Current Cardiology Reports

, Volume 10, Issue 6, pp 440–447

Are we getting closer to a Nobel Prize for unraveling preeclampsia?

Article

Abstract

Preeclampsia is the major cause of maternal and fetal morbidity and mortality, involving 15% to 20% of pregnancies in developed countries and even more in less developed parts of the world. Superficial placentation driven by immune maladaptation, with subsequently reduced concentrations of angiogenic growth factors and increased placental debris in the maternal circulation, are likely responsible. Recent advances suggest that antiangiogenic factors (soluble fms-like tyrosine receptor kinase and soluble endoglin), altered relaxin-mediated mechanisms leading to impaired nitric oxide production through asymmetrical dimethylarginine production, and activating antibodies directed at the angiotensin II type 1 receptor may be responsible. The field of preeclampsia research is enjoying a well-deserved blossoming of novel ideas and approaches. We hope the activity will lead to much earlier diagnostic capacities and novel prophylactic treatments. The prize will go to the affected women and their afflicted children. For the investigators in the area, such a prize would be welcome.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and Recommended Reading

  1. 1.
    Sibai B, Dekker G, Kupferminc M: Pre-eclampsia. Lancet 2005, 365:785–799.PubMedGoogle Scholar
  2. 2.
    Poston L, Briley AL, Seed PT, et al.: Vitamin C and vitamin E in pregnant women at risk for pre-eclampsia (VIP trial): randomised placebo-controlled trial. Vitamins in Pre-eclampsia (VIP) Trial Consortium. Lancet 2006, 367:1145–1154.PubMedCrossRefGoogle Scholar
  3. 3.
    Askie LM, Duley L, Henderson-Smart DJ, Stewart LA: Antiplatelet agents for prevention of pre-eclampsia: a meta-analysis of individual patient data. PARIS Collaborative Group. Lancet 2007, 369:1791–1798.PubMedCrossRefGoogle Scholar
  4. 4.
    Altman D, Carroli G, Duley L, et al.: Do women with pre-eclampsia, and their babies, benefit from magnesium sulphate? The Magpie Trial: a randomised placebo-controlled trial. Magpie Trial Collaboration Group. Lancet 2002, 359:1877–1890.PubMedCrossRefGoogle Scholar
  5. 5.
    Maynard SE, Min JY, Merchan J, et al.: Excess placental soluble fms-like tyrosine kinase 1 (sFlt1) may contribute to endothelial dysfunction, hypertension, and proteinuria in preeclampsia. J Clin Invest 2003, 111:649–658.PubMedGoogle Scholar
  6. 6.
    Levine RJ, Maynard SE, Qian C, et al.: Circulating angiogenic factors and the risk of preeclampsia. N Engl J Med 2004, 350:672–683.PubMedCrossRefGoogle Scholar
  7. 7.
    Levine RJ, Thadhani R, Qian C, et al.: Urinary placental growth factor and risk of preeclampsia. JAMA 2005, 293:77–85.PubMedCrossRefGoogle Scholar
  8. 8.
    Venkatesha S, Toporsian M, Lam C, et al.: Soluble endoglin contributes to the pathogenesis of preeclampsia. Nat Med 2006, 12:642–649.PubMedCrossRefGoogle Scholar
  9. 9.
    Levine RJ, Lam C, Qian C, et al.: Soluble endoglin and other circulating antiangiogenic factors in preeclampsia. CPEP Study Group. N Engl J Med 2006, 355:992–1005.PubMedCrossRefGoogle Scholar
  10. 10.
    Verheul HM, Pinedo HM: Possible molecular mechanisms involved in the toxicity of angiogenesis inhibition. Nat Rev Cancer 2007, 7:475–485.PubMedCrossRefGoogle Scholar
  11. 11.
    Eremina V, Jefferson JA, Kowalewska J, et al.: VEGF inhibition and renal thrombotic microangiopathy. N Engl J Med 2008, 358:1129–1136.PubMedCrossRefGoogle Scholar
  12. 12.
    Chapman AB, Abraham WT, Zamudio S, et al.: Temporal relationships between hormonal and hemodynamic changes in early human pregnancy. Kidney Int 1998, 54:2056–2063.PubMedCrossRefGoogle Scholar
  13. 13.
    Groenendijk R, Trimbos JB, Wallenburg HC: Hemodynamic measurements in preeclampsia: preliminary observations. Am J Obstet Gynecol 1984, 150:232–236.PubMedGoogle Scholar
  14. 14.
    Ma S, Gundlach AL: Relaxin-family peptide and receptor systems in brain: insights from recent anatomical and functional studies. Adv Exp Med Biol 2007, 612:119–137.PubMedCrossRefGoogle Scholar
  15. 15.
    Jeyabalan A, Shroff SG, Novak J, Conrad KP: The vascular actions of relaxin. Adv Exp Med Biol 2007, 612:65–87.PubMedCrossRefGoogle Scholar
  16. 16.
    Novak J, Danielson LA, Kerchner LJ, et al.: Relaxin is essential for renal vasodilation during pregnancy in conscious rats. J Clin Invest 2001, 107:1469–1475.PubMedCrossRefGoogle Scholar
  17. 17.
    Jeyabalan A, Novak J, Danielson LA, et al.: Essential role for vascular gelatinase activity in relaxin-induced renal vasodilation, hyperfiltration, and reduced myogenic reactivity of small arteries. Circ Res 2003, 93:1249–1257.PubMedCrossRefGoogle Scholar
  18. 18.
    Carbillon L, Uzan M, Uzan S: Pregnancy, vascular tone, and maternal hemodynamics: a crucial adaptation. Obstet Gynecol Surv 2000, 55:574–581.PubMedCrossRefGoogle Scholar
  19. 19.
    Savvidou MD, Hingorani AD, Tsikas D, et al.: Endothelial dysfunction and raised plasma concentrations of asymmetric dimethylarginine in pregnant women who subsequently develop pre-eclampsia. Lancet 2003, 361:1511–1517.PubMedCrossRefGoogle Scholar
  20. 20.
    Wallukat G, Homuth V, Fischer T, et al.: Patients with preeclampsia develop agonistic autoantibodies against the angiotensin AT1 receptor. J Clin Invest 1999, 103:945–952.PubMedCrossRefGoogle Scholar
  21. 21.
    Fu ML, Herlitz H, Schulze W, et al.: Autoantibodies against the angiotensin receptor (AT1) in patients with hypertension. J Hypertens 2000, 18:945–953.PubMedCrossRefGoogle Scholar
  22. 22.
    Dechend R, Viedt C, Muller DN, et al.: AT1 receptor agonistic antibodies from preeclamptic patients stimulate NADPH oxidase. Circulation 2003, 107:1632–1639.PubMedCrossRefGoogle Scholar
  23. 23.
    Bohlender J, Ganten D, Luft FC: Rats transgenic for human renin and human angiotensinogen as a model for gestational hypertension. J Am Soc Nephrol 2000, 11:2056–2061.PubMedGoogle Scholar
  24. 24.
    Dechend R, Gratze P, Wallukat G, et al.: Agonistic autoantibodies to the AT1 receptor in a transgenic rat model of preeclampsia. Hypertension 2005, 45:742–746.PubMedCrossRefGoogle Scholar
  25. 25.
    Xia Y, Wen H, Bobst S, et al.: Maternal autoantibodies from preeclamptic patients activate angiotensin receptors on human trophoblast cells. J Soc Gynecol Investig 2003, 10:82–93.PubMedCrossRefGoogle Scholar
  26. 26.
    Thway TM, Shlykov SG, Day MC, et al.: Antibodies from preeclamptic patients stimulate increased intracellular Ca2+ mobilization through angiotensin receptor activation. Circulation 2004, 110:1612–1619.PubMedCrossRefGoogle Scholar
  27. 27.
    Bobst SM, Day MC, Gilstrap LC 3rd, et al.: Maternal autoantibodies from preeclamptic patients activate angiotensin receptors on human mesangial cells and induce interleukin-6 and plasminogen activator inhibitor-1 secretion. Am J Hypertens 2005, 18:330–336.PubMedCrossRefGoogle Scholar
  28. 28.
    Zhou CC, Ahmad S, Mi T, et al.: Angiotensin II induces soluble fms-like tyrosine kinase-1 release via calcineurin signaling pathway in pregnancy. Circ Res 2007, 100:88–95.PubMedCrossRefGoogle Scholar
  29. 29.
    Zhou CC, Ahmad S, Mi T, et al.: Autoantibody from women with preeclampsia induces soluble Fms-like tyrosine kinase-1 production via angiotensin type 1 receptor and calcineurin/nuclear factor of activated T-cells signaling. Hypertension 2008, 51:991–992.CrossRefGoogle Scholar
  30. 30.
    Hubel CA, Wallukat G, Wolf M, et al.: Agonistic angiotensin II type 1 receptor autoantibodies in postpartum women with a history of preeclampsia. Hypertension 2007, 49:612–617.PubMedCrossRefGoogle Scholar
  31. 31.
    Herse F, Dechend R, Harsem NK, et al.: Dysregulation of the circulating and tissue-based renin-angiotensin system in preeclampsia. Hypertension 2007, 49:604–611.PubMedCrossRefGoogle Scholar
  32. 32.
    Walther T, Wallukat G, Jank A, et al.: Angiotensin II type 1 receptor agonistic antibodies reflect fundamental alterations in the uteroplacental vasculature. Hypertension 2005, 46:1275–1279.PubMedCrossRefGoogle Scholar
  33. 33.
    Stepan H, Faber R, Wessel N, et al.: Relation between circulating angiotensin II type 1 receptor agonistic autoantibodies and soluble fms-like tyrosine kinase 1 in the pathogenesis of preeclampsia. J Clin Endocrinol Metab 2006, 91:2424–2427.PubMedCrossRefGoogle Scholar
  34. 34.
    Stepan H, Wallukat G, Schultheiss HP, et al.: Is parvovirus B19 the cause for autoimmunity against the angiotensin II type receptor? J Reprod Immunol 2007, 73:130–134.PubMedCrossRefGoogle Scholar
  35. 35.
    Dragun D, Muller DN, Brasen JH, et al.: Angiotensin II type 1-receptor activating antibodies in renal-allograft rejection. N Engl J Med 2005, 352:558–569.PubMedCrossRefGoogle Scholar
  36. 36.
    Zhou CC, Zhang Y, Irani RA, et al.: Angiotensin receptor agonistic autoantibodies induce pre-eclampsia in pregnant mice. Nat Med 2008, 14:855–862.PubMedCrossRefGoogle Scholar

Copyright information

© Current Medicine Group LLC 2008

Authors and Affiliations

  1. 1.Max-Delbrück Center for Molecular MedicineBerlinGermany

Personalised recommendations