Current Cardiology Reports

, 16:520 | Cite as

Recent Advances in Visualizing Vulnerable Plaque: Focus on Noninvasive Molecular Imaging

Lipid Abnormalities and Cardiovascular Prevention (G De Backer, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Lipid Abnormalities and Cardiovascular Prevention

Abstract

Traditional imaging methods in atherosclerosis have focused primarily on anatomic information. Imaging approaches that visualize molecular targets rather than anatomic structures may emphasize biologic aspects of atherosclerosis. Molecular imaging of atherosclerotic lesions has become a crucial experimental tool and is now emerging in the clinical arena. In this review, we briefly highlight the rationale and fundamental principles of molecular imaging. We then discuss the promising imaging modalities, along with their potential limitations, and the molecular targets being investigated in experimental research. Finally, we summarize the most important clinical studies recently performed in humans.

Keywords

Atherosclerosis Vulnerable plaque Molecular imaging Nuclear molecular imaging CT MRI 

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Roger VL, Go AS, Lloyd-Jones DM, Benjamin EJ, Berry JD, Borden WB, et al. Executive summary: heart disease and stroke statistics‚ 2012 update: a report from the American Heart Association. Circulation. 2012;125(1):188–97. doi:10.1161/CIR.0b013e3182456d46.PubMedCrossRefGoogle Scholar
  2. 2.
    Anderson KM, Wilson PW, Odell PM, Kannel WB. An updated coronary risk profile. A statement for health professionals. Circulation. 1991;83(1):356–62. doi:10.1161/01.cir.83.1.356.PubMedCrossRefGoogle Scholar
  3. 3.
    Conroy RM, Pyörälä K, Fitzgerald AP, Sans S, Menotti A, De Backer G, et al. Estimation of ten-year risk of fatal cardiovascular disease in Europe: the SCORE project. Eur Heart J. 2003;24(11):987–1003. doi:10.1016/s0195-668x(03)00114-3.PubMedCrossRefGoogle Scholar
  4. 4.
    Zarich S, Luciano C, Hulford J, Abdullah A. Prevalence of metabolic syndrome in young patients with acute MI: does the Framingham Risk Score underestimate cardiovascular risk in this population? Diabetes Vasc Dis Res. 2006;3(2):103–7. doi:10.3132/dvdr.2006.012.CrossRefGoogle Scholar
  5. 5.
    Kalantzi K, Korantzopoulos P, Tzimas P, Katsouras CS, Goudevenos JA, Milionis HJ. The relative value of metabolic syndrome and cardiovascular risk score estimates in premature acute coronary syndromes. Am Heart J. 2008;155(3):534–40. doi:10.1016/j.ahj.2007.10.038.PubMedCrossRefGoogle Scholar
  6. 6.
    Ambrose JA, Tannenbaum MA, Alexopoulos D, Hjemdahlmonsen CE, Leavy J, Weiss M, et al. Angiographic progression of coronary-artery disease and the development of myocardial-infarction. J Am Coll Cardiol. 1988;12(1):56–62.PubMedCrossRefGoogle Scholar
  7. 7.
    Naghavi M, Libby P, Falk E, Casscells SW, Litovsky S, Rumberger J, et al. From vulnerable plaque to vulnerable patient: a call for new definitions and risk assessment strategies: part I. Circulation. 2003;108(14):1664–72. doi:10.1161/01.cir.0000087480.94275.97.PubMedCrossRefGoogle Scholar
  8. 8.
    Suh WM, Seto AH, Margey RJ, Cruz-Gonzalez I, Jang IK. Intravascular detection of the vulnerable plaque. Circ Cardiovasc Imaging. 2011;4(2):169–78. doi:10.1161/CIRCIMAGING.110.958777.PubMedCrossRefGoogle Scholar
  9. 9.
    Stone GW, Maehara A, Lansky AJ, de Bruyne B, Cristea E, Mintz GS, et al. A prospective natural-history study of coronary atherosclerosis. N Engl J Med. 2011;364(3):226–35. doi:10.1056/NEJMoa1002358.PubMedCrossRefGoogle Scholar
  10. 10.
    Nesto RW, Waxman S, Mittleman DMA, Sassower MA, Fitzpatrick PJ, Lewis SM, et al. Angioscopy of culprit coronary lesions in unstable angina pectoris and correlation of clinical presentation with plaque morphology. Am J Cardiol. 1998;81(2):225–8. doi:10.1016/S0002-9149(97)00889-8.PubMedCrossRefGoogle Scholar
  11. 11.
    Achenbach S, Raggi P. Imaging of coronary atherosclerosis by computed tomography. Eur Heart J. 2010;31(12):1442–8. doi:10.1093/eurheartj/ehq150.PubMedCrossRefGoogle Scholar
  12. 12.
    Hyafil F, Cornily JC, Feig JE, Gordon R, Vucic E, Amirbekian V, et al. Noninvasive detection of macrophages using a nanoparticulate contrast agent for computed tomography. Nat Med. 2007;13(5):636–41. doi:10.1038/Nm1571.PubMedCrossRefGoogle Scholar
  13. 13.
    Villanueva FS, Wagner WR. Ultrasound molecular imaging of cardiovascular disease. Nat Clin Pract Cardiovasc. 2008;5:S26–32. doi:10.1038/Ncpcardio1246.CrossRefGoogle Scholar
  14. 14.
    Yoo H, Kim JW, Shishkov M, Namati E, Morse T, Shubochkin R, et al. Intra-arterial catheter for simultaneous microstructural and molecular imaging in vivo. Nat Med. 2011;17(12):1680–4. doi:10.1038/Nm.2555.PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Finn AV, Nakano M, Narula J, Kolodgie FD, Virmani R. Concept of vulnerable/unstable plaque. Arterioscler Thromb Vasc Biol. 2010;30(7):1282–92. doi:10.1161/atvbaha.108.179739.PubMedCrossRefGoogle Scholar
  16. 16.
    Sanz J, Fayad ZA. Imaging of atherosclerotic cardiovascular disease. Nature. 2008;451(7181):953–7. doi:10.1038/nature06803.PubMedCrossRefGoogle Scholar
  17. 17.
    Hartung D, Petrov A, Haider N, Fujimoto S, Blankenberg F, Fujimoto A, et al. Radiolabeled monocyte chemotactic protein 1 for the detection of inflammation in experimental atherosclerosis. J Nucl Med. 2007;48(11):1816–21. doi:10.2967/jnumed.107.043463.PubMedCrossRefGoogle Scholar
  18. 18.
    Ohtsuki K, Hayase M, Akashi K, Kopiwoda S, Strauss HW. Detection of monocyte chemoattractant protein-1 receptor expression in experimental atherosclerotic lesions. Circulation. 2001;104(2):203–8. doi:10.1161/01.cir.104.2.203.PubMedCrossRefGoogle Scholar
  19. 19.
    Hamilton AJ, Huang SL, Warnick D, Rabbat M, Kane B, Nagaraj A, et al. Intravascular ultrasound molecular imaging of atheroma components in vivo. J Am Coll Cardiol. 2004;43(3):453–60. doi:10.1016/j.jacc.2003.07.048.PubMedCrossRefGoogle Scholar
  20. 20.
    Kaufmann BA, Sanders JM, Davis C, Xie A, Aldred P, Sarembock IJ, et al. Molecular imaging of inflammation in atherosclerosis with targeted ultrasound detection of vascular cell adhesion molecule-1. Circulation. 2007;116(3):276–84. doi:10.1161/circulationaha.106.684738.PubMedCrossRefGoogle Scholar
  21. 21.
    Broisat A, Hernot S, Toczek J, De Vos J, Riou LM, Martin S, et al. Nanobodies targeting mouse/human VCAM1 for the nuclear imaging of atherosclerotic lesions. Circ Res. 2012;110(7):927–37. doi:10.1161/circresaha.112.265140.PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Kelly KA, Allport JR, Tsourkas A, Shinde-Patil VR, Josephson L, Weissleder R. Detection of vascular adhesion molecule-1 expression using a novel multimodal nanoparticle. Circ Res. 2005;96(3):327–36. doi:10.1161/01.RES.0000155722.17881.dd.PubMedCrossRefGoogle Scholar
  23. 23.
    Broisat A, Riou LM, Ardisson V, Boturyn D, Dumy P, Fagret D, et al. Molecular imaging of vascular cell adhesion molecule-1 expression in experimental atherosclerotic plaques with radiolabelled B2702-p. Eur J Nucl Med Mol Imaging. 2007;34(6):830–40. doi:10.1007/s00259-006-0310-4.PubMedCrossRefGoogle Scholar
  24. 24.
    McAteer MA, Schneider JE, Ali ZA, Warrick N, Bursill CA, von zur Muhlen C, et al. Magnetic resonance imaging of endothelial adhesion molecules in mouse atherosclerosis using dual-targeted microparticles of iron oxide. Arterioscler Thromb Vasc Biol. 2008;28(1):77–83. doi:10.1161/atvbaha.107.145466.PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    Nahrendorf M, Jaffer FA, Kelly KA, Sosnovik DE, Aikawa E, Libby P, et al. Noninvasive vascular cell adhesion molecule-1 imaging identifies inflammatory activation of cells in atherosclerosis. Circulation. 2006;114(14):1504–11. doi:10.1161/circulationaha.106.646380.PubMedCrossRefGoogle Scholar
  26. 26.
    Libby P, Ridker PM, Maseri A. Inflammation and atherosclerosis. Circulation. 2002;105(9):1135–43. doi:10.1161/hc0902.104353.PubMedCrossRefGoogle Scholar
  27. 27.
    Jaffer FA, Libby P, Weissleder R. Molecular imaging of cardiovascular disease. Circulation. 2007;116(9):1052–61. doi:10.1161/circulationaha.106.647164.PubMedCrossRefGoogle Scholar
  28. 28.
    Kooi ME, Cappendijk VC, Cleutjens KBJM, Kessels AGH, Kitslaar PJEHM, Borgers M, et al. Accumulation of ultrasmall superparamagnetic particles of iron oxide in human atherosclerotic plaques can be detected by in vivo magnetic resonance imaging. Circulation. 2003;107(19):2453–8. doi:10.1161/01.cir.0000068315.98705.cc.PubMedCrossRefGoogle Scholar
  29. 29.
    Tang T, Howarth SPS, Miller SR, Trivedi R, Graves MJ, King-Im JU, et al. Assessment of inflammatory burden contralateral to the symptomatic carotid stenosis using high-resolution ultrasmall, superparamagnetic iron oxide-enhanced MRI. Stroke. 2006;37(9):2266–70. doi:10.1161/01.str.0000236063.47539.99.PubMedCrossRefGoogle Scholar
  30. 30.
    Hyafil F, Cornily J-C, Feig JE, Gordon R, Vucic E, Amirbekian V, et al. Noninvasive detection of macrophages using a nanoparticulate contrast agent for computed tomography. Nat Med. 2007;13(5):636–41. http://www.nature.com/nm/journal/v13/n5/suppinfo/nm1571_S1.html.PubMedCrossRefGoogle Scholar
  31. 31.
    Nahrendorf M, Zhang H, Hembrador S, Panizzi P, Sosnovik DE, Aikawa E, et al. Nanoparticle PET-CT imaging of macrophages in inflammatory atherosclerosis. Circulation. 2008;117(3):379–87. doi:10.1161/circulationaha.107.741181.PubMedCentralPubMedCrossRefGoogle Scholar
  32. 32.
    Rudd JHF, Warburton EA, Fryer TD, Jones HA, Clark JC, Antoun N, et al. Imaging atherosclerotic plaque inflammation with [18F]-fluorodeoxyglucose positron emission tomography. Circulation. 2002;105(23):2708–11. doi:10.1161/01.cir.0000020548.60110.76.PubMedCrossRefGoogle Scholar
  33. 33.
    Davies JR, Rudd JHF, Fryer TD, Graves MJ, Clark JC, Kirkpatrick PJ, et al. Identification of culprit lesions after transient ischemic attack by combined 18F fluorodeoxyglucose positron-emission tomography and high-resolution magnetic resonance imaging. Stroke. 2005;36(12):2642–7. doi:10.1161/01.STR.0000190896.67743.b1.PubMedCrossRefGoogle Scholar
  34. 34.
    Tawakol A, Migrino RQ, Bashian GG, Bedri S, Vermylen D, Cury RC, et al. In vivo 18F-fluorodeoxyglucose positron emission tomography imaging provides a noninvasive measure of carotid plaque inflammation in patients. J Am Coll Cardiol. 2006;48(9):1818–24. doi:10.1016/j.jacc.2006.05.076.PubMedCrossRefGoogle Scholar
  35. 35.
    Matter CM, Wyss MT, Meier P, Spath N, von Lukowicz T, Lohmann C, et al. 18F-choline images murine atherosclerotic plaques ex vivo. Arterioscler Thromb Vasc Biol. 2006;26(3):584–9. doi:10.1161/01.ATV.0000200106.34016.18.PubMedCrossRefGoogle Scholar
  36. 36.
    Tahara N, Mukherjee J, de Haas HJ, Petrov AD, Tawakol A, Haider N, et al. 2-deoxy-2-[18F]fluoro-D-mannose positron emission tomography imaging in atherosclerosis. Nat Med. 2014;20(2):215–9. doi:10.1038/nm.3437.PubMedCrossRefGoogle Scholar
  37. 37.
    Hansson GRK. Inflammation, atherosclerosis, and coronary artery disease. N Engl J Med. 2005;352(16):1685–95. doi:10.1056/NEJMra043430.PubMedCrossRefGoogle Scholar
  38. 38.
    Moore KJ, Freeman MW. Scavenger receptors in atherosclerosis: beyond lipid uptake. Arterioscler Thromb Vasc Biol. 2006;26(8):1702–11. doi:10.1161/01.atv.0000229218.97976.43.PubMedCrossRefGoogle Scholar
  39. 39.
    Amirbekian V, Lipinski MJ, Briley-Saebo KC, Amirbekian S, Aguinaldo JGS, Weinreb DB, et al. Detecting and assessing macrophages in vivo to evaluate atherosclerosis noninvasively using molecular MRI. Proc Natl Acad Sci. 2007;104(3):961–6. doi:10.1073/pnas.0606281104.PubMedCentralPubMedCrossRefGoogle Scholar
  40. 40.
    Ishino S, Mukai T, Kuge Y, Kume N, Ogawa M, Takai N, et al. Targeting of lectin-like oxidized low-density lipoprotein receptor 1 (LOX-1) with 99mTc-labeled anti-LOX-1 antibody: potential agent for imaging of vulnerable plaque. J Nucl Med. 2008;49(10):1677–85. doi:10.2967/jnumed.107.049536.PubMedCrossRefGoogle Scholar
  41. 41.
    Li D, Patel AR, Klibanov AL, Kramer CM, Ruiz M, Kang B-Y, et al. Molecular imaging of atherosclerotic plaques targeted to oxidized LDL receptor LOX-1 by SPECT/CT and magnetic resonance. Circ Cardiovasc Imaging. 2010;3(4):464–72. doi:10.1161/circimaging.109.896654.PubMedCentralPubMedCrossRefGoogle Scholar
  42. 42.
    Laufer EM, Winkens MHM, Corsten MF, Reutelingsperger CPM, Narula J, Hofstra L. PET and SPECT imaging of apoptosis in vulnerable atherosclerotic plaques with radiolabeled annexin A5. Q J Nucl Med Mol Imaging. 2009;53(1):26–34.PubMedGoogle Scholar
  43. 43.
    Chen J, Tung C-H, Mahmood U, Ntziachristos V, Gyurko R, Fishman MC, et al. In vivo imaging of proteolytic activity in atherosclerosis. Circulation. 2002;105(23):2766–71. doi:10.1161/01.cir.0000017860.20619.23.PubMedCrossRefGoogle Scholar
  44. 44.
    Deguchi J-O, Aikawa M, Tung C-H, Aikawa E, Kim D-E, Ntziachristos V, et al. Inflammation in atherosclerosis: visualizing matrix metalloproteinase action in macrophages in vivo. Circulation. 2006;114(1):55–62. doi:10.1161/circulationaha.106.619056.PubMedCrossRefGoogle Scholar
  45. 45.
    Jaffer FA, Kim D-E, Quinti L, Tung C-H, Aikawa E, Pande AN, et al. Optical visualization of cathepsin k activity in atherosclerosis with a novel, protease-activatable fluorescence sensor. Circulation. 2007;115(17):2292–8. doi:10.1161/circulationaha.106.660340.PubMedCrossRefGoogle Scholar
  46. 46.
    Lancelot E, Amirbekian V, Brigger IN, Raynaud J-SB, Ballet SB, David C, et al. Evaluation of matrix metalloproteinases in atherosclerosis using a novel noninvasive imaging approach. Arterioscler Thromb Vasc Biol. 2008;28(3):425–32. doi:10.1161/atvbaha.107.149666.PubMedCrossRefGoogle Scholar
  47. 47.
    Haider N, Hartung D, Fujimoto S, Petrov A, Kolodgie F, Virmani R, et al. Dual molecular imaging for targeting metalloproteinase activity and apoptosis in atherosclerosis: molecular imaging facilitates understanding of pathogenesis. J Nucl Cardiol. 2009;16(5):753–62. doi:10.1007/s12350-009-9107-8.PubMedCentralPubMedCrossRefGoogle Scholar
  48. 48.
    Razavian M, Tavakoli S, Zhang J, Nie L, Dobrucki LW, Sinusas AJ, et al. Atherosclerosis plaque heterogeneity and response to therapy detected by in vivo molecular imaging of matrix metalloproteinase activation. J Nucl Med. 2011;52(11):1795–802. doi:10.2967/jnumed.111.092379.PubMedCentralPubMedCrossRefGoogle Scholar
  49. 49.
    Virmani R, Kolodgie FD, Burke AP, Finn AV, Gold HK, Tulenko TN, et al. Atherosclerotic plaque progression and vulnerability to rupture: angiogenesis as a source of intraplaque hemorrhage. Arterioscler Thromb Vasc Biol. 2005;25(10):2054–61. doi:10.1161/01.atv.0000178991.71605.18.PubMedCrossRefGoogle Scholar
  50. 50.
    Winter PM, Morawski AM, Caruthers SD, Fuhrhop RW, Zhang H, Williams TA, et al. Molecular imaging of angiogenesis in early-stage atherosclerosis with alpha(v)beta3-integrin-targeted nanoparticles. Circulation. 2003;108(18):2270–4. doi:10.1161/01.cir.0000093185.16083.95.PubMedCrossRefGoogle Scholar
  51. 51.
    Laitinen I, Saraste A, Weidl E, Poethko T, Weber AW, Nekolla SG, et al. Evaluation of alphavbeta3 integrin-targeted positron emission tomography tracer 18F-galacto-RGD for imaging of vascular inflammation in atherosclerotic mice. Circ Cardiovasc Imaging. 2009;2(4):331–8. doi:10.1161/circimaging.108.846865.PubMedCrossRefGoogle Scholar
  52. 52.
    Heroux J, Gharib A, Danthi N, Cecchini S, Ohayon J, Pettigrew R. High-affinity Œ±vŒ≤3 integrin targeted optical probe as a new imaging biomarker for early atherosclerosis: initial studies in Watanabe rabbits. Mol Imaging Biol. 2010;12(1):2–8. doi:10.1007/s11307-009-0242-z.PubMedCrossRefGoogle Scholar
  53. 53.
    Botnar RM, Buecker A, Wiethoff AJ, Parsons EC, Katoh M, Katsimaglis G, et al. In vivo magnetic resonance imaging of coronary thrombosis using a fibrin-binding molecular magnetic resonance contrast agent. Circulation. 2004;110(11):1463–6. doi:10.1161/01.cir.0000134960.31304.87.PubMedCrossRefGoogle Scholar
  54. 54.
    Spuentrup E, Botnar R, Wiethoff A, Ibrahim T, Kelle S, Katoh M, et al. MR imaging of thrombi using EP-2104R, a fibrin-specific contrast agent: initial results in patients. Eur Radiol. 2008;18(9):1995–2005. doi:10.1007/s00330-008-0965-2.PubMedCrossRefGoogle Scholar
  55. 55.
    Jaffer FA, Tung C-H, Wykrzykowska JJ, Ho N-H, Houng AK, Reed GL, et al. Molecular imaging of factor XIIIa activity in thrombosis using a novel, near-infrared fluorescent contrast agent that covalently links to thrombi. Circulation. 2004;110(2):170–6. doi:10.1161/01.cir.0000134484.11052.44.PubMedCrossRefGoogle Scholar
  56. 56.
    Tei L, Mazooz G, Shellef Y, Avni R, Vandoorne K, Barge A, et al. Novel MRI and fluorescent probes responsive to the factor XIII transglutaminase activity. Contrast Media Mol Imaging. 2010;5(4):213–22. doi:10.1002/cmmi.392.PubMedCrossRefGoogle Scholar
  57. 57.
    Yun M, Yeh D, Araujo LI, Jang S, Newberg A, Alavi A. F-18 FDG uptake in the large arteries: a new observation. Clin Nucl Med. 2001;26(4):314–9.PubMedCrossRefGoogle Scholar
  58. 58.
    Rominger A, Saam T, Wolpers S, Cyran CC, Schmidt M, Foerster S, et al. 18F-FDG PET/CT identifies patients at risk for future vascular events in an otherwise asymptomatic cohort with neoplastic disease. J Nucl Med. 2009;50(10):1611–20. doi:10.2967/jnumed.109.065151.PubMedCrossRefGoogle Scholar
  59. 59.
    Grandpierre SN, Desandes E, Meneroux B, Djaballah W, Mandry D, Netter F, et al. Arterial foci of F-18 fluorodeoxyglucose are associated with an enhanced risk of subsequent ischemic stroke in cancer patients: a case-control pilot study. Clin Nucl Med. 2011;36(2):85–90. doi:10.1097/RLU.0b013e318203bb42.PubMedCrossRefGoogle Scholar
  60. 60.••
    Marnane M, Merwick A, Sheehan OC, Hannon N, Foran P, Grant T, et al. Carotid plaque inflammation on 18F-fluorodeoxyglucose positron emission tomography predicts early stroke recurrence. Ann Neurol. 2012;71(5):709–18. doi:10.1002/ana. In symptomatic carotid stenosis, inflammation-related FDG uptake was associated with early stroke recurrence, independent of the degree of stenosis.PubMedCrossRefGoogle Scholar
  61. 61.
    Antonopoulos AS, Margaritis M, Lee R, Channon K, Antoniades C. Statins as anti-inflammatory agents in atherogenesis: molecular mechanisms and lessons from the recent clinical trials. Curr Pharm Des. 2012;18(11):1519–30.PubMedCentralPubMedCrossRefGoogle Scholar
  62. 62.
    Tahara N, Kai H, Ishibashi M, Nakaura H, Kaida H, Baba K, et al. Simvastatin attenuates plaque inflammation—evaluation by fluorodeoxyglucose positron emission tomography. J Am Coll Cardiol. 2006;48(9):1825–31. doi:10.1016/J.Jacc.2006.03.069.PubMedCrossRefGoogle Scholar
  63. 63.•
    Tawakol A, Fayad ZA, Mogg R, Alon A, Klimas MT, Dansky H, et al. Intensification of statin therapy results in a rapid reduction in atherosclerotic inflammation: results of a multicenter fluorodeoxyglucose-positron emission tomography/computed tomography feasibility study. J Am Coll Cardiol. 2013;62(10):909–17. doi:10.1016/j.jacc.2013.04.066. Dose-dependent anti-inflammatory effects of statin therapy evaluated by 8F-FDG PET/CT carotid plaque imaging.PubMedCrossRefGoogle Scholar
  64. 64.•
    Fayad ZA, Mani V, Woodward M, Kallend D, Abt M, Burgess T, et al. Safety and efficacy of dalcetrapib on atherosclerotic disease using novel non-invasive multimodality imaging (dal-PLAQUE): a randomised clinical trial. Lancet. 2011;378(9802):1547–59. Molecular–structural assessment of dalcetrapib on carotid atherosclerosis using 18F-FDG PET/CT and anatomical MR imaging.PubMedCrossRefGoogle Scholar
  65. 65.
    Mizoguchi M, Tahara N, Tahara A, Nitta Y, Kodama N, Oba T, et al. Pioglitazone attenuates atherosclerotic plaque inflammation in patients with impaired glucose tolerance or diabetes: a prospective, randomized, comparator-controlled study using serial FDG PET/CT imaging study of carotid artery and ascending aorta. J Am Coll Cardiol Img. 2011;4(10):1110–8. doi:10.1016/j.jcmg.2011.08.007.Google Scholar
  66. 66.
    Elkhawad M, Rudd JHF, Sarov-Blat L, Cai G, Wells R, Davies LC, et al. Effects of p38 mitogen-activated protein kinase inhibition on vascular and systemic inflammation in patients with atherosclerosis. J Am Coll Cardiol Img. 2012;5(9):911–22. doi:10.1016/j.jcmg.2012.02.016.Google Scholar
  67. 67.
    Wykrzykowska J, Lehman S, Williams G, Parker JA, Palmer MR, Varkey S, et al. Imaging of inflamed and vulnerable plaque in coronary arteries with 18F-FDG PET/CT in patients with suppression of myocardial uptake using a low-carbohydrate, high-fat preparation. J Nucl Med. 2009;50(4):563–8. doi:10.2967/jnumed.108.055616.PubMedCrossRefGoogle Scholar
  68. 68.
    Rogers IS, Nasir K, Figueroa AL, Cury RC, Hoffmann U, Vermylen DA, et al. Feasibility of FDG imaging of the coronary arteries: comparison between acute coronary syndrome and stable angina. J Am Coll Cardiol Img. 2010;3(4):388–97. doi:10.1016/j.jcmg.2010.01.004.Google Scholar
  69. 69.
    Hiari N, Rudd JH. FDG PET imaging and cardiovascular inflammation. Curr Cardiol Rep. 2011;13(1):43–8. doi:10.1007/s11886-010-0150-5.PubMedCrossRefGoogle Scholar
  70. 70.
    Greenland P, LaBree L, Azen SP, Doherty TM, Detrano RC. COronary artery calcium score combined with framingham score for risk prediction in asymptomatic individuals. JAMA. 2004;291(2):210–5. doi:10.1001/jama.291.2.210.PubMedCrossRefGoogle Scholar
  71. 71.•
    Dweck MR, Chow MWL, Joshi NV, Williams MC, Jones C, Fletcher AM, et al. Coronary arterial 18F-sodium fluoride uptake: a novel marker of plaque biology. J Am Coll Cardiol. 2012;59(17):1539–48. doi:10.1016/j.jacc.2011.12.037. This is the first study to describe 18F-NaF PET/CT imaging of active plaque calcification in the coronary arteries.PubMedCrossRefGoogle Scholar
  72. 72.
    Derlin T, Richter U, Bannas P, Begemann P, Buchert R, Mester J, et al. Feasibility of 18F-sodium fluoride PET/CT for imaging of atherosclerotic plaque. J Nucl Med. 2010;51(6):862–5. doi:10.2967/jnumed.110.076471.PubMedCrossRefGoogle Scholar
  73. 73.
    Derlin T, Wisotzki C, Richter U, Apostolova I, Bannas P, Weber C, et al. In vivo imaging of mineral deposition in carotid plaque using 18F-sodium fluoride PET/CT: correlation with atherogenic risk factors. J Nucl Med. 2011;52(3):362–8. doi:10.2967/jnumed.110.081208.PubMedCrossRefGoogle Scholar
  74. 74.
    Derlin T, Tóth Z, Papp LS, Wisotzki C, Apostolova I, Habermann CR, et al. Correlation of inflammation assessed by 18F-FDG PET, active mineral deposition assessed by 18F-fluoride PET, and vascular calcification in atherosclerotic plaque: a dual-tracer PET/CT study. J Nucl Med. 2011;52(7):1020–7. doi:10.2967/jnumed.111.087452.PubMedCrossRefGoogle Scholar
  75. 75.••
    Joshi NV, Vesey AT, Williams MC, Shah ASV, Calvert PA, Craighead FHM, et al. 18F-fluoride positron emission tomography for identification of ruptured and high-risk coronary atherosclerotic plaques: a prospective clinical trial. Lancet. 2013;383(9918):705–13. doi:10.1016/S0140-6736(13)61754-7. 18F-NaF PET/CT imaging study demonstrating higher 18F-NaF uptake in culprit lesions of patients with acute coronary syndrome.PubMedCrossRefGoogle Scholar
  76. 76.
    Gaemperli O, Shalhoub J, Owen DRJ, Lamare F, Johansson S, Fouladi N, et al. Imaging intraplaque inflammation in carotid atherosclerosis with 11C-PK11195 positron emission tomography/computed tomography. Eur Heart J. 2012;33(15):1902–10. doi:10.1093/eurheartj/ehr367.PubMedCrossRefGoogle Scholar
  77. 77.
    Trivedi RA, Mallawarachi C, U-King-Im J-M, Graves MJ, Horsley J, Goddard MJ, et al. Identifying inflamed carotid plaques using in vivo USPIO-enhanced MR imaging to label plaque macrophages. Arterioscler Thromb Vasc Biol. 2006;26(7):1601–6. doi:10.1161/01.ATV.0000222920.59760.df.PubMedCrossRefGoogle Scholar
  78. 78.
    Tang TY, Howarth SPS, Miller SR, Graves MJ, Patterson AJ, U-King-Im J-M, et al. The ATHEROMA (Atorvastatin Therapy: Effects on Reduction of Macrophage Activity) study: evaluation using ultrasmall superparamagnetic iron oxide-enhanced magnetic resonance imaging in carotid disease. J Am Coll Cardiol. 2009;53(22):2039–50. doi:10.1016/j.jacc.2009.03.018.PubMedCrossRefGoogle Scholar
  79. 79.
    Mittleman MA, Mostofsky E. Physical, psychological and chemical triggers of acute cardiovascular events: preventive strategies. Circulation. 2011;124(3):346–54. doi:10.1161/circulationaha.110.968776.PubMedCentralPubMedCrossRefGoogle Scholar
  80. 80.
    Burke AP, Farb A, Malcom GT, Liang Y, Smialek JE, Virmani R. PLaque rupture and sudden death related to exertion in men with coronary artery disease. JAMA. 1999;281(10):921–6. doi:10.1001/jama.281.10.921.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Centrum voor Hart- en Vaatziekten (CHVZ)UZ BrusselBrusselsBelgium
  2. 2.In Vivo Cellular and Molecular Imaging Laboratory (ICMI), Faculty of Medicine and PharmacyVrije Universiteit Brussel (VUB)BrusselsBelgium

Personalised recommendations