Current Cardiology Reports

, 16:525 | Cite as

Dolichoectasia and the Risk of Stroke and Vascular Disease: A Critical Appraisal

Stroke (AB Singhal, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Stroke

Abstract

Dolichoectasia (DE) in cerebral arteries is a poorly understood arteriopathy that has been associated with increased risk of vascular morbidity and mortality. Dolichoectasia tends to affects older individuals with vascular risk factors, but it can also be secondary to specific conditions related with extracellular matrix health. The range of methods used to study DE and the biases inherent to hospital-based samples weaken the generalizability of DE study results to the general population. Within the context of these limitations, there is growing evidence that DE is a serious condition that can increase the risk of vascular death. Recurrent strokes and compressive symptoms are among the major causes of morbidity, but cardiac ischemic disease and aortic aneurysms are not uncommon in populations with DE. The devastating outcomes of patients with DE are a call to action aimed at improving the quality of research on the topic and discovering therapies that can palliate the burden of DE in the population.

Keywords

Dolichoectasia Fusiform aneurysm Dilatative arteriopathy Remodeling Stroke Vascular disease 

Supplementary material

11886_2014_525_MOESM1_ESM.docx (129 kb)
ESM 1(DOCX 129 kb)

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. 1.
    Halsey CS. An etymology of Latin and Greek. Boston: Ginn & Company; 1889.Google Scholar
  2. 2.
    Morgagni G. De sedibus et causis morborum per anatomen indigatis libri quinque. Venice: ex typographica Remondiana. 1761.Google Scholar
  3. 3.
    Housepian EM, Pool JL. A systematic analysis of intracranial aneurysms from the autopsy file of the Presbyterian Hospital, 1914 to 1956. J Neuropathol Exp Neurol. 1958;17:409–23.PubMedCrossRefGoogle Scholar
  4. 4.
    Hayes WT, Bernhardt H, Young JM. Fusiform arteriosclerotic aneurysm of the basilar artery. Five cases including two ruptures. Vasc Surg. 1967;1:171–8.PubMedCrossRefGoogle Scholar
  5. 5.
    Resta M, Gentile MA, Di Cuonzo F, Vinjau E, Brindicci D, Carella A. Clinical-angiographic correlations in 132 patients with megadolichovertebrobasilar anomaly. Neuroradiology. 1984;26:213–6.PubMedCrossRefGoogle Scholar
  6. 6.
    Campbell E, Keedy C. Hemifacial spasm: a note on the etiology in two cases. J Neurosurg. 1947;4:342–7.PubMedCrossRefGoogle Scholar
  7. 7.
    Hulten-Gyllensten IL, Lofstedt S, Von Reis G. Observations on generalized arteriectasis. Acta Med Scand. 1959;163:125–30.PubMedCrossRefGoogle Scholar
  8. 8.
    Thompson JR, Weinstein PR, Simmons CR. Cerebral arterial dolichoectasia with seizure. Case report. J Neurosurg. 1976;44:509–12.PubMedCrossRefGoogle Scholar
  9. 9.
    Nijensohn DE, Saez RJ, Reagan TJ. Clinical significance of basilar artery aneurysms. Neurology. 1974;24:301–5.PubMedCrossRefGoogle Scholar
  10. 10.
    Drake CG, Peerless SJ. Giant fusiform intracranial aneurysms: review of 120 patients treated surgically from 1965 to 1992. J Neurosurg. 1997;87:141–62.PubMedCrossRefGoogle Scholar
  11. 11.
    Flemming KD, Wiebers DO, Brown Jr RD, Link MJ, Nakatomi H, Huston III J, et al. Prospective risk of hemorrhage in patients with vertebrobasilar nonsaccular intracranial aneurysm. J Neurosurg. 2004;101:82–7.PubMedCrossRefGoogle Scholar
  12. 12.
    Mizutani T, Miki Y, Kojima H, Suzuki H. Proposed classification of nonatherosclerotic cerebral fusiform and dissecting aneurysms. Neurosurgery. 1999;45:253–9. discussion 259–60.PubMedCrossRefGoogle Scholar
  13. 13.
    Anson JA, Lawton MT, Spetzler RF. Characteristics and surgical treatment of dolichoectatic and fusiform aneurysms. J Neurosurg. 1996;84:185–93.PubMedCrossRefGoogle Scholar
  14. 14.
    Nakatomi H, Segawa H, Kurata A, Shiokawa Y, Nagata K, Kamiyama H, et al. Clinicopathological study of intracranial fusiform and dolichoectatic aneurysms: insight on the mechanism of growth. Stroke. 2000;31:896–900.PubMedCrossRefGoogle Scholar
  15. 15.
    Mangrum WI, Huston III J, Link MJ, Wiebers DO, McClelland RL, Christianson TJ, et al. Enlarging vertebrobasilar nonsaccular intracranial aneurysms: frequency, predictors, and clinical outcome of growth. J Neurosurg. 2005;102:72–9.PubMedCrossRefGoogle Scholar
  16. 16.
    Pico F, Labreuche J, Touboul PJ, Amarenco P. Intracranial arterial dolichoectasia and its relation with atherosclerosis and stroke subtype. Neurology. 2003;61:1736–42.PubMedCrossRefGoogle Scholar
  17. 17.
    Passero S, Filosomi G. Posterior circulation infarcts in patients with vertebrobasilar dolichoectasia. Stroke. 1998;29:653–9.PubMedCrossRefGoogle Scholar
  18. 18.
    Milandre L, Bonnefoi B, Pestre P, Pellissier JF, Grisoli F, Khalil R. Vertebrobasilar arterial dolichoectasia. Complications and prognosis. Rev Neurol (Paris). 1991;147:714–22.Google Scholar
  19. 19.
    Gutierrez J, Sacco RL, Wright CB. Dolichoectasia-an evolving arterial disease. Nat Rev Neurol. 2011;7:41–50.PubMedCrossRefGoogle Scholar
  20. 20.
    Gibbons GH, Dzau VJ. The emerging concept of vascular remodeling. N Engl J Med. 1994;330:1431–8.PubMedCrossRefGoogle Scholar
  21. 21.
    Ince B, Petty GW, Brown Jr RD, Chu CP, Sicks JD, Whisnant JP. Dolichoectasia of the intracranial arteries in patients with first ischemic stroke: a population-based study. Neurology. 1998;50:1694–8.PubMedCrossRefGoogle Scholar
  22. 22.
    Gutierrez J, Bagci A, Gardener H, Rundek T, Ekind MS, Alperin N, et al. Dolichoectasia diagnostic methods in a multi-ethnic, stroke-free cohort: results from the northern Manhattan study. J Neuroimaging. 2014;24(3):226–31.Google Scholar
  23. 23.
    Passero SG, Rossi S. Natural history of vertebrobasilar dolichoectasia. Neurology. 2008;70:66–72.PubMedCrossRefGoogle Scholar
  24. 24.
    Giang DW, Perlin SJ, Monajati A, Kido DJ, Hollander J. Vertebrobasilar dolichoectasia: assessment using MR. Neuroradiology. 1988;30:518–23.PubMedCrossRefGoogle Scholar
  25. 25.
    Smoker WR, Corbett JJ, Gentry LR, Keyes WD, Price MJ, McKusker S. High-resolution computed tomography of the basilar artery: 2. Vertebrobasilar dolichoectasia: clinical-pathologic correlation and review. Am J Neuroradiol. 1986;7:61–72.PubMedGoogle Scholar
  26. 26.
    Smoker WR, Price MJ, Keyes WD, Corbett JJ, Gentry LR. High-resolution computed tomography of the basilar artery: 1. Normal size and position. Am J Neuroradiol. 1986;7:55–60.PubMedGoogle Scholar
  27. 27.
    Pico F, Labreuche J, Seilhean D, Duyckaerts C, Hauw JJ, Amarenco P. Association of small-vessel disease with dilatative arteriopathy of the brain: neuropathologic evidence. Stroke. 2007;38:1197–202.PubMedCrossRefGoogle Scholar
  28. 28.
    Pico F, Labreuche J, Gourfinkel-An I, Amarenco P. Basilar artery diameter and 5-year mortality in patients with stroke. Stroke. 2006;37:2342–7.PubMedCrossRefGoogle Scholar
  29. 29.
    Pessin MS, Chimowitz MI, Levine SR, Kwan ES, Adelman LS, Earnest MP, et al. Stroke in patients with fusiform vertebrobasilar aneurysms. Neurology. 1989;39:16–21.PubMedCrossRefGoogle Scholar
  30. 30.
    Stary HC. Natural history and histological classification of atherosclerotic lesions: an update. Arterioscler Thromb Vasc Biol. 2000;20:1177–8.PubMedCrossRefGoogle Scholar
  31. 31.
    Stary HC, Chandler AB, Dinsmore RE, Fuster V, Glagov S, Insull Jr W, et al. A definition of advanced types of atherosclerotic lesions and a histological classification of atherosclerosis. A report from the committee on vascular lesions of the council on arteriosclerosis, American Heart Association. Arterioscler Thromb Vasc Biol. 1995;15:1512–31.PubMedCrossRefGoogle Scholar
  32. 32.
    Alastruey J, Parker KH, Peiro J, Byrd SM, Sherwin SJ. Modelling the Circle of Willis to assess the effects of anatomical variations and occlusions on cerebral flows. J Biomech. 2007;40:1794–805.PubMedCrossRefGoogle Scholar
  33. 33.•
    Gutierrez J, Sultan S, Bagci A, Rundek T, Alperin N, Elkind MS, et al. Circle of Willis configuration as a determinant of intracranial dolichoectasia. Cerebrovasc Dis. 2013;36:446–53. In this population-based sample of participants with stroke, the authors investigated whether the variant of the Circle of Willis can influence the odds of intracranial DE. the authors found that as the connectivity decreases in the CoW, the odds of DE increase in arteries contralateral to the smaller caliber arteries. The authors suggest that dolichoectasia in this context might be “compensatory” rather than primary.PubMedCrossRefGoogle Scholar
  34. 34.•
    Tanaka M, Sakaguchi M, Miwa K, Okazaki S, Furukado S, Yagita Y, et al. Basilar artery diameter is an independent predictor of incident cardiovascular events. Arterioscler Thromb Vasc Biol. 2013;33:2240–4. The authors evaluated in a sample of patient with stroke if the basilar artery diameters at baseline would predict vascular events during the follow-up. The authors found that basilar artery diameter was an independent predictor of vascular events, particularly cardiac vascular events. There was no statistically significant association with stroke, but the study might have been underpowered to detect this association.PubMedCrossRefGoogle Scholar
  35. 35.
    Hartkamp MJ, van Der Grond J, van Everdingen KJ, Hillen B, Mali WP. Circle of Willis collateral flow investigated by magnetic resonance angiography. Stroke. 1999;30:2671–8.PubMedCrossRefGoogle Scholar
  36. 36.
    Henderson RD, Eliasziw M, Fox AJ, Rothwell PM, Barnett HJ. Angiographically defined collateral circulation and risk of stroke in patients with severe carotid artery stenosis. North American Symptomatic Carotid Endarterectomy Trial (NASCET) group. Stroke. 2000;31:128–32.PubMedCrossRefGoogle Scholar
  37. 37.
    Alpers BJ, Berry RG. Circle of Willis in cerebral vascular disorders. The anatomical structure. Arch Neurol. 1963;8:398–402.PubMedCrossRefGoogle Scholar
  38. 38.
    Passero SG, Calchetti B, Bartalini S. Intracranial bleeding in patients with vertebrobasilar dolichoectasia. Stroke. 2005;36:1421–5.PubMedCrossRefGoogle Scholar
  39. 39.
    Wolfe T, Ubogu EE, Fernandes-Filho JA, Zaidat OO. Predictors of clinical outcome and mortality in vertebrobasilar dolichoectasia diagnosed by magnetic resonance angiography. J Stroke Cerebrovasc Dis. 2008;17:388–93.PubMedCrossRefGoogle Scholar
  40. 40.
    Yu YL, Moseley IF, Pullicino P, McDonald WI. The clinical picture of ectasia of the intracerebral arteries. J Neurol Neurosurg Psychiatry. 1982;45:29–36.PubMedCentralPubMedCrossRefGoogle Scholar
  41. 41.
    Doonan AL, Karha J, Carrigan TP, Bavry AA, Begelman SM, Ellis SG, et al. Presence of carotid and peripheral arterial disease in patients with left main disease. Am J Cardiol. 2007;100:1087–9.PubMedCrossRefGoogle Scholar
  42. 42.
    Pico F, Biron Y, Bousser MG, Amarenco P. Concurrent dolichoectasia of basilar and coronary arteries. Neurology. 2005;65:1503–4.PubMedCrossRefGoogle Scholar
  43. 43.
    Sokmen G, Tuncer C, Sokmen A, Suner A. Clinical and angiographic features of large left main coronary artery aneurysms. Int J Cardiol. 2008;123:79–83.PubMedCrossRefGoogle Scholar
  44. 44.
    Syed M, Lesch M. Coronary artery aneurysm: a review. Prog Cardiovasc Dis. 1997;40:77–84.PubMedCrossRefGoogle Scholar
  45. 45.
    Sorbara R. Étude comparative du vieillissement des artères du polygone de Willis. Toulouse: Université Paul-Sabatier; 1972.Google Scholar
  46. 46.
    Gautier JC, Hauw JJ, Awada A, Loron P, Gray F, Juillard JB. Dolichoectatic intracranial arteries. Association with aneurysms of the abdominal aorta. Rev Neurol (Paris). 1988;144:437–46.Google Scholar
  47. 47.
    Sacks JG, Lindenburg R. Dolicho-ectatic intracranial arteries: symptomatology and pathogenesis of arterial elongation and distention. Johns Hopkins Med J. 1969;125:95–106.PubMedGoogle Scholar
  48. 48.
    Koch AE, Haines GK, Rizzo RJ, Radosevich JA, Pope RM, Robinson PG, et al. Human abdominal aortic aneurysms. Immunophenotypic analysis suggesting an immune-mediated response. Am J Pathol. 1990;137:1199–213.PubMedCentralPubMedGoogle Scholar
  49. 49.
    He R, Guo DC, Estrera AL, Safi HJ, Huynh TT, Yin Z, et al. Characterization of the inflammatory and apoptotic cells in the aortas of patients with ascending thoracic aortic aneurysms and dissections. J Thorac Cardiovasc Surg. 2006;131:671–8.PubMedCrossRefGoogle Scholar
  50. 50.
    Tamarina NA, McMillan WD, Shively VP, Pearce WH. Expression of matrix metalloproteinases and their inhibitors in aneurysms and normal aorta. Surgery. 1997;122:264–71. discussion 271–262.PubMedCrossRefGoogle Scholar
  51. 51.
    Pico F, Jacob MP, Labreuche J, Soufir N, Touboul PJ, Benessiano J, et al. Matrix metalloproteinase-3 and intracranial arterial dolichoectasia. Ann Neurol. 2010;67:508–15.PubMedCrossRefGoogle Scholar
  52. 52.
    Pico F, Labreuche J, Cohen A, Touboul PJ, Amarenco P. Intracranial arterial dolichoectasia is associated with enlarged descending thoracic aorta. Neurology. 2004;63:2016–21.PubMedCrossRefGoogle Scholar
  53. 53.
    Krejza J, Arkuszewski M, Kasner SE, Weigele J, Ustymowicz A, Hurst RW, et al. Carotid artery diameter in men and women and the relation to body and neck size. Stroke. 2006;37:1103–5.PubMedCrossRefGoogle Scholar
  54. 54.
    Pearce WH, Slaughter MS, LeMaire S, Salyapongse AN, Feinglass J, McCarthy WJ, et al. Aortic diameter as a function of age, gender, and body surface area. Surgery. 1993;114:691–7.PubMedGoogle Scholar
  55. 55.
    Rautenberg W, Aulich A, Rother J, Wentz KU, Hennerici M. Stroke and dolichoectatic intracranial arteries. Neurol Res. 1992;14:201–3.PubMedGoogle Scholar
  56. 56.
    Hennerici M, Rautenberg W, Schwartz A. Transcranial Doppler ultrasound for the assessment of intracranial arterial flow velocity—part 2. Evaluation of intracranial arterial disease. Surg Neurol. 1987;27:523–32.PubMedCrossRefGoogle Scholar
  57. 57.
    Egido JA, Carod J, Cuadrado ML, Gonzalez JL. Dolichoectasia of multiple cranial arteries. Findings on neuroimaging and transcranial Doppler. Rev Neurol. 1997;25:872–4.PubMedGoogle Scholar
  58. 58.
    Kumral E, Kisabay A, Atac C, Kaya C, Calli C. The mechanism of ischemic stroke in patients with dolichoectatic basilar artery. Eur J Neurol. 2005;12:437–44.PubMedCrossRefGoogle Scholar
  59. 59.
    Zhang DP, Zhang SL, Zhang JW, Zhang HT, Fu SQ, Yu M, et al. Basilar artery bending length, vascular risk factors, and pontine infarction. J Neurol Sci. 2014;338:142–7.PubMedCrossRefGoogle Scholar
  60. 60.
    Pico F, Labreuche J, Touboul PJ, Leys D, Amarenco P. Intracranial arterial dolichoectasia and small-vessel disease in stroke patients. Ann Neurol. 2005;57:472–9.PubMedCrossRefGoogle Scholar
  61. 61.
    Kwon HM, Kim JH, Lim JS, Park JH, Lee SH, Lee YS. Basilar artery dolichoectasia is associated with paramedian pontine infarction. Cerebrovasc Dis. 2009;27:114–8.PubMedCrossRefGoogle Scholar
  62. 62.
    Flemming KD, Wiebers DO, Brown Jr RD, Link MJ, Huston III J, McClelland RL, et al. The natural history of radiographically defined vertebrobasilar nonsaccular intracranial aneurysms. Cerebrovasc Dis. 2005;20:270–9.PubMedCrossRefGoogle Scholar
  63. 63.
    Klinge H, Braunsdorf WE. Clinical signs associated with megadolichobasilar artery anomaly. Neurosurg Rev. 1991;14:303–7.PubMedCrossRefGoogle Scholar
  64. 64.
    Yamada K, Hayakawa T, Ushio Y, Mitomo M. Cerebral arterial dolichoectasia associated with moyamoya vessels. Surg Neurol. 1985;23:19–24.PubMedCrossRefGoogle Scholar
  65. 65.
    Nishizaki T, Tamaki N, Takeda N, Shirakuni T, Kondoh T, Matsumoto S. Dolichoectatic basilar artery: a review of 23 cases. Stroke. 1986;17:1277–81.PubMedCrossRefGoogle Scholar
  66. 66.
    Ubogu EE, Zaidat OO. Vertebrobasilar dolichoectasia diagnosed by magnetic resonance angiography and risk of stroke and death: a cohort study. J Neurol Neurosurg Psychiatry. 2004;75:22–6.PubMedCentralPubMedCrossRefGoogle Scholar
  67. 67.
    Aoki J, Iguchi Y, Kimura K, Shibazaki K, Iwanaga T, Sakai K. Diameter of the basilar artery may be associated with neurological deterioration in acute pontine infarction. Eur Neurol. 2010;63:221–6.PubMedCrossRefGoogle Scholar
  68. 68.
    Lou M, Caplan LR. Vertebrobasilar dilatative arteriopathy (dolichoectasia). Ann N Y Acad Sci. 2010;1184:121–33.PubMedCrossRefGoogle Scholar
  69. 69.
    Dziewasa R, Freund M, Ludemann P, Muller M, Ritter M, Droste DW, et al. Treatment options in vertebrobasilar dolichoectasia–case report and review of the literature. Eur Neurol. 2003;49:245–7.PubMedCrossRefGoogle Scholar
  70. 70.
    De Georgia M, Belden J, Pao L, Pessin M, Kwan E, Caplan L. Thrombus in vertebrobasilar dolichoectatic artery treated with intravenous urokinase. Cerebrovasc Dis. 1999;9:28–33.PubMedCrossRefGoogle Scholar
  71. 71.
    Naunheim MR, Walcott BP, Nahed BV, MacRae CA, Levinson JR, Ogilvy CS. Arterial tortuosity syndrome with multiple intracranial aneurysms: a case report. Arch Neurol. 2011;68:369–71.PubMedCrossRefGoogle Scholar
  72. 72.
    Frenzel T, Lee CZ, Kim H, Quinnine NJ, Hashimoto T, Lawton MT, et al. Feasibility of minocycline and doxycycline use as potential vasculostatic therapy for brain vascular malformations: pilot study of adverse events and tolerance. Cerebrovasc Dis. 2008;25:157–63.PubMedCentralPubMedCrossRefGoogle Scholar
  73. 73.
    Aziz F, Kuivaniemi H. Role of matrix metalloproteinase inhibitors in preventing abdominal aortic aneurysm. Ann Vasc Surg. 2007;21:392–401.PubMedCentralPubMedCrossRefGoogle Scholar
  74. 74.
    Mosorin M, Juvonen J, Biancari F, Satta J, Surcel HM, Leinonen M, et al. Use of doxycycline to decrease the growth rate of abdominal aortic aneurysms: a randomized, double-blind, placebo-controlled pilot study. J Vasc Surg. 2001;34:606–10.PubMedCrossRefGoogle Scholar
  75. 75.•
    Castro MM, Rizzi E, Prado CM, Rossi MA, Tanus-Santos JE, Gerlach RF. Imbalance between matrix metalloproteinases and tissue inhibitor of metalloproteinases in hypertensive vascular remodeling. Matrix Biol. 2010;29:194–201. In an animal model of hypertension-induced remodeling, the authors report increment in the intima expression of metalloproteinases. Doxycycline (an inhibitors of metalloproteinases) attenuated the preteolytics activity of metalloproteinases but it did not change the expression of tissue inhibitor of metalloproteinases. This suggest that an imbalance of metalloproteinases and their inhibitors might play a role in maladaptive remodeling.PubMedCrossRefGoogle Scholar
  76. 76.
    Tronc F, Mallat Z, Lehoux S, Wassef M, Esposito B, Tedgui A. Role of matrix metalloproteinases in blood flow-induced arterial enlargement: interaction with no. Arterioscler Thromb Vasc Biol. 2000;20:E120–6.PubMedCrossRefGoogle Scholar
  77. 77.
    Laws Jr ER, Kelly PJ, Sundt Jr TM. Clip-grafts in microvascular decompression of the posterior fossa. Technical note. J Neurosurg. 1986;64:679–81.PubMedCrossRefGoogle Scholar
  78. 78.
    Rawlinson JN, Coakham HB. The treatment of hemifacial spasm by sling retraction. Br J Neurosurg. 1988;2:173–8.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of NeurologyColumbia University Medical CenterNew YorkUSA

Personalised recommendations