in three generations of a family: a form of arterial dysplasia. Am J Med Genet. 1993;45(6):739–42.PubMedCrossRefGoogle Scholar
  7. 7.
    Driscoll DJ, Michels VV, Gersony WM, Hayes CJ, Keane JF, Kidd L, et al. Occurrence risk for congenital heart defects in relatives of patients with aortic stenosis, pulmonary stenosis, or ventricular septal defect. Circulation. 1993;87(2 Suppl):I114–20.PubMedGoogle Scholar
  8. 8.
    Bashore TM. Adult congenital heart disease: right ventricular outflow tract lesions. Circulation. 2007;115(14):1933–47.PubMedCrossRefGoogle Scholar
  9. 9.
    Stamm C, Anderson RH, Ho SY. Clinical anatomy of the normal pulmonary root compared with that in isolated pulmonary valvular stenosis. J Am Coll Cardiol. 1998;31(6):1420–5.PubMedCrossRefGoogle Scholar
  10. 10.
    Vedanthan R, Sanz J, Halperin J. Bicuspid pulmonic valve. J Am Coll Cardiol. 2009;54(8):e5.PubMedCrossRefGoogle Scholar
  11. 11.
    Rao BN, Anderson RC, Edwards JE. Anatomic variations in the tetralogy of Fallot. Am Heart J. 1971;81(3):361–71.PubMedCrossRefGoogle Scholar
  12. 12.
    Ascione L, Lengo R, Tuccillo B, D'Andrea A, De Michele M, Porto A, et al. Quadricuspid pulmonary valve diagnosed by cardiac magnetic resonance. J Cardiovasc Med (Hagerstown). 2009;10(12):944–5.CrossRefGoogle Scholar
  13. 13.
    Shah R, Shriki J, Shinbane JS. Cardiovascular magnetic resonance depiction of quadricuspid pulmonary valve with associated pulmonary regurgitation and pulmonary artery aneurysm. Tex Heart Inst J. 2014;41(3):349–50.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Watson GH, Miller V. Arteriohepatic dysplasia: familial pulmonary arterial stenosis with neonatal liver disease. Arch Dis Child. 1973;48(6):459–66.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Abbas JR, Hoschtitzky JA. Which is the best tissue valve used in the pulmonary position, late after previous repair of tetralogy of Fallot? Interact Cardiovasc Thorac Surg. 2013;17(5):854–60.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Rowe RD. Cardiovascular disease in the rubella syndrome. Cardiovasc Clin. 1973;5(1):61–80.PubMedGoogle Scholar
  17. 17.
    Cormode EJ, Dawson M, Lowry RB. Keutel syndrome: clinical report and literature review. Am J Med Genet. 1986;24(2):289–94.PubMedCrossRefGoogle Scholar
  18. 18.
    Prifti E, Crucean A, Bonacchi M, Bernabei M, Murzi B, Luisi SV, et al. Early and long term outcome of the arterial switch operation for transposition of the great arteries: predictors and functional evaluation. Eur J Cardiothorac Surg. 2002;22(6):864–73.PubMedCrossRefGoogle Scholar
  19. 19.
    Cabrera A, Martinez P, Rumoroso JR, Alcibar J, Arriola J, Pastor E, et al. Double-chambered right ventricle. Eur Heart J. 1995;16(5):682–6.PubMedCrossRefGoogle Scholar
  20. 20.
    Shyu KG, Tseng CD, Chiu IS, Hung CR, Chu SH, Lue HC, et al. Infundibular pulmonic stenosis with intact ventricular septum: a report of 15 surgically corrected patients. Int J Cardiol. 1993;41(2):115–21.PubMedCrossRefGoogle Scholar
  21. 21.
    Fox D, Devendra GP, Hart SA, Krasuski RA. When 'blue babies' grow up: what you need to know about tetralogy of Fallot. Cleve Clin J Med. 2010;77(11):821–8.PubMedCrossRefGoogle Scholar
  22. 22.
    Robertson M, Benson LN, Smallhorn JS, Musewe N, Freedom RM, Moes CA, et al. The morphology of the right ventricular outflow tract after percutaneous pulmonary valvotomy: long term follow up. Br Heart J. 1987;58(3):239–44.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Hayes CJ, Gersony WM, Driscoll DJ, Keane JF, Kidd L, O'Fallon WM, et al. Second natural history study of congenital heart defects. Results of treatment of patients with pulmonary valvar stenosis. Circulation. 1993;87(2 Suppl):I28–37.PubMedGoogle Scholar
  24. 24.
    Jonsson B, Lee SJ. Haemodynamic effects of exercise in isolated pulmonary stenosis before and after surgery. Br Heart J. 1968;30(1):60–6.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Nishimura RA, Otto CM, Bonow RO, Carabello BA, Erwin JP, Guyton RA, et al. 2014 AHA/ACC guideline for the management of patients with valvular heart disease: a report of the American College of Cardiology/American Heart Association task force on practice guidelines. J Am Coll Cardiol. 2014;63(22):e57–185.PubMedCrossRefGoogle Scholar
  26. 26.
    Lima CO, Sahn DJ, Valdes-Cruz LM, Goldberg SJ, Barron JV, Allen HD, et al. Noninvasive prediction of transvalvular pressure gradient in patients with pulmonary stenosis by quantitative two-dimensional echocardiographic Doppler studies. Circulation. 1983;67(4):866–71.PubMedCrossRefGoogle Scholar
  27. 27.
    Johnson GL, Kwan OL, Handshoe S, Noonan JA, DeMaria AN. Accuracy of combined two-dimensional echocardiography and continuous wave Doppler recordings in the estimation of pressure gradient in right ventricular outlet obstruction. J Am Coll Cardiol. 1984;3(4):1013–8.PubMedCrossRefGoogle Scholar
  28. 28.
    Takao S, Miyatake K, Izumi S, Okamoto M, Kinoshita N, Nakagawa H, et al. Clinical implications of pulmonary regurgitation in healthy individuals: detection by cross sectional pulsed Doppler echocardiography. Br Heart J. 1988;59(5):542–50.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Rocchini AP, Beekman RH. Balloon angioplasty in the treatment of pulmonary valve stenosis and coarctation of the aorta. Tex Heart Inst J. 1986;13(4):377–85.PubMedPubMedCentralGoogle Scholar
  30. 30.
    Saremi F, Gera A, Ho SY, Hijazi ZM, Sánchez-Quintana D. CT and MR imaging of the pulmonary valve. Radiographics. 2014;34(1):51–71.PubMedCrossRefGoogle Scholar
  31. 31.
    Haddad F, Hunt SA, Rosenthal DN, Murphy DJ. Right ventricular function in cardiovascular disease, part I: anatomy, physiology, aging, and functional assessment of the right ventricle. Circulation. 2008;117(11):1436–48.PubMedCrossRefGoogle Scholar
  32. 32.
    Klein AL, Burstow DJ, Tajik AJ, Zachariah PK, Taliercio CP, Taylor CL, et al. Age-related prevalence of valvular regurgitation in normal subjects: a comprehensive color flow examination of 118 volunteers. J Am Soc Echocardiogr. 1990;3(1):54–63.PubMedCrossRefGoogle Scholar
  33. 33.
    Ansari A. Isolated pulmonary valvular regurgitation: current perspectives. Prog Cardiovasc Dis. 1991;33(5):329–44.PubMedCrossRefGoogle Scholar
  34. 34.
    Hamza N, Ortiz J, Bonomo RA. Isolated pulmonic valve infective endocarditis: a persistent challenge. Infection. 2004;32(3):170–5.PubMedCrossRefGoogle Scholar
  35. 35.
    Pellikka PA, Tajik AJ, Khandheria BK, Seward JB, Callahan JA, Pitot HC, et al. Carcinoid heart disease. Clinical and echocardiographic spectrum in 74 patients. Circulation. 1993;87(4):1188–96.PubMedCrossRefGoogle Scholar
  36. 36.
    Earing MG, Connolly HM, Dearani JA, Ammash NM, Grogan M, Warnes CA. Long-term follow-up of patients after surgical treatment for isolated pulmonary valve stenosis. Mayo Clin Proc. 2005;80(7):871–6.PubMedCrossRefGoogle Scholar
  37. 37.
    Rebergen SA, Chin JG, Ottenkamp J, van der Wall EE, de Roos A. Pulmonary regurgitation in the late postoperative follow-up of tetralogy of Fallot. Volumetric quantitation by nuclear magnetic resonance velocity mapping. Circulation. 1993;88(5 Pt 1):2257–66.PubMedCrossRefGoogle Scholar
  38. 38.
    Miller RA, Lev M, Paul MH. Congenital absence of the pulmonary valve. The clinical syndrome of tetralogy of Fallot with pulmonary regurgitation. Circulation. 1962;26:266–78.PubMedCrossRefGoogle Scholar
  39. 39.
    Zucker N, Rozin I, Levitas A, Zalzstein E. Clinical presentation, natural history, and outcome of patients with the absent pulmonary valve syndrome. Cardiol Young. 2004;14(4):402–8.PubMedCrossRefGoogle Scholar
  40. 40.
    Renella P, Aboulhosn J, Lohan DG, Jonnala P, Finn JP, Satou GM, et al. Two-dimensional and Doppler echocardiography reliably predict severe pulmonary regurgitation as quantified by cardiac magnetic resonance. J Am Soc Echocardiogr. 2010;23(8):880–6.PubMedCrossRefGoogle Scholar
  41. 41.
    Ristow B, Ahmed S, Wang L, Liu H, Angeja BG, Whooley MA, et al. Pulmonary regurgitation end-diastolic gradient is a Doppler marker of cardiac status: data from the heart and soul study. J Am Soc Echocardiogr. 2005;18(9):885–91.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Shimazaki Y, Blackstone EH, Kirklin JW. The natural history of isolated congenital pulmonary valve incompetence: surgical implications. Thorac Cardiovasc Surg. 1984;32(4):257–9.PubMedCrossRefGoogle Scholar
  43. 43.
    Davlouros PA, Kilner PJ, Hornung TS, Li W, Francis JM, Moon JC, et al. Right ventricular function in adults with repaired tetralogy of Fallot assessed with cardiovascular magnetic resonance imaging: detrimental role of right ventricular outflow aneurysms or akinesia and adverse right-to-left ventricular interaction. J Am Coll Cardiol. 2002;40(11):2044–52.PubMedCrossRefGoogle Scholar
  44. 44.
    Bigdelian H, Mardani D, Sedighi M. The effect of pulmonary valve replacement (PVR) surgery on hemodynamics of patients who underwent repair of tetralogy of Fallot (TOF). J Cardiovasc Thorac Res. 2015;7(3):122–5.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Frigiola A, Giardini A, Taylor A, Tsang V, Derrick G, Khambadkone S, et al. Echocardiographic assessment of diastolic biventricular properties in patients operated for severe pulmonary regurgitation and association with exercise capacity. Eur Heart J Cardiovasc Imaging. 2012;13(8):697–702.PubMedCrossRefGoogle Scholar
  46. 46.
    Frigiola A, Redington AN, Cullen S, Vogel M. Pulmonary regurgitation is an important determinant of right ventricular contractile dysfunction in patients with surgically repaired tetralogy of Fallot. Circulation. 2004;110(11 Suppl 1):II153–7.PubMedGoogle Scholar
  47. 47.
    Bouzas B, Kilner PJ, Gatzoulis MA. Pulmonary regurgitation: not a benign lesion. Eur Heart J. 2005;26(5):433–9.PubMedCrossRefGoogle Scholar
  48. 48.
    Gatzoulis MA, Balaji S, Webber SA, Siu SC, Hokanson JS, Poile C, et al. Risk factors for arrhythmia and sudden cardiac death late after repair of tetralogy of Fallot: a multicentre study. Lancet. 2000;356(9234):975–81.PubMedCrossRefGoogle Scholar
  49. 49.
    Knauth AL, Gauvreau K, Powell AJ, Landzberg MJ, Walsh EP, Lock JE, et al. Ventricular size and function assessed by cardiac MRI predict major adverse clinical outcomes late after tetralogy of Fallot repair. Heart. 2008;94(2):211–6.PubMedCrossRefGoogle Scholar
  50. 50.
    Redington AN. Determinants and assessment of pulmonary regurgitation in tetralogy of Fallot: practice and pitfalls. Cardiol Clin. 2006;24(4):631–9. vii PubMedCrossRefGoogle Scholar
  51. 51.
    Joynt MR, Yu S, Dorfman AL, Ghadimi Mahani M, Agarwal PP, Lu JC. Differential impact of pulmonary regurgitation on patients with surgically repaired pulmonary stenosis versus tetralogy of Fallot. Am J Cardiol. 2016;117(2):289–94.PubMedCrossRefGoogle Scholar
  52. 52.
    Rajiah P, Nazarian J, Vogelius E, Gilkeson RC. CT and MRI of pulmonary valvular abnormalities. Clin Radiol. 2014;69(6):630–8.PubMedCrossRefGoogle Scholar
  53. 53.
    Jonas SN, Kligerman SJ, Burke AP, Frazier AA, White CS. Pulmonary valve anatomy and abnormalities: a pictorial essay of radiography, computed tomography (CT), and magnetic resonance imaging (MRI). J Thorac Imaging. 2016;31(1):W4–12.PubMedCrossRefGoogle Scholar
  54. 54.
    Geva T. Repaired tetralogy of Fallot: the roles of cardiovascular magnetic resonance in evaluating pathophysiology and for pulmonary valve replacement decision support. J Cardiovasc Magn Reson. 2011;13:9.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Mooij CF, de Wit CJ, Graham DA, Powell AJ, Geva T. Reproducibility of MRI measurements of right ventricular size and function in patients with normal and dilated ventricles. J Magn Reson Imaging. 2008;28(1):67–73.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Wald RM, Haber I, Wald R, Valente AM, Powell AJ, Geva T. Effects of regional dysfunction and late gadolinium enhancement on global right ventricular function and exercise capacity in patients with repaired tetralogy of Fallot. Circulation. 2009;119(10):1370–7.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Babu-Narayan SV, Kilner PJ, Li W, Moon JC, Goktekin O, Davlouros PA, et al. Ventricular fibrosis suggested by cardiovascular magnetic resonance in adults with repaired tetralogy of fallot and its relationship to adverse markers of clinical outcome. Circulation. 2006;113(3):405–13.PubMedCrossRefGoogle Scholar
  58. 58.
    Samyn MM, Powell AJ, Garg R, Sena L, Geva T. Range of ventricular dimensions and function by steady-state free precession cine MRI in repaired tetralogy of Fallot: right ventricular outflow tract patch vs. conduit repair. J Magn Reson Imaging. 2007;26(4):934–40.PubMedCrossRefGoogle Scholar
  59. 59.
    Crean AM, Maredia N, Ballard G, Menezes R, Wharton G, Forster J, et al. 3D Echo systematically underestimates right ventricular volumes compared to cardiovascular magnetic resonance in adult congenital heart disease patients with moderate or severe RV dilatation. J Cardiovasc Magn Reson. 2011;13:78.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Mercer-Rosa L, Yang W, Kutty S, Rychik J, Fogel M, Goldmuntz E. Quantifying pulmonary regurgitation and right ventricular function in surgically repaired tetralogy of Fallot: a comparative analysis of echocardiography and magnetic resonance imaging. Circ Cardiovasc Imaging. 2012;5(5):637–43.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    • Zdradzinski M, Elkin R, Flamm S, Krasuski R. Incremenal value of cardiac magnetic resonance for assessing pulmonic valve regurgitation. J Heart Valve Dis. 2015;24(4):502–7. This study compares cardiac MRI to echo in assessment of PR severity in patients with TOF following complete repair and PS following valvotomy. Cardiac MRI-derived measures of PR closely correlated to right ventricular end systolic volume index, while echo-derived measures did not. This suggests that cardiac MRI should play a vital role in the assessment of patients at risk for PR PubMedGoogle Scholar
  62. 62.
    Kan JS, White RI, Mitchell SE, Gardner TJ. Percutaneous balloon valvuloplasty: a new method for treating congenital pulmonary-valve stenosis. N Engl J Med. 1982;307(9):540–2.PubMedCrossRefGoogle Scholar
  63. 63.
    Wang SZ, Ou-Yang WB, Hu SS, Pang KJ, Liu Y, Zhang FW, et al. First-in-human percutaneous balloon pulmonary Valvuloplasty under echocardiographic guidance only. Congenit Heart Dis. 2016;11(6):716–20.PubMedCrossRefGoogle Scholar
  64. 64.
    Warnes CA, Williams RG, Bashore TM, Child JS, Connolly HM, Dearani JA, et al. ACC/AHA 2008 guidelines for the Management of Adults with congenital heart disease: a report of the American College of Cardiology/American Heart Association task force on practice guidelines (writing committee to develop guidelines on the management of adults with congenital heart disease). Circulation. 2008;118(23):e714–833.PubMedCrossRefGoogle Scholar
  65. 65.
    Fawzy ME, Hassan W, Fadel BM, Sergani H, El Shaer F, El Widaa H, et al. Long-term results (up to 17 years) of pulmonary balloon valvuloplasty in adults and its effects on concomitant severe infundibular stenosis and tricuspid regurgitation. Am Heart J. 2007;153(3):433–8.PubMedCrossRefGoogle Scholar
  66. 66.
    McCrindle BW. Independent predictors of long-term results after balloon pulmonary valvuloplasty. Valvuloplasty and angioplasty of congenital anomalies (VACA) registry investigators. Circulation. 1994;89(4):1751–9.PubMedCrossRefGoogle Scholar
  67. 67.
    McCrindle BW, Kan JS. Long-term results after balloon pulmonary valvuloplasty. Circulation. 1991;83(6):1915–22.PubMedCrossRefGoogle Scholar
  68. 68.
    Mahfouz RA, Moustafa TM, Gouda M, Gad M. Longitudinal function and ventricular dyssynchrony are restored in children with pulmonary stenosis after percutaneous balloon pulmonary valvuloplasty. Int J Cardiovasc Imaging. 2017;33(4):533–8.PubMedCrossRefGoogle Scholar
  69. 69.
    Stanger P, Cassidy SC, Girod DA, Kan JS, Lababidi Z, Shapiro SR. Balloon pulmonary valvuloplasty: results of the Valvuloplasty and angioplasty of congenital anomalies registry. Am J Cardiol. 1990;65(11):775–83.PubMedCrossRefGoogle Scholar
  70. 70.
    Rao PS. Percutaneous balloon pulmonary valvuloplasty: state of the art. Catheter Cardiovasc Interv. 2007;69(5):747–63.PubMedCrossRefGoogle Scholar
  71. 71.
    Ben-Shachar G, Cohen MH, Sivakoff MC, Portman MA, Riemenschneider TA, Van Heeckeren DW. Development of infundibular obstruction after percutaneous pulmonary balloon valvuloplasty. J Am Coll Cardiol. 1985;5(3):754–6.PubMedCrossRefGoogle Scholar
  72. 72.
    Fawzy ME, Galal O, Dunn B, Shaikh A, Sriram R, Duran CM. Regression of infundibular pulmonary stenosis after successful balloon pulmonary valvuloplasty in adults. Catheter Cardiovasc Diagn. 1990;21(2):77–81.CrossRefGoogle Scholar
  73. 73.
    Merino-Ingelmo R, Santos-de Soto J, Coserria-Sánchez F, Descalzo-Señoran A, Valverde-Pérez I. Long-term results of percutaneous balloon valvuloplasty in pulmonary valve stenosis in the pediatric population. Rev Esp Cardiol (Engl Ed). 2014;67(5):374–9.CrossRefGoogle Scholar
  74. 74.
    Garty Y, Veldtman G, Lee K, Benson L. Late outcomes after pulmonary valve balloon dilatation in neonates, infants and children. J Invasive Cardiol. 2005;17(6):318–22.PubMedGoogle Scholar
  75. 75.
    Harrild DM, Powell AJ, Tran TX, Trang TX, Geva T, Lock JE, et al. Long-term pulmonary regurgitation following balloon valvuloplasty for pulmonary stenosis risk factors and relationship to exercise capacity and ventricular volume and function. J Am Coll Cardiol. 2010;55(10):1041–7.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Rao PS, Galal O, Patnana M, Buck SH, Wilson AD. Results of three to 10 year follow up of balloon dilatation of the pulmonary valve. Heart. 1998;80(6):591–5.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Sadr-Ameli MA, Sheikholeslami F, Firoozi I, Azarnik H. Late results of balloon pulmonary valvuloplasty in adults. Am J Cardiol. 1998;82(3):398–400.PubMedCrossRefGoogle Scholar
  78. 78.
    Taggart NW, Cetta F, Cabalka AK, Hagler DJ. Outcomes for balloon pulmonary valvuloplasty in adults: comparison with a concurrent pediatric cohort. Catheter Cardiovasc Interv. 2013;82(5):811–5.PubMedCrossRefGoogle Scholar
  79. 79.
    Qian X, Qian Y, Zhou Y, Yang X. Percutaneous pulmonary balloon Valvuloplasty provides good long-term outcomes in adults with pulmonary valve stenosis. J Invasive Cardiol. 2015;27(12):E291–6.PubMedGoogle Scholar
  80. 80.
    Berman W, Fripp RR, Raisher BD, Yabek SM. Significant pulmonary valve incompetence following oversize balloon pulmonary valveplasty in small infants: a long-term follow-up study. Catheter Cardiovasc Interv. 1999;48(1):61–5.PubMedCrossRefGoogle Scholar
  81. 81.
    Pathak SJ, Pockett CR, Moore JW, El-Said HG. Effect of balloon:annulus ratio on incidence of pulmonary insufficiency following Valvuloplasty. Congenit Heart Dis. 2016;11(5):415–9.PubMedCrossRefGoogle Scholar
  82. 82.
    Geva T, Sandweiss BM, Gauvreau K, Lock JE, Powell AJ. Factors associated with impaired clinical status in long-term survivors of tetralogy of Fallot repair evaluated by magnetic resonance imaging. J Am Coll Cardiol. 2004;43(6):1068–74.PubMedCrossRefGoogle Scholar
  83. 83.
    Frigiola A, Tsang V, Bull C, Coats L, Khambadkone S, Derrick G, et al. Biventricular response after pulmonary valve replacement for right ventricular outflow tract dysfunction: is age a predictor of outcome? Circulation. 2008;118(14 Suppl):S182–90.PubMedCrossRefGoogle Scholar
  84. 84.
    Geva T, Gauvreau K, Powell AJ, Cecchin F, Rhodes J, Geva J, et al. Randomized trial of pulmonary valve replacement with and without right ventricular remodeling surgery. Circulation. 2010;122(11 Suppl):S201–8.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    •• Bokma JP, Winter MM, Oosterhof T, Vliegen HW, van Dijk AP, Hazekamp MG, et al. Preoperative thresholds for mid-to-late haemodynamic and clinical outcomes after pulmonary valve replacement in tetralogy of Fallot. Eur Heart J. 2016;37(10):829–35. A multi-center study that compared cardiac MRI values in 65 patients with TOF before and 3 years after pulmonic valve replacement. Pre-operative RV end-systolic volume index <80 mL/m 2 was found to be the best threshold to achieve mid- to late- RV normalization. The risk for suboptimal outcomes and adverse events was increased in patients whose pre-operative RVESi exceeded 95 mL/m 2 PubMedCrossRefGoogle Scholar
  86. 86.
    Lee C, Kim YM, Lee CH, Kwak JG, Park CS, Song JY, et al. Outcomes of pulmonary valve replacement in 170 patients with chronic pulmonary regurgitation after relief of right ventricular outflow tract obstruction: implications for optimal timing of pulmonary valve replacement. J Am Coll Cardiol. 2012;60(11):1005–14.PubMedCrossRefGoogle Scholar
  87. 87.
    Ammash NM, Dearani JA, Burkhart HM, Connolly HM. Pulmonary regurgitation after tetralogy of Fallot repair: clinical features, sequelae, and timing of pulmonary valve replacement. Congenit Heart Dis. 2007;2(6):386–403.PubMedCrossRefGoogle Scholar
  88. 88.
    Oosterhof T, van Straten A, Vliegen HW, Meijboom FJ, van Dijk AP, Spijkerboer AM, et al. Preoperative thresholds for pulmonary valve replacement in patients with corrected tetralogy of Fallot using cardiovascular magnetic resonance. Circulation. 2007;116(5):545–51.PubMedCrossRefGoogle Scholar
  89. 89.
    Ferraz Cavalcanti PE, Sá MP, Santos CA, Esmeraldo IM, de Escobar RR, de Menezes AM, et al. Pulmonary valve replacement after operative repair of tetralogy of Fallot: meta-analysis and meta-regression of 3,118 patients from 48 studies. J Am Coll Cardiol. 2013;62(23):2227–43.PubMedCrossRefGoogle Scholar
  90. 90.
    van der Wall EE, Mulder BJ. Pulmonary valve replacement in patients with tetralogy of Fallot and pulmonary regurgitation: early surgery similar to optimal timing of surgery? Eur Heart J. 2005;26(24):2614–5.PubMedCrossRefGoogle Scholar
  91. 91.
    Therrien J, Provost Y, Merchant N, Williams W, Colman J, Webb G. Optimal timing for pulmonary valve replacement in adults after tetralogy of Fallot repair. Am J Cardiol. 2005;95(6):779–82.PubMedCrossRefGoogle Scholar
  92. 92.
    Cheung EW, Wong WH, Cheung YF. Meta-analysis of pulmonary valve replacement after operative repair of tetralogy of fallot. Am J Cardiol. 2010;106(4):552–7.PubMedCrossRefGoogle Scholar
  93. 93.
    •• Hallbergson A, Gauvreau K, Powell AJ, Geva T. Right ventricular remodeling after pulmonary valve replacement: early gains, late losses. Ann Thorac Surg. 2015;99(2):660–6. In this study, serial cardiac MRI was done in 101 patients with TOF before and after surgical PVR. Although indexed RV end-systolic and end-diastolic volumes initially decreased after PVR, they progressively increased back to pre-operative values after 7-10 years, and RV ejection fraction progressively declined. This suggests that PVR is simply palliative, and that continued surveillance afterwards is critical PubMedCrossRefGoogle Scholar
  94. 94.
    Caldarone CA, McCrindle BW, Van Arsdell GS, Coles JG, Webb G, Freedom RM, et al. Independent factors associated with longevity of prosthetic pulmonary valves and valved conduits. J Thorac Cardiovasc Surg. 2000;120(6):1022–30.PubMedCrossRefGoogle Scholar
  95. 95.
    Albert JD, Bishop DA, Fullerton DA, Campbell DN, Clarke DR. Conduit reconstruction of the right ventricular outflow tract. Lessons learned in a twelve-year experience. J Thorac Cardiovasc Surg. 1993;106(2):228–35.PubMedGoogle Scholar
  96. 96.
    Baskett RJ, Ross DB, Nanton MA, Murphy DA. Factors in the early failure of cryopreserved homograft pulmonary valves in children: preserved immunogenicity? J Thorac Cardiovasc Surg. 1996;112(5):1170–8.PubMedCrossRefGoogle Scholar
  97. 97.
    Pibarot P, Dumesnil JG. Prosthetic heart valves: selection of the optimal prosthesis and long-term management. Circulation. 2009;119(7):1034–48.PubMedCrossRefGoogle Scholar
  98. 98.
    Lee C, Park CS, Lee CH, Kwak JG, Kim SJ, Shim WS, et al. Durability of bioprosthetic valves in the pulmonary position: long-term follow-up of 181 implants in patients with congenital heart disease. J Thorac Cardiovasc Surg. 2011;142(2):351–8.PubMedCrossRefGoogle Scholar
  99. 99.
    Shinkawa T, Anagnostopoulos PV, Johnson NC, Watanabe N, Sapru A, Azakie A. Performance of bovine pericardial valves in the pulmonary position. Ann Thorac Surg. 2010;90(4):1295–300.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Chen PC, Sager MS, Zurakowski D, Pigula FA, Baird CW, Mayer JE, et al. Younger age and valve oversizing are predictors of structural valve deterioration after pulmonary valve replacement in patients with tetralogy of Fallot. J Thorac Cardiovasc Surg. 2012;143(2):352–60.PubMedCrossRefGoogle Scholar
  101. 101.
    McKenzie ED, Khan MS, Dietzman TW, Guzmán-Pruneda FA, Samayoa AX, Liou A, et al. Surgical pulmonary valve replacement: a benchmark for outcomes comparisons. J Thorac Cardiovasc Surg. 2014;148(4):1450–3.PubMedCrossRefGoogle Scholar
  102. 102.
    Butany J, Feng T, Luk A, Law K, Suri R, Nair V. Modes of failure in explanted mitroflow pericardial valves. Ann Thorac Surg. 2011;92(5):1621–7.PubMedCrossRefGoogle Scholar
  103. 103.
    Nomoto R, Sleeper LA, Borisuk MJ, Bergerson L, Pigula FA, Emani S, et al. Outcome and performance of bioprosthetic pulmonary valve replacement in patients with congenital heart disease. J Thorac Cardiovasc Surg. 2016;152(5):1333–42.e3.PubMedCrossRefGoogle Scholar
  104. 104.
    Bonhoeffer P, Boudjemline Y, Saliba Z, Merckx J, Aggoun Y, Bonnet D, et al. Percutaneous replacement of pulmonary valve in a right-ventricle to pulmonary-artery prosthetic conduit with valve dysfunction. Lancet. 2000;356(9239):1403–5.PubMedCrossRefGoogle Scholar
  105. 105.
    Feltes TF, Bacha E, Beekman RH, Cheatham JP, Feinstein JA, Gomes AS, et al. Indications for cardiac catheterization and intervention in pediatric cardiac disease: a scientific statement from the American Heart Association. Circulation. 2011;123(22):2607–52.PubMedCrossRefGoogle Scholar
  106. 106.
    Gillespie MJ, Rome JJ, Levi DS, Williams RJ, Rhodes JF, Cheatham JP, et al. Melody valve implant within failed bioprosthetic valves in the pulmonary position: a multicenter experience. Circ Cardiovasc Interv. 2012;5(6):862–70.PubMedCrossRefGoogle Scholar
  107. 107.
    Webb JG, Wood DA, Ye J, Gurvitch R, Masson JB, Rodés-Cabau J, et al. Transcatheter valve-in-valve implantation for failed bioprosthetic heart valves. Circulation. 2010;121(16):1848–57.PubMedCrossRefGoogle Scholar
  108. 108.
    Cheatham SL, Holzer RJ, Chisolm JL, Cheatham JP. The Medtronic melody® transcatheter pulmonary valve implanted at 24-mm diameter--it works. Catheter Cardiovasc Interv. 2013;82(5):816–23.PubMedCrossRefGoogle Scholar
  109. 109.
    Meadows JJ, Moore PM, Berman DP, Cheatham JP, Cheatham SL, Porras D, et al. Use and performance of the melody Transcatheter pulmonary valve in native and postsurgical, nonconduit right ventricular outflow tracts. Circ Cardiovasc Interv. 2014;7(3):374–80.PubMedCrossRefGoogle Scholar
  110. 110.
    Coats L, Khambadkone S, Derrick G, Sridharan S, Schievano S, Mist B, et al. Physiological and clinical consequences of relief of right ventricular outflow tract obstruction late after repair of congenital heart defects. Circulation. 2006;113(17):2037–44.PubMedCrossRefGoogle Scholar
  111. 111.
    Plymen CM, Bolger AP, Lurz P, Nordmeyer J, Lee TY, Kabir A, et al. Electrical remodeling following percutaneous pulmonary valve implantation. Am J Cardiol. 2011;107(2):309–14.PubMedCrossRefGoogle Scholar
  112. 112.
    Khambadkone S, Coats L, Taylor A, Boudjemline Y, Derrick G, Tsang V, et al. Percutaneous pulmonary valve implantation in humans: results in 59 consecutive patients. Circulation. 2005;112(8):1189–97.PubMedCrossRefGoogle Scholar
  113. 113.
    Morray BH, McElhinney DB, Boudjemline Y, Gewillig M, Kim DW, Grant EK, et al. Multicenter Experience Evaluating Transcatheter Pulmonary Valve Replacement in Bovine Jugular Vein (Contegra) Right Ventricle to Pulmonary Artery Conduits. Circ Cardiovasc Interv. 2017;10(6).Google Scholar
  114. 114.
    Lurz P, Nordmeyer J, Giardini A, Khambadkone S, Muthurangu V, Schievano S, et al. Early versus late functional outcome after successful percutaneous pulmonary valve implantation: are the acute effects of altered right ventricular loading all we can expect? J Am Coll Cardiol. 2011;57(6):724–31.PubMedCrossRefGoogle Scholar
  115. 115.
    • Cheatham JP, Hellenbrand WE, Zahn EM, Jones TK, Berman DP, Vincent JA, et al. Clinical and hemodynamic outcomes up to 7 years after transcatheter pulmonary valve replacement in the US melody valve investigational device exemption trial. Circulation. 2015;131(22):1960–70. One of the three main trials that provided follow-up data in patients receiving the Melody valve. Good clinical and hemodynamic outcomes were demonstrated up to 7 years following implantation. The main cause for valve failure was stenosis due to stent fracture PubMedCrossRefGoogle Scholar
  116. 116.
    McElhinney DB, Cheatham JP, Jones TK, Lock JE, Vincent JA, Zahn EM, et al. Stent fracture, valve dysfunction, and right ventricular outflow tract reintervention after transcatheter pulmonary valve implantation: patient-related and procedural risk factors in the US melody valve trial. Circ Cardiovasc Interv. 2011;4(6):602–14.PubMedCrossRefGoogle Scholar
  117. 117.
    McElhinney DB, Hellenbrand WE, Zahn EM, Jones TK, Cheatham JP, Lock JE, et al. Short- and medium-term outcomes after transcatheter pulmonary valve placement in the expanded multicenter US melody valve trial. Circulation. 2010;122(5):507–16.PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Ewert P, Horlick E, Berger F. First implantation of the CE-marked transcatheter Sapien pulmonic valve in Europe. Clin Res Cardiol. 2011;100(1):85–7.PubMedCrossRefGoogle Scholar
  119. 119.
    Haas NA, Moysich A, Neudorf U, Mortezaeian H, Abdel-Wahab M, Schneider H, et al. Percutaneous implantation of the Edwards SAPIEN(™) pulmonic valve: initial results in the first 22 patients. Clin Res Cardiol. 2013;102(2):119–28.PubMedCrossRefGoogle Scholar
  120. 120.
    Wilson WM, Benson LN, Osten MD, Shah A, Horlick EM. Transcatheter pulmonary valve replacement with the Edwards Sapien system: the Toronto experience. JACC Cardiovasc Interv. 2015;8(14):1819–27.PubMedCrossRefGoogle Scholar
  121. 121.
    Fraisse A, Assaidi A, Mauri L, Malekzadeh-Milani S, Thambo JB, Bonnet D, et al. Coronary artery compression during intention to treat right ventricle outflow with percutaneous pulmonary valve implantation: incidence, diagnosis, and outcome. Catheter Cardiovasc Interv. 2014;83(7):E260–8.PubMedCrossRefGoogle Scholar
  122. 122.
    Morray BH, McElhinney DB, Cheatham JP, Zahn EM, Berman DP, Sullivan PM, et al. Risk of coronary artery compression among patients referred for transcatheter pulmonary valve implantation: a multicenter experience. Circ Cardiovasc Interv. 2013;6(5):535–42.PubMedCrossRefGoogle Scholar
  123. 123.
    • Lindsay I, Aboulhosn J, Salem M, Levi D. Aortic root compression during transcatheter pulmonary valve replacement. Catheter Cardiovasc Interv. 2016;88(5):814–21. A retrospective study of 174 patients who underwent transcatheter pulmonic valve replacement. Intra-procedural aortic root compression occurred in 9% of the patients, and 31% of those had concomitant coronary compression. Most of cases of aortic root compression occurred in TOF with native or transannular-patched RVOT PubMedCrossRefGoogle Scholar
  124. 124.
    Levi DS, Sinha S, Salem MM, Aboulhosn JA. Transcatheter native pulmonary valve and tricuspid valve replacement with the sapien XT: initial experience and development of a new delivery platform. Catheter Cardiovasc Interv. 2016;88(3):434–43.PubMedCrossRefGoogle Scholar
  125. 125.
    Porras D, Gurvitz M, Marshall AC, Emani SM. Hybrid approach for off-pump pulmonary valve replacement in patients with a dilated right ventricular outflow tract. Ann Thorac Surg. 2015;100(5):e99–101.PubMedCrossRefGoogle Scholar
  126. 126.
    Chen Q, Turner M, Caputo M, Stoica S, Marianeschi S, Parry A. Pulmonary valve implantation using self-expanding tissue valve without cardiopulmonary bypass reduces operation time and blood product use. J Thorac Cardiovasc Surg. 2013;145(4):1040–5.PubMedCrossRefGoogle Scholar
  127. 127.
    • Sizarov A, Boudjemline Y. Novel materials and devices in the transcatheter management of congenital heart diseases-the future comes slowly (part 3). Arch Cardiovasc Dis. 2016;109(5):348–58. An excellent review providing insight into the future advancements in transcatheter interventions. One of the techniques described involves placing RVOT reducers/fillers to create smaller landing zones for implanting transcatheter pulmonic valves PubMedCrossRefGoogle Scholar
  128. 128.
    Schoonbeek RC, Takebayashi S, Aoki C, Shimaoka T, Harris MA, Fu GL, et al. Implantation of the Medtronic Harmony Transcatheter Pulmonary Valve Improves Right Ventricular Size and Function in an Ovine Model of Postoperative Chronic Pulmonary Insufficiency. Circ Cardiovasc Interv. 2016;9(10).Google Scholar
  129. 129.
    • Promphan W, Prachasilchai P, Siripornpitak S, Qureshi SA, Layangool T. Percutaneous pulmonary valve implantation with the Venus P-valve: clinical experience and early results. Cardiol Young. 2016;26(4):698–710. This study reports early experience with a new self-expanding transcatheter valve, the Venus P-valve. All 6 patients described had severe PR with large RVOTs (range 24-32mm). The valve was successfully implanted in all patients, but unexpected mild proximal valve migration occurred in one patient and resulted in mild paravalvar leak and significant tricuspid regurgitation PubMedCrossRefGoogle Scholar
  130. 130.
    Schlegel F, Salameh A, Oelmann K, Halling M, Dhein S, Mohr FW, et al. Injectable tissue engineered pulmonary heart valve implantation into the pig model: a feasibility study. Med Sci Monit Basic Res. 2015;21:135–40.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Duke University HospitalDurhamUSA

Personalised recommendations