Current Cardiology Reports

, Volume 11, Issue 2, pp 148–154 | Cite as

Molecular imaging targets of cardiac remodeling



Left ventricular (LV) remodeling is a major determinant of the clinical course and outcome of systolic heart failure (HF). Activation of neurohormonal and inflammatory cytokine pathways and their effects on intracellular signal transduction cascades through stimulation of membrane-bound receptors mediate LV remodeling. Although major advances have been made in clinical management of HF through large randomized trials, its prognosis remains poor. Interindividual differences, often genetically based, are increasingly recognized as important determinants of LV remodeling. Identification of the influence of these individual factors on the clinical course of HF has stimulated a search for specific pathophysiologic mechanisms that operate at the individual level and can be targeted directly. This article summarizes the current application of molecular imaging techniques to the understanding of the cellular and molecular mechanisms involved in LV remodeling in an attempt to provide the tools necessary for personalized, truly “evidence-based” assessment, serial evaluation, and monitoring of HF.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and Recommended Reading

  1. 1.
    Cohn JN, Ferrari R, Sharpe N: Cardiac remodeling concepts and clinical implications: a consensus paper from an international forum on cardiac remodeling. J Am Coll Cardiol 2000, 35:569–582.PubMedCrossRefGoogle Scholar
  2. 2.
    Mann DL, Bristow ML: Mechanisms and models in heart failure. The biomechanical model and beyond. Circulation 2005, 111:2837–2849.PubMedCrossRefGoogle Scholar
  3. 3.
    Stanley WC, Recchia FA, Lopaschuk GD: Myocardial substrate metabolism in the normal and failing heart. Physiol Rev 2005, 85:1093–1129.PubMedCrossRefGoogle Scholar
  4. 4.
    Nishida K, Otsu K: Cell death in heart failure. Circ J 2008, 72(Suppl A):A17–A21.CrossRefGoogle Scholar
  5. 5.
    Deschamps AM, Spinal FG: Pathways of matrix metalloproteinase induction in heart failure: bioactive molecules and transcriptional regulation. Cardiovasc Res 2006, 69:666–676.PubMedCrossRefGoogle Scholar
  6. 6.
    Anand IS, Florea VG: Traditional and novel approaches to management of heart failure: successes and failures. Cardiol Clin 2008, 26:59–72.PubMedCrossRefGoogle Scholar
  7. 7.
    Braunwald E, Domanski MJ, Fowler SE, et al.: Angiotensin converting-enzyme inhibition in stable coronary artery disease. N Engl J Med 2004, 351:2058–2068.PubMedCrossRefGoogle Scholar
  8. 8.
    Beta-Blocker Evaluation of Survival Trial Investigators: A trial of the beta-blocker bucindolol in patients with advanced chronic heart failure. N Engl J Med 2001, 344:1659–1667.CrossRefGoogle Scholar
  9. 9.
    Taylor AL, Ziesche S, Yancy C, et al.: Combination of isosorbide dinitrate and hydralazine in blacks with heart failure. N Engl J Med 2004, 351:2049–2057.PubMedCrossRefGoogle Scholar
  10. 10.
    McNamara DM: Emerging role of pharmacogenomics in heart failure. Curr Opin Cardiol 2008, 23:261–268.PubMedCrossRefGoogle Scholar
  11. 11.
    Small KM, Wagoner LE, Levin AM, et al.: Synergistic polymorphisms of beta1- and alpha2C-adrenergic receptors and the risk of congestive heart failure. N Engl J Med 2002, 347:1135–1142.PubMedCrossRefGoogle Scholar
  12. 12.
    Liggett SB, Mialet-Perez J, Thaneemit-Chen S, et al.: A polymorphism within a conserved beta1-adrenergic receptor motif alters cardiac function and beta-blocker response in human heart failure. Proc Natl Acad Sci U S A 2006, 103:11288–11293.PubMedCrossRefGoogle Scholar
  13. 13.
    Sehnert AJ, Daniels SE, Elashoff M, et al.: Lack of association between adrenergic receptor genotypes and survival in heart failure patients treated with carvedilol or metoprolol. J Am Coll Cardiol 2008, 52:644–651.PubMedCrossRefGoogle Scholar
  14. 14.
    Liggett SB, Cresci S, Kelly RJ, et al.: A GRK5 polymorphism that inhibits beta-adrenergic receptor signaling is protective in heart failure. Nat Med 2008, 14:510–517.PubMedCrossRefGoogle Scholar
  15. 15.
    deGoma EM, Vagelos RH, Fowler MB, Ashley EA: Emerging therapies for the management of decompensated heart failure. From bench to bedside. J Am Coll Cardiol 2006, 48:2397–2409.PubMedCrossRefGoogle Scholar
  16. 16.
    Taegtmeyer H, Dilsizian V: Imaging myocardial metabolism and ischemic memory. Nat Clin Pract Cardiovasc Med 2008, 5(Suppl 2):S42–S48.PubMedCrossRefGoogle Scholar
  17. 17.
    Fragasso G, Spoladore R, Cuko A, Palloshi A: Modulation of fatty acids oxidation in heart failure by selective pharmacologic inhibition of 3-ketoacyl coenzyme-A thiolase. Curr Clin Pharmacol 2007, 2:190–196.PubMedCrossRefGoogle Scholar
  18. 18.
    Bennett SK, Smith MF, Gottlieb SS, et al.: Effect of Metoprolol on absolute myocardial blood flow in patients with heart failure secondary to ischemic or non-ischemic cardiomyopathy. Am J Cardiol 2002, 89:1431–1434.PubMedCrossRefGoogle Scholar
  19. 19.
    Young LH, Li J, Baron SJ, Russell RR: AMP-activated protein kinase: a key stress signaling pathway in the heart. Trends Cardiovasc Med 2005, 15:110–118.PubMedCrossRefGoogle Scholar
  20. 20.
    Dilsizian V, Bateman TM, Bergmann SR, et al.: Metabolic imaging with beta-methyl-p-[123I]-iodophenyl-pentadecanoic acid identifies ischemic memory following demand ischemia. Circulation 2005, 112:2169–2174.PubMedCrossRefGoogle Scholar
  21. 21.
    Villanueva FS, Lu E, Bowry S, et al.: Myocardial ischemic memory imaging with molecular echocardiography. Circulation 2007, 115:345–352.PubMedCrossRefGoogle Scholar
  22. 22.
    Kaufmann A, Lewis C, Xie A, et al.: Detection of recent myocardial ischaemia by molecular imaging of P-selectin with targeted contrast echocardiography. Eur Heart J 2007, 28:2011–2017.PubMedCrossRefGoogle Scholar
  23. 23.
    Wencker D, Chandra M, Nguyen K, et al.: A mechanistic role for cardiac myocyte apoptosis in heart failure. J Clin Invest 2003, 111:1497–1504.PubMedGoogle Scholar
  24. 24.
    Hofstra L, Liem IH, Dumont EA, et al.: Visualization of cell death in vivo in patients with acute myocardial infarction. Lancet 2000, 356:209–212.PubMedCrossRefGoogle Scholar
  25. 25.
    Narula J, Acio ER, Narula N, et al.: Annexin-V imaging for noninvasive detection of cardiac allograft rejection. Nat Med 2001, 7:1347–1352.PubMedCrossRefGoogle Scholar
  26. 26.
    Kietselaer BL, Reutelingsperger CP, Boersma HH, et al.: Noninvasive detection of programmed cell loss with 99mTc-labeled annexin A5 in heart failure. J Nucl Med 2007, 48:562–567.PubMedCrossRefGoogle Scholar
  27. 27.
    Boersma HH, Kietselaer BL, Stolk LM, et al.: Past, present, and future of annexin A5: from protein discovery to clinical applications. J Nucl Med 2005, 46:2035–2050.PubMedGoogle Scholar
  28. 28.
    Wu YL, Ye Q, Foley LM, et al.: In situ labeling of immune cells with iron oxide particles: an approach to detect organ rejection by cellular MRI. Proc Natl Acad Sci U S A 2006, 103:1852–1857.PubMedCrossRefGoogle Scholar
  29. 29.
    Sosnovik DE, Schellenberger EA, Nahrendorf M, et al.: Magnetic resonance imaging of cardiomyocyte apoptosis with a novel magneto-optical nanoparticle. Magn Reson Med 2005, 54:718–724.PubMedCrossRefGoogle Scholar
  30. 30.
    Hiller KH, Waller C, Nahrendorf M, et al.: Assessment of cardiovascular apoptosis in the isolated rat heart by magnetic resonance molecular imaging. Mol Imaging 2006, 5:115–121.PubMedGoogle Scholar
  31. 31.
    Paul M, Mehr AP, Kreutz R: Physiology of local renin angiotensin systems. Physiol Rev 2006, 86:747–803.PubMedCrossRefGoogle Scholar
  32. 32.
    Dilsizian V, Eckelman WC, Loredo ML, et al.: Evidence for tissue angiotensin-converting-enzyme in explanted hearts of ischemic cardiomyopathy using targeted radiotracer technique. J Nucl Med 2007, 48:1–6.Google Scholar
  33. 33.
    Lee YHC, Kiesewetter DO, Lang L, et al.: Synthesis of 4-[18F]fluorobenzoyllisinopril: a radioligand for angiotensin converting enzyme (ACE) imaging with positron emission tomography. J Labelled Comp Radiopharm 2001, 44:S268–S270.Google Scholar
  34. 34.
    Hwang DR, Eckelman WC, Mathias CJ, et al.: Positron-labeled angiotensin-converting enzyme (ACE) inhibitor: fluorine-18-fluorocaptopril. Probing the ACE activity in vivo by positron emission tomography. J Nucl Med 1991, 32:1730–1737.PubMedGoogle Scholar
  35. 35.
    Verjans JW, Lovhaug D, Narula N, et al.: Noninvasive imaging of angiotensin receptors after myocardial infarction. J Am Coll Cardiol Img 2008, 1:354–362.Google Scholar
  36. 36.
    Su H, Spinale FG, Dobrucki LW, et al.: Noninvasive targeted imaging of matrix metalloproteinase activation in a murine model of postinfarction remodeling. Circulation 2005, 112:3157–3167.PubMedCrossRefGoogle Scholar
  37. 37.
    Chen J, Tung C-H, Allport J, et al.: Near-infrared fluorescent imaging of matrix metalloproteinase activity after myocardial infarction. Circulation 2005, 111:1800–1805.PubMedCrossRefGoogle Scholar
  38. 38.
    Ryan TD, Rothstein EC, Aban I, et al.: Left ventricular eccentric remodeling and matrix loss are mediated by bradykinin and precede cardiomyocyte elongation in rats with volume overload. J Am Coll Cardiol 2007, 49:811–821.PubMedCrossRefGoogle Scholar
  39. 39.
    Ikonomidis JS, Hendrick JW, Parkhurst AM, et al.: Accelerated LV remodeling after myocardial infarction in TIMP-1-deficient mice: effects of exogenous MMP inhibition. Am J Physiol Heart Circ Physiol 2005, 288:H149–H158.PubMedCrossRefGoogle Scholar
  40. 40.
    Matsunari I, Schricke U, Bengel FM, et al.: Extent of cardiac sympathetic neuronal damage is determined by the area of ischemia in patients with acute coronary syndromes. Circulation 2000, 101:2579–2585.PubMedGoogle Scholar
  41. 41.
    Merlet P, Valette H, Dubois-Rande JL, et al.: Prognostic value of cardiac metaiodobenzylguanidine imaging in patients with heart failure. J Nucl Med 1992, 33:471–477.PubMedGoogle Scholar
  42. 42.
    Fukuoka S, Hayashida K, Hirose Y, et al.: Use of iodine-123 metaiodobenzylguanidine myocardial imaging to predict the effectiveness of beta blocker therapy in patients with dilated cardiomyopathy. Eur J Nucl Med 1997, 24:523–529.PubMedGoogle Scholar
  43. 43.
    Raffel DM, Chen W, Sherman PS, et al.: Dependence of cardiac 11C-meta-hydroxyephedrine retention on norepinephrine transporter density. J Nucl Med 2006, 47:1490–1496.PubMedGoogle Scholar
  44. 44.
    Higuchi T, Schwaiger M: Imaging cardiac neuronal function and dysfunction. Curr Cardiol Rep 2006, 8:131–138.PubMedCrossRefGoogle Scholar
  45. 45.
    Kopka K, Law, MP, Breyholz H-J, et al.: Non-invasive molecular imaging of beta-adrenoceptors in vivo: perspectives for pet-radioligands. Curr Med Chem 2005, 12:2057–2074.PubMedCrossRefGoogle Scholar
  46. 46.
    Bucerius J, Joe AY, Schmaljohann J, et al.: Feasibility of 2-deoxy-2-[18F]fluoro-D-glucose A85380-PET for imaging human cardiac nicotinic acetylcholine receptors in vitro. Clin Res Cardiol 2006, 95:105–109.PubMedCrossRefGoogle Scholar
  47. 47.
    Zhou R, Thomas DH, Qiao H, et al.: In vivo detection of stem cells grafted in infarcted rat myocardium. J Nucl Med 2005, 46:816–822.PubMedGoogle Scholar
  48. 48.
    Miyagawa M, Anton M, Haubner R, et al.: PET of cardiac transgene expression: comparison of 2 approaches based on herpesviral thymidine kinase reporter gene. J Nucl Med 2004, 45:1917–1923.PubMedGoogle Scholar
  49. 49.
    Kang JH, Lee DS, Paeng JC, et al.: Development of a sodium/iodide symporter (NIS)-transgenic mouse for imaging of cardiomyocyte-specific reporter gene expression. J Nucl Med 2005, 46:479–483.PubMedGoogle Scholar
  50. 50.
    Zhou R, Acton PD, Ferrari VA: Imaging stem cells implanted in infarcted myocardium. J Am Coll Cardiol 2006, 48:2094–2106.PubMedCrossRefGoogle Scholar

Copyright information

© Current Medicine Group, LLC 2009

Authors and Affiliations

  1. 1.Department of CardiologyGeisinger Medical CenterDanvilleUSA

Personalised recommendations