Untangling the Biology of Genetic Cardiomyopathies with Pluripotent Stem Cell Disease Models

  • Jan W. Buikema
  • Sean M. Wu
Regenerative Medicine (SM Wu, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Regenerative Medicine


Purpose of Review

Recently, the discovery of strategies to reprogram somatic cells into induced pluripotent stem (iPS) cells has led to a major paradigm change in developmental and stem cell biology. The application of iPS cells and their cardiac progeny has opened novel directions to study cardiomyopathies at a cellular and molecular level. This review discusses approaches currently undertaken to unravel known inherited cardiomyopathies in a dish.

Recent Findings

With improved efficiency for mutation correction by genome editing, human iPS cells have now provided a platform to untangle the biology of cardiomyopathies. Multiple studies have derived pluripotent stem cells lines from patients with genetic heart diseases. The generation of cardiomyocytes from these cells lines has, for the first time, enable the study of cardiomyopathies using cardiomyocytes harboring patient-specific mutations and their corrected isogenic counterpart. The molecular analyses, functional assays, and drug tests of these lines have led to new molecular insights in the early pathophysiology of left ventricular non-compaction cardiomyopathy (LVNC), hypertrophic cardiomyopathy (HCM), dilated cardiomyopathy (DCM), arrhythmogenic right ventricular cardiomyopathy (ARVC), and others.


The advent of iPS cells offers an exceptional opportunity for creating disease-specific cellular models to investigate their underlying mechanisms and to optimize future therapy through drug and toxicity screening. Thus far, the iPS cell model has improved our understanding of the genetic and molecular pathophysiology of patients with various genetic cardiomyopathies. It is hoped that the new discoveries arising from using these novel platforms for cardiomyopathy research will lead to new diagnostic and therapeutic approaches to prevent and treat these diseases.


Inherited cardiomyopathy Sarcomere Contractility Arrhythmia iPSC 


Compliance with Ethical Standards

Conflict of Interest

Jan W. Buikema and Sean M. Wu declare they have no conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.


Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Priori SG, Blomstrom-Lundqvist C, Mazzanti A, et al. 2015 ESC Guidelines for the management of patients with ventricular arrhythmias and the prevention of sudden cardiac death: the Task Force for the Management of Patients with Ventricular Arrhythmias and the Prevention of Sudden Cardiac Death of the European Society of Cardiology (ESC). Endorsed by: Association for European Paediatric and Congenital Cardiology (AEPC). Eur Heart J. 2015;36(41):2793–867.CrossRefPubMedGoogle Scholar
  2. 2.
    Buckingham M, Meilhac S, Zaffran S. Building the mammalian heart from two sources of myocardial cells. Nat Rev Genet. 2005;6(11):826–35.CrossRefPubMedGoogle Scholar
  3. 3.
    Gregoire S, Karra R, Passer D, et al. Essential and unexpected role of Yin Yang 1 to promote mesodermal cardiac differentiation. Circ Res. 2013;112(6):900–10.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Wu SM, Fujiwara Y, Cibulsky SM, et al. Developmental origin of a bipotential myocardial and smooth muscle cell precursor in the mammalian heart. Cell. 2006;127(6):1137–50.CrossRefPubMedGoogle Scholar
  5. 5.
    Passer D, van de Vrugt A, Atmanli A, et al. Atypical protein kinase C-dependent polarized cell division is required for myocardial trabeculation. Cell Rep. 2016;14(7):1662–72.CrossRefPubMedGoogle Scholar
  6. 6.
    Buikema JW, Zwetsloot PP, Doevendans PA, et al. Expanding mouse ventricular cardiomyocytes through GSK-3 inhibition. Curr Protoc Cell Biol. 2013;61:23.PubMedPubMedCentralGoogle Scholar
  7. 7.
    Buikema JW, Mady AS, Mittal NV, et al. Wnt/beta-catenin signaling directs the regional expansion of first and second heart field-derived ventricular cardiomyocytes. Development. 2013;140(20):4165–76.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Moorman AF, Christoffels VM. Cardiac chamber formation: development, genes, and evolution. Physiol Rev. 2003;83(4):1223–67.CrossRefPubMedGoogle Scholar
  9. 9.
    Heallen T, Zhang M, Wang J, et al. Hippo pathway inhibits Wnt signaling to restrain cardiomyocyte proliferation and heart size. Science. 2011;332(6028):458–61.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Mahmoud AI, Kocabas F, Muralidhar SA, et al. Meis1 regulates postnatal cardiomyocyte cell cycle arrest. Nature. 2013;497(7448):249–53.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Southall DP, Richards J, Brown DJ, et al. 24-hour tape recordings of ECG and respiration in the newborn infant with findings related to sudden death and unexplained brain damage in infancy. Arch Dis Child. 1980;55(1):7–16.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Izpisua Belmonte JC, Ellis J, Hochedlinger K, et al. Induced pluripotent stem cells and reprogramming: seeing the science through the hype. Nat Rev Genet. 2009;10(12):878–83.CrossRefPubMedGoogle Scholar
  13. 13.
    Takahashi K, Tanabe K, Ohnuki M, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007;131(5):861–72.CrossRefPubMedGoogle Scholar
  14. 14.
    Sayed N, Liu C, Wu JC. Translation of human-induced pluripotent stem cells: from clinical trial in a dish to precision medicine. J Am Coll Cardiol. 2016;67(18):2161–76.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Inoue H, Nagata N, Kurokawa H, et al. iPS cells: a game changer for future medicine. EMBO J. 2014;33(5):409–17.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    • Kodo K, Ong SG, Jahanbani F, et al. iPSC-derived cardiomyocytes reveal abnormal TGF-beta signalling in left ventricular non-compaction cardiomyopathy. Nat Cell Biol. 2016;18(10):1031–42. This work uncovered a novel underlying mechanism of a poorly understood cardiomyopathy as LVNC.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Han L, Li Y, Tchao J, et al. Study familial hypertrophic cardiomyopathy using patient-specific induced pluripotent stem cells. Cardiovasc Res. 2014;104(2):258–69.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    •• Lan F, Lee AS, Liang P, et al. Abnormal calcium handling properties underlie familial hypertrophic cardiomyopathy pathology in patient-specific induced pluripotent stem cells. Cell Stem Cell. 2013;12(1):101–13. First study utilizing a human HCM disease model to provide direct evidence of elevation in calcium levels as an initiating factor in the development of hypertrophy at the single-cell level.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Tanaka A, Yuasa S, Mearini G, et al. Endothelin-1 induces myofibrillar disarray and contractile vector variability in hypertrophic cardiomyopathy-induced pluripotent stem cell-derived cardiomyocytes. J Am Heart Assoc. 2014;3(6):e001263.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Sun N, Yazawa M, Liu J, et al. Patient-specific induced pluripotent stem cells as a model for familial dilated cardiomyopathy. Sci Transl Med. 2012;4(130):130ra47.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Burridge PW, Diecke S, Matsa E, et al. Modeling cardiovascular diseases with patient-specific human pluripotent stem cell-derived cardiomyocytes. Methods Mol Biol. 2016;1353:119–30.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Tse HF, Ho JC, Choi SW, et al. Patient-specific induced-pluripotent stem cells-derived cardiomyocytes recapitulate the pathogenic phenotypes of dilated cardiomyopathy due to a novel DES mutation identified by whole exome sequencing. Hum Mol Genet. 2013;22(7):1395–403.CrossRefPubMedGoogle Scholar
  23. 23.
    Hinson JT, Chopra A, Nafissi N, et al. HEART DISEASE. Titin mutations in iPS cells define sarcomere insufficiency as a cause of dilated cardiomyopathy. Science. 2015;349(6251):982–6.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Ma D, Wei H, Lu J, et al. Generation of patient-specific induced pluripotent stem cell-derived cardiomyocytes as a cellular model of arrhythmogenic right ventricular cardiomyopathy. Eur Heart J. 2013;34(15):1122–33.CrossRefPubMedGoogle Scholar
  25. 25.
    Caspi O, Huber I, Gepstein A, et al. Modeling of arrhythmogenic right ventricular cardiomyopathy with human induced pluripotent stem cells. Circ Cardiovasc Genet. 2013;6(6):557–68.CrossRefPubMedGoogle Scholar
  26. 26.
    Kim C, Wong J, Wen J, et al. Studying arrhythmogenic right ventricular dysplasia with patient-specific iPSCs. Nature. 2013;494(7435):105–10.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Chin TK, Perloff JK, Williams RG, et al. Isolated noncompaction of left ventricular myocardium. A study of eight cases. Circulation. 1990;82(2):507–13.CrossRefPubMedGoogle Scholar
  28. 28.
    Ronderos R, Avegliano G, Borelli E, et al. Estimation of prevalence of the left ventricular noncompaction among adults. Am J Cardiol. 2016;118(6):901–5.CrossRefPubMedGoogle Scholar
  29. 29.
    Luxan G, Casanova JC, Martinez-Poveda B, et al. Mutations in the NOTCH pathway regulator MIB1 cause left ventricular noncompaction cardiomyopathy. Nat Med. 2013;19(2):193–201.CrossRefPubMedGoogle Scholar
  30. 30.
    Arbustini E, Favalli V, Narula N, et al. Left ventricular noncompaction: a distinct genetic cardiomyopathy? J Am Coll Cardiol. 2016;68(9):949–66.CrossRefPubMedGoogle Scholar
  31. 31.
    Tian T, Wang J, Wang H, et al. A low prevalence of sarcomeric gene variants in a Chinese cohort with left ventricular non-compaction. Heart Vessels. 2015;30(2):258–64.CrossRefPubMedGoogle Scholar
  32. 32.
    Semsarian C, Ingles J, Maron MS, et al. New perspectives on the prevalence of hypertrophic cardiomyopathy. J Am Coll Cardiol. 2015;65(12):1249–54.CrossRefPubMedGoogle Scholar
  33. 33.
    Alagiri S, Singh TP. Stability and kinetics of a bifunctional amylase/trypsin inhibitor. Biochim Biophys Acta. 1993;1203(1):77–84.CrossRefPubMedGoogle Scholar
  34. 34.
    Maron BJ, Maron MS, Semsarian C. Genetics of hypertrophic cardiomyopathy after 20 years: clinical perspectives. J Am Coll Cardiol. 2012;60(8):705–15.CrossRefPubMedGoogle Scholar
  35. 35.
    Maron BJ, Bonow RO, Cannon III RO, et al. Hypertrophic cardiomyopathy. Interrelations of clinical manifestations, pathophysiology, and therapy (1). N Engl J Med. 1987;316(13):780–9.CrossRefPubMedGoogle Scholar
  36. 36.
    Maron MS, Maron BJ, Harrigan C, et al. Hypertrophic cardiomyopathy phenotype revisited after 50 years with cardiovascular magnetic resonance. J Am Coll Cardiol. 2009;54(3):220–8.CrossRefPubMedGoogle Scholar
  37. 37.
    Bottillo I, D’Angelantonio D, Caputo V, et al. Molecular analysis of sarcomeric and non-sarcomeric genes in patients with hypertrophic cardiomyopathy. Gene. 2016;577(2):227–35.CrossRefPubMedGoogle Scholar
  38. 38.
    Sequeira V, Wijnker PJ, Nijenkamp LL, et al. Perturbed length-dependent activation in human hypertrophic cardiomyopathy with missense sarcomeric gene mutations. Circ Res. 2013;112(11):1491–505.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Sweeney HL, Feng HS, Yang Z, et al. Functional analyses of troponin T mutations that cause hypertrophic cardiomyopathy: insights into disease pathogenesis and troponin function. Proc Natl Acad Sci U S A. 1998;95(24):14406–10.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Seidman JG, Seidman C. The genetic basis for cardiomyopathy: from mutation identification to mechanistic paradigms. Cell. 2001;104(4):557–67.CrossRefPubMedGoogle Scholar
  41. 41.
    Tsoutsman T, Kelly M, Ng DC, et al. Severe heart failure and early mortality in a double-mutation mouse model of familial hypertrophic cardiomyopathy. Circulation. 2008;117(14):1820–31.CrossRefPubMedGoogle Scholar
  42. 42.
    Liang P, Lan F, Lee AS, et al. Drug screening using a library of human induced pluripotent stem cell-derived cardiomyocytes reveals disease-specific patterns of cardiotoxicity. Circulation. 2013;127(16):1677–91.CrossRefPubMedGoogle Scholar
  43. 43.
    Hershberger RE, Hedges DJ, Morales A. Dilated cardiomyopathy: the complexity of a diverse genetic architecture. Nat Rev Cardiol. 2013;10(9):531–47.CrossRefPubMedGoogle Scholar
  44. 44.
    Dungan WT, Garson Jr A, Gillette PC. Arrhythmogenic right ventricular dysplasia: a cause of ventricular tachycardia in children with apparently normal hearts. Am Heart J. 1981;102(4):745–50.CrossRefPubMedGoogle Scholar
  45. 45.
    Romero J, Mejia-Lopez E, Manrique C, et al. Arrhythmogenic right ventricular cardiomyopathy (ARVC/D): a systematic literature review. Clin Med Insights Cardiol. 2013;7:97–114.PubMedPubMedCentralGoogle Scholar
  46. 46.
    Marcus FI, McKenna WJ, Sherrill D, et al. Diagnosis of arrhythmogenic right ventricular cardiomyopathy/dysplasia: proposed modification of the Task Force Criteria. Eur Heart J. 2010;31(7):806–14.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Sonoda K, Ohno S, Otuki S, et al. Quantitative analysis of PKP2 and neighbouring genes in a patient with arrhythmogenic right ventricular cardiomyopathy caused by heterozygous PKP2 deletion. Europace. 2016. doi: 10.1093/europace/euw038.
  48. 48.
    Jones JR, Barrick C, Kim KA, et al. Deletion of PPARgamma in adipose tissues of mice protects against high fat diet-induced obesity and insulin resistance. Proc Natl Acad Sci U S A. 2005;102(17):6207–12.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Department of CardiologyUniversity Medical Center UtrechtUtrechtThe Netherlands
  2. 2.Institute for Stem Cell Biology and Regenerative Medicine, Cardiovascular Institute, Division of Cardiovascular Medicine, Department of MedicineStanford University School of MedicineStanfordUSA

Personalised recommendations