Mitral Valve Disease: a Comprehensive Review

  • Serge C. Harb
  • Brian P. Griffin
Valvular Heart Disease (T Kiefer, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Valvular Heart Disease


Purpose of Review

This review aims to provide a comprehensive assessment of mitral valve disease, both mitral stenosis and mitral regurgitation, starting with an overview of the valve anatomy.

Recent Findings

The advent of three-dimensional imaging has allowed a better representation of the valve anatomy. Rheumatic disease is still the number one cause of mitral stenosis worldwide and percutaneous balloon mitral valvuloplasty remains the therapy of choice when indicated and in anatomically eligible patients. Mitral regurgitation (MR) is classified as primary (i.e., lesion in the mitral apparatus) or secondary (caused by left ventricular geometrical alterations). While surgery, preferably repair, is still the recommended therapy for severe primary MR, percutaneous approaches to repair and/or replace the mitral valve are being extensively investigated.


Mitral valve disease is common. A careful understanding of mitral valve anatomy and the disease processes that affect the valve are crucial for providing optimal patient care.


Mitral valve disease Mitral valve anatomy Mitral stenosis Mitral regurgitation 


Compliance with Ethical Standards

Conflict of Interest

Serge C. Harb and Brian P. Griffin declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.


Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Van Mieghem NM, Piazza N, Anderson RH, Tzikas A, Nieman K, De Laat LE, et al. Anatomy of the mitral valvular complex and its implications for transcatheter interventions for mitral regurgitation. J Am Coll Cardiol. 2010;56(8):617–26. doi: 10.1016/j.jacc.2010.04.030.CrossRefPubMedGoogle Scholar
  2. 2.
    Perloff JK, Roberts WC. The mitral apparatus. Functional anatomy of mitral regurgitation. Circulation. 1972;46(2):227–39.CrossRefPubMedGoogle Scholar
  3. 3.
    Anwar AM, Soliman OI, ten Cate FJ, Nemes A, McGhie JS, Krenning BJ, et al. True mitral annulus diameter is underestimated by two-dimensional echocardiography as evidenced by real-time three-dimensional echocardiography and magnetic resonance imaging. Int J Card Imaging. 2007;23(5):541–7. doi: 10.1007/s10554-006-9181-9.CrossRefGoogle Scholar
  4. 4.
    Muresian H. The clinical anatomy of the mitral valve. Clin Anat. 2009;22(1):85–98. doi: 10.1002/ca.20692.CrossRefPubMedGoogle Scholar
  5. 5.
    Ho SY. Anatomy of the mitral valve. Heart. 2002;88(Suppl 4):iv5–10.PubMedPubMedCentralGoogle Scholar
  6. 6.
    Carapetis JR, McDonald M, Wilson NJ. Acute rheumatic fever. Lancet. 2005;366(9480):155–68. doi: 10.1016/S0140-6736(05)66874-2.CrossRefGoogle Scholar
  7. 7.
    Pressman GS, Agarwal A, Braitman LE, Muddassir SM. Mitral annular calcium causing mitral stenosis. Am J Cardiol. 2010;105(3):389–91. doi: 10.1016/j.amjcard.2009.09.042.CrossRefPubMedGoogle Scholar
  8. 8.
    Hull MC, Morris CG, Pepine CJ, Mendenhall NP. Valvular dysfunction and carotid, subclavian, and coronary artery disease in survivors of Hodgkin lymphoma treated with radiation therapy. JAMA. 2003;290(21):2831–7. doi: 10.1001/jama.290.21.2831.CrossRefPubMedGoogle Scholar
  9. 9.
    Ruckman RN, Van Praagh R. Anatomic types of congenital mitral stenosis: report of 49 autopsy cases with consideration of diagnosis and surgical implications. Am J Cardiol. 1978;42(4):592–601.CrossRefPubMedGoogle Scholar
  10. 10.
    Hugenholtz PG, Ryan TJ, Stein SW, Abelmann WH. The spectrum of pure mitral stenosis. Hemodynamic studies in relation to clinical disability. Am J Cardiol. 1962;10:773–84.CrossRefPubMedGoogle Scholar
  11. 11.
    Baumgartner H, Hung J, Bermejo J, Chambers JB, Evangelista A, Griffin BP, et al. Echocardiographic assessment of valve stenosis: EAE/ASE recommendations for clinical practice. J Am Soc Echocardiogr. 2009;22(1):1–23; quiz 101-2. doi: 10.1016/j.echo.2008.11.029.CrossRefPubMedGoogle Scholar
  12. 12.
    •• Nishimura RA, Otto CM, Bonow RO, Carabello BA, Erwin JP 3rd, Guyton RA, et al. 2014 AHA/ACC guideline for the management of patients with valvular heart disease: a report of the American College of Cardiology/American Heart Association task force on practice guidelines. J Am Coll Cardiol. 2014;63(22):e57–185. doi: 10.1016/j.Jacc.2014.02.536. This report constitues the AHA/ACC recommendations for the management of patients with valvular heart disease.CrossRefPubMedGoogle Scholar
  13. 13.
    •• Nishimura RA, Otto CM, Bonow RO, Carabello BA, Erwin JP 3rd, Fleisher LA, et al. AHA/ACC focused update of the 2014 AHA/ACC guideline for the Management of Patients with Valvular Heart Disease: a report of the American College of Cardiology/American Heart Association task force on clinical practice guidelines. J Am Coll Cardiol. 2017, 2017; doi: 10.1016/j.Jacc.2017.03.011. This report is the recent (2017) AHA/ACC focused update of the valvular guidelines.
  14. 14.
    Schlosshan D, Aggarwal G, Mathur G, Allan R, Cranney G. Real-time 3D transesophageal echocardiography for the evaluation of rheumatic mitral stenosis. JACC Cardiovasc Imaging. 2011;4(6):580–8. doi: 10.1016/j.jcmg.2010.12.009.CrossRefPubMedGoogle Scholar
  15. 15.
    Gorlin R, Gorlin SG. Hydraulic formula for calculation of the area of the stenotic mitral valve, other cardiac valves, and central circulatory shunts. I. Am Heart J. 1951;41(1):1–29.CrossRefPubMedGoogle Scholar
  16. 16.
    Rodriguez L, Thomas JD, Monterroso V, Weyman AE, Harrigan P, Mueller LN, et al. Validation of the proximal flow convergence method. Calculation of orifice area in patients with mitral stenosis. Circulation. 1993;88(3):1157–65.CrossRefPubMedGoogle Scholar
  17. 17.
    Wilkins GT, Weyman AE, Abascal VM, Block PC, Palacios IF. Percutaneous balloon dilatation of the mitral valve: an analysis of echocardiographic variables related to outcome and the mechanism of dilatation. Br Heart J. 1988;60(4):299–308.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Luxereau P, Dorent R, De Gevigney G, Bruneval P, Chomette G, Delahaye G. Aetiology of surgically treated mitral regurgitation. Eur Heart J. 1991;12(Suppl B):2–4.CrossRefPubMedGoogle Scholar
  19. 19.
    Anyanwu AC, Adams DH. Etiologic classification of degenerative mitral valve disease: Barlow's disease and fibroelastic deficiency. Semin Thorac Cardiovasc Surg. 2007;19(2):90–6. doi: 10.1053/j.semtcvs.2007.04.002.CrossRefPubMedGoogle Scholar
  20. 20.
    Carpentier A. Cardiac valve surgery—the “French correction”. J Thorac Cardiovasc Surg. 1983;86(3):323–37.PubMedGoogle Scholar
  21. 21.
    Zoghbi WA, Enriquez-Sarano M, Foster E, Grayburn PA, Kraft CD, Levine RA, et al. Recommendations for evaluation of the severity of native valvular regurgitation with two-dimensional and Doppler echocardiography. J Am Soc Echocardiogr. 2003;16(7):777–802. doi: 10.1016/S0894-7317(03)00335-3.CrossRefPubMedGoogle Scholar
  22. 22.
    Chen CG, Thomas JD, Anconina J, Harrigan P, Mueller L, Picard MH, et al. Impact of impinging wall jet on color Doppler quantification of mitral regurgitation. Circulation. 1991;84(2):712–20.CrossRefPubMedGoogle Scholar
  23. 23.
    Marsan NA, Westenberg JJ, Ypenburg C, Delgado V, van Bommel RJ, Roes SD, et al. Quantification of functional mitral regurgitation by real-time 3D echocardiography: comparison with 3D velocity-encoded cardiac magnetic resonance. JACC Cardiovasc Imaging. 2009;2(11):1245–52. doi: 10.1016/j.jcmg.2009.07.006.CrossRefPubMedGoogle Scholar
  24. 24.
    Vahanian A, Alfieri O, Andreotti F, Antunes MJ, Baron-Esquivias G, Baumgartner H, et al. Guidelines on the management of valvular heart disease (version 2012). Eur Heart J. 2012;33(19):2451–96. doi: 10.1093/eurheartj/ehs109.CrossRefPubMedGoogle Scholar
  25. 25.
    Maisano F, La Canna G, Colombo A, Alfieri O. The evolution from surgery to percutaneous mitral valve interventions: the role of the edge-to-edge technique. J Am Coll Cardiol. 2011;58(21):2174–82. doi: 10.1016/j.jacc.2011.07.046.CrossRefPubMedGoogle Scholar
  26. 26.
    De Backer O, Piazza N, Banai S, Lutter G, Maisano F, Herrmann HC, et al. Percutaneous transcatheter mitral valve replacement: an overview of devices in preclinical and early clinical evaluation. Circ Cardiovasc Interv. 2014;7(3):400–9. doi: 10.1161/Circinterventions.114.001607.CrossRefPubMedGoogle Scholar
  27. 27.
    • Smith PK, Puskas JD, Ascheim DD, Voisine P, Gelijns AC, Moskowitz AJ, et al. Surgical treatment of moderate ischemic mitral regurgitation. N Engl J Med. 2014;371(23):2178–88. doi: 10.1056/NEJMoa1410490. This study, along with the study referenced below, showed that surgical treatment of ischemic mitral regurgitation did not provide a clinically meanigful benefit.CrossRefGoogle Scholar
  28. 28.
    • Michler RE, Smith PK, Parides MK, Ailawadi G, Thourani V, Moskowitz AJ, et al. Two-year outcomes of surgical treatment of moderate ischemic mitral regurgitation. N Engl J Med. 2016;374(20):1932–41. doi: 10.1056/NEJMoa1602003. This study reports the 2-year outcomes of the surgical treatment of ischemic mitral regurgitation, similarly showing the lack of benefit.CrossRefGoogle Scholar
  29. 29.
    • Acker MA, Parides MK, Perrault LP, Moskowitz AJ, Gelijns AC, Voisine P, et al. Mitral-valve repair versus replacement for severe ischemic mitral regurgitation. N Engl J Med. 2014;370(1):23–32. doi: 10.1056/NEJMoa1312808. This study shows no significant difference between patients who underwent mitral-valve repair and those who underwent mitral-valve replacement.CrossRefGoogle Scholar
  30. 30.
    Goldstein D, Moskowitz AJ, Gelijns AC, Ailawadi G, Parides MK, Perrault LP, et al. Two-year outcomes of surgical treatment of severe ischemic mitral regurgitation. N Engl J Med. 2016;374(4):344–53. doi: 10.1056/NEJMoa1512913.CrossRefPubMedGoogle Scholar
  31. 31.
    Alashi A, Mentias A, Patel K, Gillinov AM, Sabik JF, Popovic ZB, et al. Synergistic utility of brain natriuretic peptide and left ventricular global longitudinal strain in asymptomatic patients with significant primary mitral regurgitation and preserved systolic function undergoing mitral valve surgery. Circ Cardiovasc Imaging. 2016;9(7) doi: 10.1161/CIRCIMAGING.115.004451.
  32. 32.
    Mentias A, Naji P, Gillinov AM, Rodriguez LL, Reed G, Mihaljevic T, et al. Strain echocardiography and functional capacity in asymptomatic primary mitral regurgitation with preserved ejection fraction. J Am Coll Cardiol. 2016;68(18):1974–86. doi: 10.1016/j.jacc.2016.08.030.CrossRefPubMedGoogle Scholar
  33. 33.
    Mentias A, Naji P, Barr T, Gillinov AM, Rodriguez LL, Mihaljevic T, et al. Incremental prognostic utility of LV global longitudinal strain and functional capacity in asymptomatic patients with significant primary mitral regurgitation and preserved left ventricular ejection fraction undergoing rest-stress echocardiography. Circulation. 2015;132Google Scholar
  34. 34.
    Mentias A, Patel K, Patel H, Gillinov AM, Sabik JF, Mihaljevic T, et al. Effect of pulmonary vascular pressures on long-term outcome in patients with primary mitral regurgitation. J Am Coll Cardiol. 2016;67(25):2952–61. doi: 10.1016/j.jacc.2016.03.589.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Cardiovascular Imaging, Heart and Vascular InstituteCleveland ClinicClevelandUSA

Personalised recommendations