Advertisement

4D Flow Imaging: Current Status to Future Clinical Applications

  • Michael MarklEmail author
  • Susanne Schnell
  • Alex J. Barker
Cardiac PET, CT, and MRI (SE Petersen, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Cardiac PET, CT, and MRI

Abstract

4D flow MRI permits a comprehensive in-vivo assessment of three-directional blood flow within 3-dimensional vascular structures throughout the cardiac cycle. Given the large coverage permitted from a 4D flow acquisition, the distribution of vessel wall and flow parameters along an entire vessel of interest can thus be derived from a single measurement without being dependent on multiple predefined 2D acquisitions. In addition to qualitative 3D visualizations of complex cardiac and vascular flow patterns, quantitative flow analysis can be performed and is complemented by the ability to compute sophisticated hemodynamic parameters, such as wall shear stress or 3D pressure difference maps. These metrics can provide information previously unavailable with conventional modalities regarding the impact of cardiovascular disease or therapy on global and regional changes in hemodynamics. This review provides an introduction to the methodological aspects of 4D flow MRI to assess vascular hemodynamics and describes its potential for the assessment and understanding of altered hemodynamics in the presence of cardiovascular disease.

Keywords

4D flow MRI PC-MRI Blood flow Hemodynamics 3D flow visualization Flow quantification Aorta Heart Pulmonary arteries 

Notes

Acknowledgments

Grant support has been received from NIH NHLBI grant R01HL115828 and AHA 13SDG14360004.

Compliance with Ethics Guidelines

Conflict of Interest

Michael Markl, Susanne Schnell, and Alex J. Barker declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Supplementary material

ESM 1

(MPG 7356 kb)

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Moran PR. A flow velocity zeugmatographic interlace for NMR imaging in humans. Magn Reson Imaging. 1982;1(4):197–203.PubMedCrossRefGoogle Scholar
  2. 2.
    Firmin DN, Nayler GL, Klipstein RH, Underwood SR, Rees RS, Longmore DB. In vivo validation of MR velocity imaging. J Comput Assist Tomogr. 1987;11(5):751–6.PubMedCrossRefGoogle Scholar
  3. 3.
    Pelc NJ, Herfkens RJ, Shimakawa A, Enzmann DR. Phase contrast cine magnetic resonance imaging. Magn Reson Q. 1991;7(4):229–54.PubMedGoogle Scholar
  4. 4.
    Goldberg A, Jha S. Phase-contrast MRI and applications in congenital heart disease. Clin Radiol. 2012;67(5):399–410.PubMedCrossRefGoogle Scholar
  5. 5.
    Srichai MB, Lim RP, Wong S, Lee VS. Cardiovascular applications of phase-contrast MRI. AJR Am J Roentgenol. 2009;192(3):662–75.PubMedCrossRefGoogle Scholar
  6. 6.
    Kilner PJ, Gatehouse PD, Firmin DN. Flow measurement by magnetic resonance: a unique asset worth optimising. J Cardiovasc Magn Reson: Off J Soc Cardiovasc Magn Reson. 2007;9(4):723–8.CrossRefGoogle Scholar
  7. 7.
    Nayak KS, Pauly JM, Kerr AB, Hu BS, Nishimura DG. Real-time color flow MRI. Magnetic reson Med: Off J Soc Magn Reson Med Soc Magn Reson Med. 2000;43(2):251–8.CrossRefGoogle Scholar
  8. 8.
    Joseph AA, Merboldt KD, Voit D, Zhang S, Uecker M, Lotz J, et al. Real-time phase-contrast MRI of cardiovascular blood flow using undersampled radial fast low-angle shot and nonlinear inverse reconstruction. NMR in BioMed. 2012;25(7):917–24.CrossRefGoogle Scholar
  9. 9.
    Lin HY, Bender JA, Ding Y, Chung YC, Hinton AM, Pennell ML, et al. Shared velocity encoding: a method to improve the temporal resolution of phase-contrast velocity measurements. Magnetic Reson Med: Off J Soc Magn Reson Med Soc Magn Reson Med. 2012;68(3):703–10.CrossRefGoogle Scholar
  10. 10.
    Tasu JP, Jolivet O, Mousseaux E, Delouche A, Diebold B, Bittoun J. Acceleration mapping by Fourier acceleration-encoding: in vitro study and initial results in the great thoracic vessels. Magnetic Reson Med: Off J Soc Magn Reson Med Soc Magn Reson Med. 1997;38(1):110–6.CrossRefGoogle Scholar
  11. 11.
    Macgowan CK, Kellenberger CJ, Detsky JS, Roman K, Yoo SJ. Real-time Fourier velocity encoding: an in vivo evaluation. J Magn Reson Imaging: JMRI. 2005;21(3):297–304.PubMedCrossRefGoogle Scholar
  12. 12.
    Binter C, Knobloch V, Manka R, Sigfridsson A, Kozerke S. Bayesian multipoint velocity encoding for concurrent flow and turbulence mapping. Magnetic Reson Med: Off J Soc Magn Reson Med Soc Magn Reson Med. 2013;69(5):1337–45.CrossRefGoogle Scholar
  13. 13.
    Lee D, Santos JM, Hu BS, Pauly JM, Kerr AB. Reducing artifacts in one-dimensional Fourier velocity encoding for fast and pulsatile flow. Magnetic Reson Med: Off J Soc Magn Reson Med Soc Magn Reson Med. 2012;68(6):1876–85.CrossRefGoogle Scholar
  14. 14.
    Bogren HG, Mohiaddin RH, Yang GZ, Kilner PJ, Firmin DN. Magnetic resonance velocity vector mapping of blood flow in thoracic aortic aneurysms and grafts. J Thorac Cardiovasc Surg. 1995;110(3):704–14.PubMedCrossRefGoogle Scholar
  15. 15.
    Buonocore MH. Visualizing blood flow patterns using streamlines, arrows, and particle paths. Magnetic Reson Med: Off J Soc Magn Reson Med Soc Magn Reson Med. 1998;40(2):210–26.CrossRefGoogle Scholar
  16. 16.
    Wigstrom L, Ebbers T, Fyrenius A, Karlsson M, Engvall J, Wranne B, et al. Particle trace visualization of intracardiac flow using time-resolved 3D phase contrast MRI. Magnetic Reson Med: Off J Soc Magn Reson Med Soc Magn Reson Med. 1999;41(4):793–9.CrossRefGoogle Scholar
  17. 17.
    Kozerke S, Hasenkam JM, Pedersen EM, Boesiger P. Visualization of flow patterns distal to aortic valve prostheses in humans using a fast approach for cine 3D velocity mapping. J Magn Reson Imaging: JMRI. 2001;13(5):690–8.PubMedCrossRefGoogle Scholar
  18. 18.
    Markl M, Harloff A, Bley TA, Zaitsev M, Jung B, Weigang E, et al. Time-resolved 3D MR velocity mapping at 3T: improved navigator-gated assessment of vascular anatomy and blood flow. J Magn Reson Imaging: JMRI. 2007;25(4):824–31.PubMedCrossRefGoogle Scholar
  19. 19.
    Markl M, Kilner PJ, Ebbers T. Comprehensive 4D velocity mapping of the heart and great vessels by cardiovascular magnetic resonance. J Cardiovasc Magn Reson: Off J Soc Cardiovasc Magn Reson. 2011;13:7.CrossRefGoogle Scholar
  20. 20.
    Barker AJ, Staehle F, Bock J, Jung BA, Markl M. Analysis of complex cardiovascular flow with three-component acceleration-encoded MRI. Magnetic reson Med: Off J Soc Magn Reson Med Soc Magn Reson Med. 2012;67(1):50–61.CrossRefGoogle Scholar
  21. 21.
    Barker AJ, van Ooij P, Bandi K, Garcia J, Albaghdadi M, McCarthy P, Bonow RO, Carr J, Collins J, Malaisrie SC, Markl M. Viscous energy loss in the presence of abnormal aortic flow. Magn Reson Med. 2013. doi: 10.1002/mrm.24962.
  22. 22.
    Dyverfeldt P, Gardhagen R, Sigfridsson A, Karlsson M, Ebbers T. On MRI turbulence quantification. Magn Reson Imaging. 2009;27(7):913–22.PubMedCrossRefGoogle Scholar
  23. 23.
    Dyverfeldt P, Sigfridsson A, Kvitting JP, Ebbers T. Quantification of intravoxel velocity standard deviation and turbulence intensity by generalizing phase-contrast MRI. Magnetic Reson Med: Off J Soc Magn Reson Med Soc Magn Reson Med. 2006;56(4):850–8.CrossRefGoogle Scholar
  24. 24.
    Frydrychowicz A, Francois CJ, Turski PA. Four-dimensional phase contrast magnetic resonance angiography: potential clinical applications. Eur J Radiol. 2011;80(1):24–35.PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.••
    Hope MD, Sedlic T, Dyverfeldt P. Cardiothoracic magnetic resonance flow imaging. J Thorac Imaging. 2013;28(4):217–30. Recent review on advanced 4D flow MRI, its application and potential benefits in cardiothoracic imaging.PubMedCrossRefGoogle Scholar
  26. 26.
    Markl M, Frydrychowicz A, Kozerke S, Hope M, Wieben O. 4D flow MRI. J Magn Reson Imaging: JMRI. 2012;36(5):1015–36.PubMedCrossRefGoogle Scholar
  27. 27.
    Wigstrom L, Sjoqvist L, Wranne B. Temporally resolved 3D phase-contrast imaging. Magnetic Reson Med: Off J Soc Magn Reson Med Soc Magn Reson Med. 1996;36(5):800–3.CrossRefGoogle Scholar
  28. 28.
    Wentland AL, Wieben O, Francois CJ, Boncyk C, Munoz Del Rio A, Johnson KM, et al. Aortic pulse wave velocity measurements with undersampled 4D flow-sensitive MRI: comparison with 2D and algorithm determination. J Magn Reson Imaging: JMRI. 2013;37(4):853–9.PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Roldan-Alzate A, Frydrychowicz A, Niespodzany E, Landgraf BR, Johnson KM, Wieben O, et al. In vivo validation of 4D flow MRI for assessing the hemodynamics of portal hypertension. J Magn Reson Imaging: JMRI. 2013;37(5):1100–8.PubMedCrossRefGoogle Scholar
  30. 30.
    Francois CJ, Srinivasan S, Schiebler ML, Reeder SB, Niespodzany E, Landgraf BR, et al. 4D cardiovascular magnetic resonance velocity mapping of alterations of right heart flow patterns and main pulmonary artery hemodynamics in tetralogy of Fallot. J Cardiovasc Magn Reson: Off J Soc Cardiovasc Magn Reson. 2012;14:16.CrossRefGoogle Scholar
  31. 31.
    Frydrychowicz A, Landgraf BR, Niespodzany E, Verma RW, Roldan-Alzate A, Johnson KM, Wieben O, Reeder SB. Four-dimensional velocity mapping of the hepatic and splanchnic vasculature with radial sampling at 3 tesla: A feasibility study in portal hypertension. Journal of magnetic resonance imaging: JMRI 2011.Google Scholar
  32. 32.
    Johnson KM, Lum DP, Turski PA, Block WF, Mistretta CA, Wieben O. Improved 3D phase contrast MRI with off-resonance corrected dual echo VIPR. Magnetic Reson Med: Off J Soc Magn Reson Med Soc Magn Reson Med. 2008;60(6):1329–36.CrossRefGoogle Scholar
  33. 33.
    Schnell S, Markl M, Entezari P, Mahadewia RJ, Semaan E, Stankovic Z, et al. k-t GRAPPA accelerated four-dimensional flow MRI in the aorta: Effect on scan time, image quality, and quantification of flow and wall shear stress. Magnetic Reson Med: Off J Soc Magn Reson Med Soc Magn Reson Med. 2013. doi: 10.1002/mrm.24925.Google Scholar
  34. 34.
    Stalder AF, Dong Z, Yang Q, Bock J, Hennig J, Markl M, et al. Four-dimensional flow-sensitive MRI of the thoracic aorta: 12- versus 32-channel coil arrays. J Magn Reson Imaging: JMRI. 2012;35(1):190–5.PubMedCrossRefGoogle Scholar
  35. 35.
    Jung B, Honal M, Ullmann P, Hennig J, Markl M. Highly k-t-space-accelerated phase-contrast MRI. Magnetic Reson Med: Off J Soc Magn Reson Med Soc Magn Reson Med. 2008;60(5):1169–77.CrossRefGoogle Scholar
  36. 36.
    Huang F, Akao J, Vijayakumar S, Duensing GR, Limkeman M. k-t GRAPPA: a k-space implementation for dynamic MRI with high reduction factor. Magnetic Reson Med: Off J Soc Magn Reson Med Soc Magn Reson Med. 2005;54(5):1172–84.CrossRefGoogle Scholar
  37. 37.
    Knobloch V, Boesiger P, Kozerke S. Sparsity transform k-t principal component analysis for accelerating cine three-dimensional flow measurements. Magnetic Reson Med: Off J Soc Magn Reson Med Soc Magn Reson Med. 2013;70(1):53–63.CrossRefGoogle Scholar
  38. 38.
    Giese D, Schaeffter T, Kozerke S. Highly undersampled phase-contrast flow measurements using compartment-based k-t principal component analysis. Magnetic Reson Med: Off J Soc Magn Reson Med Soc Magn Reson Med. 2013;69(2):434–43.CrossRefGoogle Scholar
  39. 39.
    Pedersen H, Kozerke S, Ringgaard S, Nehrke K, Kim WY. k-t PCA: temporally constrained k-t BLAST reconstruction using principal component analysis. Magnetic Reson Med: Off J Soc Magn Reson Med Soc Magn Reson Med. 2009;62(3):706–16.CrossRefGoogle Scholar
  40. 40.
    Tao Y, Rilling G, Davies M, Marshall I. Carotid blood flow measurement accelerated by compressed sensing: Validation in healthy volunteers. Magn Reson Imaging. 2013;31(9):1485–91.PubMedCrossRefGoogle Scholar
  41. 41.
    Tariq U, Hsiao A, Alley M, Zhang T, Lustig M, Vasanawala SS. Venous and arterial flow quantification are equally accurate and precise with parallel imaging compressed sensing 4D phase contrast MRI. J Magn Reson Imaging: JMRI. 2013;37(6):1419–26.PubMedCrossRefGoogle Scholar
  42. 42.
    Hsiao A, Lustig M, Alley MT, Murphy MJ, Vasanawala SS. Evaluation of valvular insufficiency and shunts with parallel-imaging compressed-sensing 4D phase-contrast MR imaging with stereoscopic 3D velocity-fusion volume-rendered visualization. Radiology. 2012;265(1):87–95.PubMedCentralPubMedCrossRefGoogle Scholar
  43. 43.
    Rodriguez Munoz D, Markl M, Moya Mur JL, Barker A, Fernandez-Golfin C, Lancellotti P, et al. Intracardiac flow visualization: current status and future directions. Eur Heart J cardiovasc Imaging. 2013;14(11):1029–38.PubMedCrossRefGoogle Scholar
  44. 44.
    Unterhinninghofen R, Ley S, Ley-Zaporozhan J, von Tengg-Kobligk H, Bock M, Kauczor HU, et al. Concepts for visualization of multidirectional phase-contrast MRI of the heart and large thoracic vessels. Acad Radiol. 2008;15(3):361–9.PubMedCrossRefGoogle Scholar
  45. 45.
    Stalder AF, Russe MF, Frydrychowicz A, Bock J, Hennig J, Markl M. Quantitative 2D and 3D phase contrast MRI: optimized analysis of blood flow and vessel wall parameters. Magnetic Reson Med: Off J Soc Magn Reson Med Soc Magn Reson Med. 2008;60(5):1218–31.CrossRefGoogle Scholar
  46. 46.
    Eriksson J, Carlhall CJ, Dyverfeldt P, Engvall J, Bolger AF, Ebbers T. Semi-automatic quantification of 4D left ventricular blood flow. J Cardiovasc Magn Reson: Off J Soc Cardiovasc Magn Reson. 2010;12(1):9.CrossRefGoogle Scholar
  47. 47.
    Markl M, Wallis W, Harloff A. Reproducibility of flow and wall shear stress analysis using flow-sensitive four-dimensional MRI. J Magn Reson Imaging: JMRI. 2011;33(4):988–94.PubMedCrossRefGoogle Scholar
  48. 48.
    Frydrychowicz A, Wieben O, Niespodzany E, Reeder SB, Johnson KM, Francois CJ. Quantification of Thoracic Blood Flow Using Volumetric Magnetic Resonance Imaging With Radial Velocity Encoding: In Vivo Validation. Invest Radiol 2013.Google Scholar
  49. 49.
    Nordmeyer S, Riesenkampff E, Crelier G, Khasheei A, Schnackenburg B, Berger F, et al. Flow-sensitive four-dimensional cine magnetic resonance imaging for offline blood flow quantification in multiple vessels: a validation study. J Magn Reson Imaging: JMRI. 2010;32(3):677–83.PubMedCrossRefGoogle Scholar
  50. 50.
    Nordmeyer S, Riesenkampff E, Messroghli D, Kropf S, Nordmeyer J, Berger F, et al. Four-dimensional velocity-encoded magnetic resonance imaging improves blood flow quantification in patients with complex accelerated flow. J Magn Reson Imaging: JMRI. 2013;37(1):208–16.PubMedCrossRefGoogle Scholar
  51. 51.
    Frydrychowicz A, Stalder AF, Russe MF, Bock J, Bauer S, Harloff A, et al. Three-dimensional analysis of segmental wall shear stress in the aorta by flow-sensitive four-dimensional-MRI. J Magn Reson Imaging: JMRI. 2009;30(1):77–84.PubMedCrossRefGoogle Scholar
  52. 52.
    Isoda H, Ohkura Y, Kosugi T, Hirano M, Alley MT, Bammer R, et al. Comparison of hemodynamics of intracranial aneurysms between MR fluid dynamics using 3D cine phase-contrast MRI and MR-based computational fluid dynamics. Neuroradiology. 2010;52(10):913–20.PubMedCentralPubMedCrossRefGoogle Scholar
  53. 53.
    Bieging ET, Frydrychowicz A, Wentland A, Landgraf BR, Johnson KM, Wieben O, et al. In vivo three-dimensional MR wall shear stress estimation in ascending aortic dilatation. J Magn Reson Imaging: JMRI. 2011;33(3):589–97.PubMedCrossRefGoogle Scholar
  54. 54.•
    Hope MD, Hope TA, Crook SE, Ordovas KG, Urbania TH, Alley MT, et al. 4D flow CMR in assessment of valve-related ascending aortic disease. JACC Cardiovasc Imaging. 2011;4(7):781–7. This article demonstrates that 4D flow MRI can evaluate increased hemodynamic burden in patients with aortic valve disease which may play and important role in risk stratification for the development of aortopathy.PubMedCrossRefGoogle Scholar
  55. 55.
    Barker AJ, Markl M, Burk J, Lorenz R, Bock J, Bauer S, et al. Bicuspid aortic valve is associated with altered wall shear stress in the ascending aorta. Circ Cardiovasc Imaging. 2012;5(4):457–66.PubMedCrossRefGoogle Scholar
  56. 56.
    Burk J, Blanke P, Stankovic Z, Barker A, Russe M, Geiger J, et al. Evaluation of 3D blood flow patterns and wall shear stress in the normal and dilated thoracic aorta using flow-sensitive 4D CMR. J Cardiovasc Magn Reson: Off J Soc Cardiovasc Magn Reson. 2012;14:84.CrossRefGoogle Scholar
  57. 57.
    Geiger J, Arnold R, Herzer L, Hirtler D, Stankovic Z, Russe M, Langer M, Markl M. Aortic wall shear stress in Marfan syndrome. Magn Reson Med Off J Soc Magn Reson Med Soc Magn Reson Med. 2012.Google Scholar
  58. 58.
    Markl M, Wallis W, Brendecke S, Simon J, Frydrychowicz A, Harloff A. Estimation of global aortic pulse wave velocity by flow-sensitive 4D MRI. Magnetic Reson Med: Off J Soc Magn Reson Med Soc Magn Reson Med. 2010;63(6):1575–82.CrossRefGoogle Scholar
  59. 59.
    Tyszka JM, Laidlaw DH, Asa JW, Silverman JM. Three-dimensional, time-resolved (4D) relative pressure mapping using magnetic resonance imaging. J Magn Reson Imaging: JMRI. 2000;12(2):321–9.PubMedCrossRefGoogle Scholar
  60. 60.
    Ebbers T, Wigstrom L, Bolger AF, Engvall J, Karlsson M. Estimation of relative cardiovascular pressures using time-resolved three-dimensional phase contrast MRI. Magnetic Reson Med: Off J Soc Magn Reson Med Soc Magn Reson Med. 2001;45(5):872–9.CrossRefGoogle Scholar
  61. 61.
    Lum DP, Johnson KM, Paul RK, Turk AS, Consigny DW, Grinde JR, et al. Transstenotic pressure gradients: measurement in swine–retrospectively ECG-gated 3D phase-contrast MR angiography versus endovascular pressure-sensing guidewires. Radiology. 2007;245(3):751–60.PubMedCrossRefGoogle Scholar
  62. 62.
    Moftakhar R, Aagaard-Kienitz B, Johnson K, Turski PA, Turk AS, Niemann DB, et al. Noninvasive measurement of intra-aneurysmal pressure and flow pattern using phase contrast with vastly undersampled isotropic projection imaging. AJNR. 2007;28(9):1710–4.PubMedCrossRefGoogle Scholar
  63. 63.•
    Bley TA, Johnson KM, Francois CJ, Reeder SB, Schiebler ML BRL, Consigny D, et al. Noninvasive assessment of transstenotic pressure gradients in porcine renal artery stenoses by using vastly undersampled phase-contrast MR angiography. Radiology. 2011;261(1):266–73. This study shows that 4D flow MRI has great potential for the non-invasive assessment of hemodynamic significance of vessel stenosis with accurate transstenotic pressure gradient measurements.PubMedCentralPubMedCrossRefGoogle Scholar
  64. 64.
    Bock J, Frydrychowicz A, Lorenz R, Hirtler D, Barker AJ, Johnson KM, et al. In vivo noninvasive 4D pressure difference mapping in the human aorta: phantom comparison and application in healthy volunteers and patients. Magnetic Reson Med: Off J Soc Magn Reson Med Soc Magn Reson Med. 2011;66(4):1079–88.CrossRefGoogle Scholar
  65. 65.
    Kvitting JP, Dyverfeldt P, Sigfridsson A, Franzen S, Wigstrom L, Bolger AF, et al. In vitro assessment of flow patterns and turbulence intensity in prosthetic heart valves using generalized phase-contrast MRI. J Magn Reson Imaging: JMRI. 2010;31(5):1075–80.PubMedCrossRefGoogle Scholar
  66. 66.
    Kilner PJ, Yang GZ, Wilkes AJ, Mohiaddin RH, Firmin DN, Yacoub MH. Asymmetric redirection of flow through the heart. Nature. 2000;404(6779):759–61.PubMedCrossRefGoogle Scholar
  67. 67.
    Bolger AF, Heiberg E, Karlsson M, Wigstrom L, Engvall J, Sigfridsson A, et al. Transit of blood flow through the human left ventricle mapped by cardiovascular magnetic resonance. J Cardiovasc Magn Reson: Off J Soc Cardiovasc Magn Reson. 2007;9(5):741–7.CrossRefGoogle Scholar
  68. 68.
    Roes SD, Hammer S, van der Geest RJ, Marsan NA, Bax JJ, Lamb HJ, et al. Flow assessment through four heart valves simultaneously using 3-dimensional 3-directional velocity-encoded magnetic resonance imaging with retrospective valve tracking in healthy volunteers and patients with valvular regurgitation. Invest Radiol. 2009;44(10):669–75.PubMedCrossRefGoogle Scholar
  69. 69.
    Uribe S, Beerbaum P, Sorensen TS, Rasmusson A, Razavi R, Schaeffter T. Four-dimensional (4D) flow of the whole heart and great vessels using real-time respiratory self-gating. Magnetic Reson Med: Off J Soc Magn Reson Med Soc Magn Reson Med. 2009;62(4):984–92.CrossRefGoogle Scholar
  70. 70.
    Toger J, Carlsson M, Soderlind G, Arheden H, Heiberg E. Volume Tracking: A new method for quantitative assessment and visualization of intracardiac blood flow from three-dimensional, time-resolved, three-component magnetic resonance velocity mapping. BMC Med Imaging. 2011;11:10.PubMedCentralPubMedCrossRefGoogle Scholar
  71. 71.
    Fluckiger JU, Goldberger JJ, Lee DC, Ng J, Lee R, Goyal A, et al. Left atrial flow velocity distribution and flow coherence using four-dimensional FLOW MRI: a pilot study investigating the impact of age and Pre- and Postintervention atrial fibrillation on atrial hemodynamics. J Magn Reson Imaging: JMRI. 2013;38(3):580–7.PubMedCrossRefGoogle Scholar
  72. 72.
    Fyrenius A, Wigstrom L, Ebbers T, Karlsson M, Engvall J, Bolger AF. Three dimensional flow in the human left atrium. Heart. 2001;86(4):448–55.PubMedCentralPubMedCrossRefGoogle Scholar
  73. 73.
    Westenberg JJ, Roes SD, Ajmone Marsan N, Binnendijk NM, Doornbos J, Bax JJ, et al. Mitral valve and tricuspid valve blood flow: accurate quantification with 3D velocity-encoded MR imaging with retrospective valve tracking. Radiology. 2008;249(3):792–800.PubMedCrossRefGoogle Scholar
  74. 74.
    Bogren HG, Buonocore MH. 4D magnetic resonance velocity mapping of blood flow patterns in the aorta in young vs. elderly normal subjects. J Magn Reson Imaging: JMRI. 1999;10(5):861–9.PubMedCrossRefGoogle Scholar
  75. 75.
    Bogren HG, Buonocore MH, Valente RJ. Four-dimensional magnetic resonance velocity mapping of blood flow patterns in the aorta in patients with atherosclerotic coronary artery disease compared to age-matched normal subjects. J Magn Reson Imaging: JMRI. 2004;19(4):417–27.PubMedCrossRefGoogle Scholar
  76. 76.
    Kvitting JP, Ebbers T, Wigstrom L, Engvall J, Olin CL, Bolger AF. Flow patterns in the aortic root and the aorta studied with time-resolved, 3-dimensional, phase-contrast magnetic resonance imaging: implications for aortic valve-sparing surgery. J Thorac Cardiovasc Surg. 2004;127(6):1602–7.PubMedCrossRefGoogle Scholar
  77. 77.
    Markl M, Draney MT, Miller DC, Levin JM, Williamson EE, Pelc NJ, et al. Time-resolved three-dimensional magnetic resonance velocity mapping of aortic flow in healthy volunteers and patients after valve-sparing aortic root replacement. J Thorac Cardiovasc Surg. 2005;130(2):456–63.PubMedCrossRefGoogle Scholar
  78. 78.
    Hope MD, Hope TA, Meadows AK, Ordovas KG, Urbania TH, Alley MT, et al. Bicuspid aortic valve: four-dimensional MR evaluation of ascending aortic systolic flow patterns. Radiology. 2010;255(1):53–61.PubMedCrossRefGoogle Scholar
  79. 79.
    Frydrychowicz A, Markl M, Hirtler D, Harloff A, Schlensak C, Geiger J, et al. Aortic hemodynamics in patients with and without repair of aortic coarctation: in vivo analysis by 4D flow-sensitive magnetic resonance imaging. Invest Radiol. 2011;46(5):317–25.PubMedGoogle Scholar
  80. 80.
    Wentland AL, Grist TM, Wieben O. Repeatability and internal consistency of abdominal 2D and 4D phase contrast MR flow measurements. Acad Radiol. 2013;20(6):699–704.PubMedCrossRefGoogle Scholar
  81. 81.
    Reiter G, Reiter U, Kovacs G, Kainz B, Schmidt K, Maier R, et al. Magnetic resonance-derived 3-dimensional blood flow patterns in the main pulmonary artery as a marker of pulmonary hypertension and a measure of elevated mean pulmonary arterial pressure. Circ Cardiovasc Imaging. 2008;1(1):23–30.PubMedCrossRefGoogle Scholar
  82. 82.
    Geiger J, Markl M, Jung B, Grohmann J, Stiller B, Langer M, et al. 4D-MR flow analysis in patients after repair for tetralogy of Fallot. Eur Radiol. 2011;21(8):1651–7.PubMedCrossRefGoogle Scholar
  83. 83.
    Bachler P, Pinochet N, Sotelo J, Crelier G, Irarrazaval P, Tejos C, et al. Assessment of normal flow patterns in the pulmonary circulation by using 4D magnetic resonance velocity mapping. Magn Reson Imaging. 2013;31(2):178–88.PubMedCrossRefGoogle Scholar
  84. 84.
    Harloff A, Albrecht F, Spreer J, Stalder A, Bock J, Frydrychowicz A, et al. 3D blood flow characteristics in the carotid artery bifurcation assessed by flow-sensitive 4D MRI at 3 T. Magn Reson Med. 2009;61(1):65–74.PubMedCrossRefGoogle Scholar
  85. 85.
    Markl M, Wegent F, Zech T, Bauer S, Strecker C, Schumacher M, et al. In Vivo Wall Shear Stress Distribution in the Carotid Artery: Effect of Bifurcation Geometry, Internal Carotid Artery Stenosis, and Recanalization Therapy. Circ Cardiovasc Imaging. 2010;3(6):647–55.PubMedCrossRefGoogle Scholar
  86. 86.
    Meckel S, Leitner L, Bonati LH, Santini F, Schubert T, Stalder AF, et al. Intracranial artery velocity measurement using 4D PC MRI at 3 T: comparison with transcranial ultrasound techniques and 2D PC MRI. Neuroradiology. 2013;55(4):389–98.PubMedCrossRefGoogle Scholar
  87. 87.
    Bammer R, Hope TA, Aksoy M, Alley MT. Time-resolved 3D quantitative flow MRI of the major intracranial vessels: initial experience and comparative evaluation at 1.5 T and 3.0 T in combination with parallel imaging. Magnetic resonance in medicine : official journal of the Society of Magnetic Resonance in Medicine / Society of. Magn Reson Med. 2007;57(1):127–40.PubMedCentralPubMedCrossRefGoogle Scholar
  88. 88.
    Wetzel S, Meckel S, Frydrychowicz A, Bonati L, Radue EW, Scheffler K, et al. In vivo assessment and visualization of intracranial arterial hemodynamics with flow-sensitized 4D MR imaging at 3 T. AJNR. 2007;28(3):433–8.PubMedGoogle Scholar
  89. 89.
    Boussel L, Rayz V, Martin A, Acevedo-Bolton G, Lawton MT, Higashida R, et al. Phase-contrast magnetic resonance imaging measurements in intracranial aneurysms in vivo of flow patterns, velocity fields, and wall shear stress: comparison with computational fluid dynamics. Magnetic Reson Med: Off J Soc Magn Reson Med Soc Magn Reson Med. 2009;61(2):409–17.CrossRefGoogle Scholar
  90. 90.
    Isoda H, Ohkura Y, Kosugi T, Hirano M, Takeda H, Hiramatsu H, et al. In vivo hemodynamic analysis of intracranial aneurysms obtained by magnetic resonance fluid dynamics (MRFD) based on time-resolved three-dimensional phase-contrast MRI. Neuroradiology. 2010;52(10):921–8.PubMedCrossRefGoogle Scholar
  91. 91.
    van Ooij P, Guedon A, Poelma C, Schneiders J, Rutten MC, Marquering HA, Majoie CB, Vanbavel E, Nederveen AJ. Complex flow patterns in a real-size intracranial aneurysm phantom: phase contrast MRI compared with particle image velocimetry and computational fluid dynamics. NMR in biomedicine 2011.Google Scholar
  92. 92.
    Stankovic Z, Csatari Z, Deibert P, Euringer W, Blanke P, Kreisel W, et al. Normal and altered three-dimensional portal venous hemodynamics in patients with liver cirrhosis. Radiology. 2012;262(3):862–73.PubMedCrossRefGoogle Scholar
  93. 93.
    Stankovic Z, Csatari Z, Deibert P, Euringer W, Jung B, Kreisel W, et al. A feasibility study to evaluate splanchnic arterial and venous hemodynamics by flow-sensitive 4D MRI compared with Doppler ultrasound in patients with cirrhosis and controls. Eur J Gastroenterol Hepatol. 2013;25(6):669–75.PubMedCrossRefGoogle Scholar
  94. 94.
    Frydrychowicz A, Winterer JT, Zaitsev M, Jung B, Hennig J, Langer M, et al. Visualization of iliac and proximal femoral artery hemodynamics using time-resolved 3D phase contrast MRI at 3 T. J Magn Reson Imaging: JMRI. 2007;25(5):1085–92.PubMedCrossRefGoogle Scholar
  95. 95.
    Francois CJ, Lum DP, Johnson KM, Landgraf BR, Bley TA, Reeder SB, et al. Renal arteries: isotropic, high-spatial-resolution, unenhanced MR angiography with three-dimensional radial phase contrast. Radiology. 2011;258(1):254–60.PubMedCentralPubMedCrossRefGoogle Scholar
  96. 96.
    Dyverfeldt P, Hope MD, Tseng EE, Saloner D. Magnetic resonance measurement of turbulent kinetic energy for the estimation of irreversible pressure loss in aortic stenosis. JACC Cardiovasc Imaging. 2013;6(1):64–71.PubMedCentralPubMedCrossRefGoogle Scholar
  97. 97.
    Isselbacher EM. Thoracic and abdominal aortic aneurysms. Circulation. 2005;111(6):816–28.PubMedCrossRefGoogle Scholar
  98. 98.
    Fedak PW, Verma S. The molecular fingerprint of bicuspid aortopathy. J Thorac Cardiovasc Surg. 2013;145(5):1334.PubMedCrossRefGoogle Scholar
  99. 99.
    Kang JW, Song HG, Yang DH, Baek S, Kim DH, Song JM, et al. Association between bicuspid aortic valve phenotype and patterns of valvular dysfunction and bicuspid aortopathy: comprehensive evaluation using MDCT and echocardiography. JACC Cardiovasc Imaging. 2013;6(2):150–61.PubMedCrossRefGoogle Scholar
  100. 100.
    Della Corte A, Bancone C, Conti CA, Votta E, Redaelli A, Del Viscovo L, et al. Restricted cusp motion in right-left type of bicuspid aortic valves: a new risk marker for aortopathy. J Thorac Cardiovasc Surg. 2012;144(2):360–9. 369 e361.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Michael Markl
    • 1
    • 2
    Email author
  • Susanne Schnell
    • 1
  • Alex J. Barker
    • 1
  1. 1.Department of Radiology, Feinberg School of MedicineNorthwestern UniversityChicagoUSA
  2. 2.Department Biomedical Engineering, McCormick School of EngineeringNorthwestern UniversityChicagoUSA

Personalised recommendations