Current Cardiology Reports

, 17:555 | Cite as

FDG PET Imaging for Identifying Pulmonary Hypertension and Right Heart Failure

Nuclear Cardiology (V Dilsizian, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Nuclear Cardiology

Abstract

Pulmonary arterial hypertension (PAH) is a syndrome characterized by lung vascular intimal lesions, smooth muscle layer hypertrophy, perivascular inflammation, and concomitant right ventricular (RV) remodeling which can ultimately lead to the RV function decline known as RV failure (RVF). A key determining factor for RVF development is the RV metabolic state defined by the level of ischemia and glycolysis which constitute a vicious cycle of hypoxia, metabolic shift from glucose oxidation (GO) to glycolysis, increased RV systolic pressure (RVSP), decreased RV output, and further myocardial ischemia. In this context, 2-deoxy-2-[18F]fluoro-d-glucose (FDG) positron emission tomography (PET) has been used for the measurement of glucose uptake (GU) as an indicator of glucose metabolism in the right heart and pulmonary vasculature. The focus of this review is the application of FDG PET modality for assessing PAH severity and clinical outcome.

Keywords

Pulmonary arterial hypertension Right heart failure Dynamic PET FDG Metabolic remodeling Review 

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of outstanding importance

  1. 1.
    McLaughlin VV, Archer SL, Badesch DB, Barst RJ, Farber HW, Lindner JR, et al. ACCF/AHA 2009 expert consensus document on pulmonary hypertension: a report of the American College of Cardiology Foundation Task Force on Expert Consensus Documents and the American Heart Association: developed in collaboration with the American College of Chest Physicians, American Thoracic Society, Inc., and the Pulmonary Hypertension Association. Circulation. 2009;119(16):2250–94. doi:10.1161/CIRCULATIONAHA.109.192230.CrossRefPubMedGoogle Scholar
  2. 2.
    Galie N, Hoeper MM, Humbert M, Torbicki A, Vachiery JL, Barbera JA, et al. Guidelines for the diagnosis and treatment of pulmonary hypertension: the Task Force for the Diagnosis and Treatment of Pulmonary Hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS), endorsed by the International Society of Heart and Lung Transplantation (ISHLT). Eur Heart J. 2009;30(20):2493–537. doi:10.1093/eurheartj/ehp297.CrossRefPubMedGoogle Scholar
  3. 3.
    Archer S, Rich S. Primary pulmonary hypertension: a vascular biology and translational research “Work in progress”. Circulation. 2000;102(22):2781–91.CrossRefPubMedGoogle Scholar
  4. 4.
    Bronicki RA, Baden HP. Pathophysiology of right ventricular failure in pulmonary hypertension. Pediatr Crit Care Med J Soc Crit Care Med World Fed Pediatr Intensiv Crit Care Soc. 2010;11(2 Suppl):S15–22. doi:10.1097/PCC.0b013e3181c7671c.CrossRefGoogle Scholar
  5. 5.••
    Ryan JJ, Archer SL. The right ventricle in pulmonary arterial hypertension: disorders of metabolism, angiogenesis and adrenergic signaling in right ventricular failure. Circ Res. 2014;115(1):176–88. doi:10.1161/CIRCRESAHA.113.301129. This review paper discusses PH-induced metabolic remodeling that underlies RVF and the reciprocal relation between FAO and GO which can be targeted by new therapeutic strategies for RVF.CrossRefPubMedGoogle Scholar
  6. 6.
    Hoeper MM, Granton J. Intensive care unit management of patients with severe pulmonary hypertension and right heart failure. Am J Respir Crit Care Med. 2011;184(10):1114–24. doi:10.1164/rccm.201104-0662CI.CrossRefPubMedGoogle Scholar
  7. 7.
    Archer SL, Fang YH, Ryan JJ, Piao L. Metabolism and bioenergetics in the right ventricle and pulmonary vasculature in pulmonary hypertension. Pulm Circ. 2013;3(1):144–52. doi:10.4103/2045-8932.109960.CrossRefPubMedCentralPubMedGoogle Scholar
  8. 8.
    van Wolferen SA, Marcus JT, Westerhof N, Spreeuwenberg MD, Marques KM, Bronzwaer JG, et al. Right coronary artery flow impairment in patients with pulmonary hypertension. Eur Heart J. 2008;29(1):120–7. doi:10.1093/eurheartj/ehm567.CrossRefPubMedGoogle Scholar
  9. 9.
    Bogaard HJ, Natarajan R, Henderson SC, Long CS, Kraskauskas D, Smithson L, et al. Chronic pulmonary artery pressure elevation is insufficient to explain right heart failure. Circulation. 2009;120(20):1951–60. doi:10.1161/CIRCULATIONAHA.109.883843.CrossRefPubMedGoogle Scholar
  10. 10.
    Bokhari S, Raina A, Rosenweig EB, Schulze PC, Bokhari J, Einstein AJ, et al. PET imaging may provide a novel biomarker and understanding of right ventricular dysfunction in patients with idiopathic pulmonary arterial hypertension. Circ Cardiovasc Imaging. 2011;4(6):641–7. doi:10.1161/CIRCIMAGING.110.963207.CrossRefPubMedGoogle Scholar
  11. 11.••
    Mielniczuk LM, Birnie D, Ziadi MC, de Kemp RA, Da Silva JN, Burwash I, et al. Relation between right ventricular function and increased right ventricular [18F]fluorodeoxyglucose accumulation in patients with heart failure. Circ Cardiovasc Imaging. 2011;4(1):59–66. doi:10.1161/CIRCIMAGING.109.905984. This clinical study on PH patient with ischemic heart disease or ischemic cardiomyopathy combined FDG PET and perfusion scans with echocardiography and hemodynamic assessments which indicated that RV FDG uptake has a inverse correlation with RV function and a positive correlation with RVSP.CrossRefPubMedGoogle Scholar
  12. 12.
    Gomez A, Bialostozky D, Zajarias A, Santos E, Palomar A, Martinez ML, et al. Right ventricular ischemia in patients with primary pulmonary hypertension. J Am Coll Cardiol. 2001;38(4):1137–42.CrossRefPubMedGoogle Scholar
  13. 13.
    Wilkins MR. Pulmonary hypertension: the science behind the disease spectrum. Eur Respir Rev. 2012;21(123):19–26. doi:10.1183/09059180.00008411.CrossRefPubMedGoogle Scholar
  14. 14.
    Xu W, Koeck T, Lara AR, Neumann D, DiFilippo FP, Koo M, et al. Alterations of cellular bioenergetics in pulmonary artery endothelial cells. Proc Natl Acad Sci U S A. 2007;104(4):1342–7. doi:10.1073/pnas.0605080104.CrossRefPubMedCentralPubMedGoogle Scholar
  15. 15.
    Paulin R, Michelakis ED. The metabolic theory of pulmonary arterial hypertension. Circ Res. 2014;115(1):148–64. doi:10.1161/CIRCRESAHA.115.301130.CrossRefPubMedGoogle Scholar
  16. 16.
    Dromparis P, Sutendra G, Michelakis ED. The role of mitochondria in pulmonary vascular remodeling. J Mol Med (Berl). 2010;88(10):1003–10. doi:10.1007/s00109-010-0670-x.CrossRefGoogle Scholar
  17. 17.
    Platoshyn O, Golovina VA, Bailey CL, Limsuwan A, Krick S, Juhaszova M, et al. Sustained membrane depolarization and pulmonary artery smooth muscle cell proliferation. Am J Physiol Cell Physiol. 2000;279(5):C1540–9.PubMedGoogle Scholar
  18. 18.
    Stanley WC, Lopaschuk GD, Hall JL, McCormack JG. Regulation of myocardial carbohydrate metabolism under normal and ischaemic conditions. Potential for pharmacological interventions. Cardiovasc Res. 1997;33(2):243–57.CrossRefPubMedGoogle Scholar
  19. 19.
    Piao L, Fang YH, Cadete VJ, Wietholt C, Urboniene D, Toth PT, et al. The inhibition of pyruvate dehydrogenase kinase improves impaired cardiac function and electrical remodeling in two models of right ventricular hypertrophy: resuscitating the hibernating right ventricle. J Mol Med (Berl). 2010;88(1):47–60. doi:10.1007/s00109-009-0524-6.CrossRefGoogle Scholar
  20. 20.••
    Piao L, Sidhu VK, Fang YH, Ryan JJ, Parikh KS, Hong Z, et al. FOXO1-mediated upregulation of pyruvate dehydrogenase kinase-4 (PDK4) decreases glucose oxidation and impairs right ventricular function in pulmonary hypertension: therapeutic benefits of dichloroacetate. J Mol Med (Berl). 2013;91(3):333–46. doi:10.1007/s00109-012-0982-0. This experimental study shows that DCA increases cardiac function and treadmill-walking distance in a rat PAH model possibly through stimulating GO (relative to FAO) in the RV.CrossRefGoogle Scholar
  21. 21.
    Oikawa M, Kagaya Y, Otani H, Sakuma M, Demachi J, Suzuki J, et al. Increased [18F]fluorodeoxyglucose accumulation in right ventricular free wall in patients with pulmonary hypertension and the effect of epoprostenol. J Am Coll Cardiol. 2005;45(11):1849–55. doi:10.1016/j.jacc.2005.02.065.CrossRefPubMedGoogle Scholar
  22. 22.••
    Lundgrin EL, Park MM, Sharp J, Tang WH, Thomas JD, Asosingh K, et al. Fasting 2-deoxy-2-[18F]fluoro-D-glucose positron emission tomography to detect metabolic changes in pulmonary arterial hypertension hearts over 1 year. Ann Am Thoracic Soc. 2013;10(1):1–9. doi:10.1513/AnnalsATS.201206-029OC. In this prospective clinical study, the RV FDG uptake was measured which correlates with echocardiographic disease severity parameters in PAH patients in the one-year follow-up period.
  23. 23.
    de Keizer B, Scholtens AM, van Kimmenade RR, de Jong PA. High FDG uptake in the right ventricular myocardium of a pulmonary hypertension patient. J Am Coll Cardiol. 2013;62(18):1724. doi:10.1016/j.jacc.2013.05.094.CrossRefPubMedGoogle Scholar
  24. 24.
    Lopaschuk GD, Ussher JR, Folmes CD, Jaswal JS, Stanley WC. Myocardial fatty acid metabolism in health and disease. Physiol Rev. 2010;90(1):207–58. doi:10.1152/physrev.00015.2009.CrossRefPubMedGoogle Scholar
  25. 25.
    Fang YH, Piao L, Hong Z, Toth PT, Marsboom G, Bache-Wiig P, et al. Therapeutic inhibition of fatty acid oxidation in right ventricular hypertrophy: exploiting Randle’s cycle. J Mol Med (Berl). 2012;90(1):31–43. doi:10.1007/s00109-011-0804-9.CrossRefGoogle Scholar
  26. 26.
    Guiducci L, Gronroos T, Jarvisalo MJ, Kiss J, Viljanen A, Naum AG, et al. Biodistribution of the fatty acid analogue 18F-FTHA: plasma and tissue partitioning between lipid pools during fasting and hyperinsulinemia. J Nucl Med. 2007;48(3):455–62.PubMedGoogle Scholar
  27. 27.
    Fowler JS, Ido T. Initial and subsequent approach for the synthesis of 18FDG. Semin Nucl Med. 2002;32(1):6–12. doi:10.1053/snuc.2002.29270.CrossRefPubMedGoogle Scholar
  28. 28.
    Cheng G, Alavi A, Lim E, Werner TJ, Del Bello CV, Akers SR. Dynamic changes of FDG uptake and clearance in normal tissues. Mol Imaging Biol MIB Off Publ Acad Mol Imaging. 2013;15(3):345–52. doi:10.1007/s11307-012-0600-0.CrossRefGoogle Scholar
  29. 29.
    Laffon E, Marthan R. Dynamic changes of 18F-FDG uptake in normal lung: probing a predictive model analysis. Mol Imaging Biol MIB Off Publ Acad Mol Imaging. 2013;15(4):374–5. doi:10.1007/s11307-013-0611-5.CrossRefGoogle Scholar
  30. 30.
    Dorbala S, Di Carli MF, Delbeke D, Abbara S, DePuey EG, Dilsizian V, et al. SNMMI/ASNC/SCCT guideline for cardiac SPECT/CT and PET/CT 1.0. J Nucl Med. 2013;54(8):1485–507. doi:10.2967/jnumed.112.105155.CrossRefPubMedGoogle Scholar
  31. 31.
    Laffon E, de Clermont H, Vernejoux JM, Jougon J, Marthan R. Feasibility of assessing [(18)F]FDG lung metabolism with late dynamic PET imaging. Mol Imaging Biol MIB Off Publ Acad Mol Imaging. 2011;13(2):378–84. doi:10.1007/s11307-010-0345-6.CrossRefGoogle Scholar
  32. 32.
    Kluge R, Barthel H, Pankau H, Seese A, Schauer J, Wirtz H, et al. Different mechanisms for changes in glucose uptake of the right and left ventricular myocardium in pulmonary hypertension. J Nucl Med. 2005;46(1):25–31.PubMedGoogle Scholar
  33. 33.•
    Yang T, Wang L, Xiong CM, He JG, Zhang Y, Gu Q, et al. The ratio of (18)F-FDG activity uptake between the right and left ventricle in patients with pulmonary hypertension correlates with the right ventricular function. Clin Nucl Med. 2014;39(5):426–30. doi:10.1097/RLU.0000000000000422. This study provides evidence for inverse correlation between RV FDG uptake and function in PH patients.CrossRefPubMedGoogle Scholar
  34. 34.
    Can MM, Kaymaz C, Tanboga IH, Tokgoz HC, Canpolat N, Turkyilmaz E, et al. Increased right ventricular glucose metabolism in patients with pulmonary arterial hypertension. Clin Nucl Med. 2011;36(9):743–8. doi:10.1097/RLU.0b013e3182177389.CrossRefPubMedGoogle Scholar
  35. 35.•
    Tatebe S, Fukumoto Y, Oikawa-Wakayama M, Sugimura K, Satoh K, Miura Y, et al. Enhanced [18F]fluorodeoxyglucose accumulation in the right ventricular free wall predicts long-term prognosis of patients with pulmonary hypertension: a preliminary observational study. Eur Heart J Cardiovasc Imaging. 2014;15(6):666–72. doi:10.1093/ehjci/jet276. This prospective clinical study shows that RV FDG uptake correlates significantly with time to clinical worsening of PH disease.CrossRefPubMedGoogle Scholar
  36. 36.
    Fang W, Zhao L, Xiong CM, Ni XH, He ZX, He JG, et al. Comparison of 18F-FDG uptake by right ventricular myocardium in idiopathic pulmonary arterial hypertension and pulmonary arterial hypertension associated with congenital heart disease. Pulm Circ. 2012;2(3):365–72. doi:10.4103/2045-8932.101651.CrossRefPubMedCentralPubMedGoogle Scholar
  37. 37.•
    Wang L, Zhang Y, Yan C, He J, Xiong C, Zhao S, et al. Evaluation of right ventricular volume and ejection fraction by gated (18)F-FDG PET in patients with pulmonary hypertension: comparison with cardiac MRI and CT. J Nucl Cardiol Off Publ Am Soc Nucl Cardiol. 2013;20(2):242–52. doi:10.1007/s12350-013-9672-8. In this study, the correlation between FDG PET and cardiac MRI and CT in measuring RV function is indicated. The results indicate that FDG uptake is a reliable parameter for assessing RV volume and function.CrossRefGoogle Scholar
  38. 38.
    Janardhanan R, Beller GA. Radionuclide imaging in stage B heart failure. Heart Fail Clin. 2012;8(2):191–206. doi:10.1016/j.hfc.2011.11.004.CrossRefPubMedGoogle Scholar
  39. 39.
    Schroeder T, Melo MF, Venegas JG. Analysis of 2-[Fluorine-18]-Fluoro-2-deoxy-D-glucose uptake kinetics in PET studies of pulmonary inflammation. Acad Radiol. 2011;18(4):418–23. doi:10.1016/j.acra.2010.11.019.CrossRefPubMedCentralPubMedGoogle Scholar
  40. 40.
    Ruiter G, Ying Wong Y, de Man FS, Louis Handoko M, Jaspers RT, Postmus PE, et al. Right ventricular oxygen supply parameters are decreased in human and experimental pulmonary hypertension. J Heart Lung Transplant. 2013;32(2):231–40. doi:10.1016/j.healun.2012.09.025.CrossRefPubMedGoogle Scholar
  41. 41.
    Piao L, Marsboom G, Archer SL. Mitochondrial metabolic adaptation in right ventricular hypertrophy and failure. J Mol Med (Berl). 2010;88(10):1011–20. doi:10.1007/s00109-010-0679-1.CrossRefGoogle Scholar
  42. 42.
    Doenst T, Pytel G, Schrepper A, Amorim P, Farber G, Shingu Y, et al. Decreased rates of substrate oxidation ex vivo predict the onset of heart failure and contractile dysfunction in rats with pressure overload. Cardiovasc Res. 2010;86(3):461–70. doi:10.1093/cvr/cvp414.CrossRefPubMedGoogle Scholar
  43. 43.
    Grover-McKay M, Schwaiger M, Krivokapich J, Perloff JK, Phelps ME, Schelbert HR. Regional myocardial blood flow and metabolism at rest in mildly symptomatic patients with hypertrophic cardiomyopathy. J Am Coll Cardiol. 1989;13(2):317–24.CrossRefPubMedGoogle Scholar
  44. 44.
    Taylor M, Wallhaus TR, Degrado TR, Russell DC, Stanko P, Nickles RJ, et al. An evaluation of myocardial fatty acid and glucose uptake using PET with [18F]fluoro-6-thia-heptadecanoic acid and [18F]FDG in patients with congestive heart failure. J Nucl Med. 2001;42(1):55–62.PubMedGoogle Scholar
  45. 45.
    Ohira H, McArdle B, Klein R, Davies R, de Kemp R, DaSilva J et al. Myocardial fatty acid and glucose metabolism in patients with pulmonary arterial hypertension. Society of Nuclear Medicine and Molecular Imaging: J Nucl Med. 2014;130.Google Scholar
  46. 46.
    Buxton DB, Schwaiger M, Nguyen A, Phelps ME, Schelbert HR. Radiolabeled acetate as a tracer of myocardial tricarboxylic acid cycle flux. Circ Res. 1988;63(3):628–34.CrossRefPubMedGoogle Scholar
  47. 47.
    Wolpers HG, Buck A, Nguyen N, Marcowitz PA, Armstrong WF, Starling MR, et al. An approach to ventricular efficiency by use of carbon 11-labeled acetate and positron emission tomography. J Nucl Cardiol Off Publ Am Soc Nucl Cardiol. 1994;1(3):262–9.CrossRefGoogle Scholar
  48. 48.
    Beanlands RS, Nahmias C, Gordon E, Coates G, de Kemp R, Firnau G, et al. The effects of beta(1)-blockade on oxidative metabolism and the metabolic cost of ventricular work in patients with left ventricular dysfunction: a double-blind, placebo-controlled, positron-emission tomography study. Circulation. 2000;102(17):2070–5.CrossRefPubMedGoogle Scholar
  49. 49.••
    Yoshinaga K, Ohira H, Tsujino I, Oyama-Manabe N, Mielniczuk L, Beanlands RS, et al. Attenuated right ventricular energetics evaluated using (1)(1)C-acetate PET in patients with pulmonary hypertension. Eur J Nucl Med Mol Imaging. 2014;41(6):1240–50. doi:10.1007/s00259-014-2736-4. This study applied 11 C-acetate PET to assess the RV oxidative state in PH patients. The authors measured the tracer clearance rate constant that is an indicator of myocardial oxygen consumption rate.
  50. 50.
    Quarck R, Nawrot T, Meyns B, Delcroix M. C-reactive protein: a new predictor of adverse outcome in pulmonary arterial hypertension. J Am Coll Cardiol. 2009;53(14):1211–8. doi:10.1016/j.jacc.2008.12.038.CrossRefPubMedGoogle Scholar
  51. 51.•
    Zhao L, Ashek A, Wang L, Fang W, Dabral S, Dubois O, et al. Heterogeneity in lung (18)FDG uptake in pulmonary arterial hypertension: potential of dynamic (18)FDG positron emission tomography with kinetic analysis as a bridging biomarker for pulmonary vascular remodeling targeted treatments. Circulation. 2013;128(11):1214–24. doi:10.1161/CIRCULATIONAHA.113.004136. This study assessed the variability of increased FDG uptake in pulmonary parenchymal tissue of PH patients.PubMedGoogle Scholar
  52. 52.
    Hagan G, Southwood M, Treacy C, Ross RM, Soon E, Coulson J, et al. (18)FDG PET imaging can quantify increased cellular metabolism in pulmonary arterial hypertension: a proof-of-principle study. Pulm Circ. 2011;1(4):448–55. doi:10.4103/2045-8932.93543.CrossRefPubMedCentralPubMedGoogle Scholar
  53. 53.•
    Marsboom G, Wietholt C, Haney CR, Toth PT, Ryan JJ, Morrow E, et al. Lung (1)(8)F-fluorodeoxyglucose positron emission tomography for diagnosis and monitoring of pulmonary arterial hypertension. Am J Respir Crit Care Med. 2012;185(6):670–9. doi:10.1164/rccm.201108-1562OC. This experimental study indicates the PAH-induced glycolytic switch in pulmonary vascular endothelial and smooth muscle cells which is accounted for increased pulmonary FDG uptake.CrossRefPubMedCentralPubMedGoogle Scholar
  54. 54.•
    Ruiter G, Wong YY, Raijmakers P, Huisman MC, Lammertsma AA, Knaapen P, et al. Pulmonary 2-deoxy-2-[(18)F]-fluoro-d-glucose uptake is low in treated patients with idiopathic pulmonary arterial hypertension. Pulm Circ. 2013;3(3):647–53. doi:10.1086/674335. This retrospective study indicates that pulmonary FDG uptake does not correlate with clinical response to PAH therapy or disease severity.CrossRefPubMedCentralPubMedGoogle Scholar
  55. 55.
    Tuder RM, Stacher E, Robinson J, Kumar R, Graham BB. Pathology of pulmonary hypertension. Clin Chest Med. 2013;34(4):639–50. doi:10.1016/j.ccm.2013.08.009.CrossRefPubMedGoogle Scholar
  56. 56.
    Tuder RM. How do we measure pathology in PAH (lung and RV) and what does it tell us about the disease. Drug Discov Today. 2014. doi:10.1016/j.drudis.2014.05.022.PubMedGoogle Scholar
  57. 57.
    Jakobsen S, Kodahl GM, Olsen AK, Cumming P. Synthesis, radiolabeling and in vivo evaluation of [11C]RAL-01, a potential phosphodiesterase 5 radioligand. Nucl Med Biol. 2006;33(5):593–7. doi:10.1016/j.nucmedbio.2006.04.006.CrossRefPubMedGoogle Scholar
  58. 58.
    Machado RD, Eickelberg O, Elliott CG, Geraci MW, Hanaoka M, Loyd JE, et al. Genetics and genomics of pulmonary arterial hypertension. J Am Coll Cardiol. 2009;54(1 Suppl):S32–42. doi:10.1016/j.jacc.2009.04.015.CrossRefPubMedCentralPubMedGoogle Scholar
  59. 59.
    Simonneau G, Gatzoulis MA, Adatia I, Celermajer D, Denton C, Ghofrani A, et al. Updated clinical classification of pulmonary hypertension. J Am Coll Cardiol. 2013;62(25 Suppl):D34–41. doi:10.1016/j.jacc.2013.10.029.CrossRefPubMedGoogle Scholar
  60. 60.
    Ivy DD, Abman SH, Barst RJ, Berger RM, Bonnet D, Fleming TR, et al. Pediatric pulmonary hypertension. J Am Coll Cardiol. 2013;62(25 Suppl):D117–26. doi:10.1016/j.jacc.2013.10.028.CrossRefPubMedGoogle Scholar
  61. 61.
    Shujaat A, Bajwa AA, Cury JD. Pulmonary hypertension secondary to COPD. Pulm Med. 2012;2012:203952. doi:10.1155/2012/203952.CrossRefPubMedCentralPubMedGoogle Scholar
  62. 62.
    Behr J, Ryu JH. Pulmonary hypertension in interstitial lung disease. Eur Respir J. 2008;31(6):1357–67. doi:10.1183/09031936.00171307.CrossRefPubMedGoogle Scholar
  63. 63.
    Portillo K, Morera J. Combined pulmonary fibrosis and emphysema syndrome: a new phenotype within the spectrum of smoking-related interstitial lung disease. Pulm Med. 2012;2012:867870. doi:10.1155/2012/867870.CrossRefPubMedCentralPubMedGoogle Scholar
  64. 64.
    Adegunsoye A, Ramachandran S. Etiopathogenetic mechanisms of pulmonary hypertension in sleep-related breathing disorders. Pulm Med. 2012;2012:273591. doi:10.1155/2012/273591.CrossRefPubMedCentralPubMedGoogle Scholar
  65. 65.
    Naeije R. Pulmonary hypertension in hypoventilation syndromes. Eur Respir J. 2014;43(1):12–5. doi:10.1183/09031936.00185213.CrossRefPubMedGoogle Scholar
  66. 66.
    Penaloza D. Effects of high-altitude exposure on the pulmonary circulation. Rev Esp Cardiol. 2012;65(12):1075–8. doi:10.1016/j.recesp.2012.06.027.CrossRefPubMedGoogle Scholar
  67. 67.
    Pepke-Zaba J, Delcroix M, Lang I, Mayer E, Jansa P, Ambroz D, et al. Chronic thromboembolic pulmonary hypertension (CTEPH): results from an international prospective registry. Circulation. 2011;124(18):1973–81. doi:10.1161/CIRCULATIONAHA.110.015008.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Ali Ahmadi
    • 1
  • Hiroshi Ohira
    • 1
  • Lisa M. Mielniczuk
    • 1
  1. 1.Molecular Function and Imaging Program, Division of Cardiology, Department of MedicineUniversity of Ottawa Heart InstituteOttawaCanada

Personalised recommendations