Genetic determinants of drug response in heart failure

Article

Abstract

Heart failure management is complex and costly. Genetic variations that alter drug absorption, metabolism, and receptor-ligand interactions have the potential to modify drug response and safety. Evidence shows that genetic factors interact with numerous heart failure medications, including vasodilators, β blockers, and angiotensin-converting enzyme inhibitors. Technologic advances will soon allow population-based genome-wide genetic testing at a reasonable cost. Understanding the genetic factors that influence drug response in heart failure will allow physicians to personalize therapies and optimize response while minimizing serious adverse events.

References and Recommended Reading

  1. 1.
    McCarroll SA, Hadnott TN, Perry GH, et al.: International HapMap Consortium. Common deletion polymorphisms in the human genome. Nat Genet 2006, 38:86–92.PubMedCrossRefGoogle Scholar
  2. 2.
    Przeworski M, Hudson RR, Di Rienzo A: Adjusting the focus on human variation. Trends Genet 2000, 16:296–302.PubMedCrossRefGoogle Scholar
  3. 3.
    Feuk L, Carson AR, Scherer SW: Structural variation in the human genome. Nat Rev Genet 2006, 7:85–97.PubMedCrossRefGoogle Scholar
  4. 4.
    Ioannidis JP, Ntzani EE, Trikalinos TA, Contopoulos-Ioannidis DG: Replication validity of genetic association studies. Nat Genet 2001, 29:306–309.PubMedCrossRefGoogle Scholar
  5. 5.
    Aithal GP, Day CP, Kesteven PJ, Daly AK: Association of polymorphisms in the cytochrome P450 CYP2C9 with warfarin dose requirement and risk of bleeding complications. Lancet 1999, 353:717–719.PubMedCrossRefGoogle Scholar
  6. 6.
    D’Andrea G, D’Ambrosio RL, Di Perna P, et al.: A polymorphism in the VKORC1 gene is associated with an interindividual variability in the dose-anticoagulant effect of warfarin. Blood 2005, 105:645–649.PubMedCrossRefGoogle Scholar
  7. 7.
    Higashi MK, Veenstra DL, Kondo LM, et al.: Association between CYP2C9 genetic variants and anticoagulation-related outcomes during warfarin therapy. JAMA 2002, 287:1690–1698.PubMedCrossRefGoogle Scholar
  8. 8.
    Jeffrey L, Anderson MD, Benjamin D, et al.: Randomized trial of genotype-guided versus standard warfarin dosing in patients initiating oral anticoagulation. Circulation 2007, 116:2563–2570.CrossRefGoogle Scholar
  9. 9.
    Taylor AL, Ziesche S, Yancy C, et al.: Combination of isosorbide dinitrate and hydralazine in blacks with heart failure. N Engl J Med 2004, 351:2049–2057.PubMedCrossRefGoogle Scholar
  10. 10.
    Carson P, Ziesche S, Johnson G, Cohn JN: Racial differences in response to therapy for heart failure: analysis of the vasodilator-heart failure trials. Vasodilator-Heart Failure Trial Study Group. J Card Fail 1999, 5:178–187.PubMedCrossRefGoogle Scholar
  11. 11.
    Brand E, Chatelain N, Mulatero P, et al.: Structural analysis and evaluation of the aldosterone synthase gene in hypertension. Hypertension 1998, 32:198–204.PubMedGoogle Scholar
  12. 12.
    Kumar NN, Benjafield AV, Lin RC, et al.: Haplotype analysis of aldosterone synthase gene (CYP11B2) polymorphisms shows association with essential hypertension. J Hypertens 2003, 21:1331–1337.PubMedCrossRefGoogle Scholar
  13. 13.
    McNamara DM, Tam SW, Sabolinski ML, et al.: Aldosterone synthase promoter polymorphism predicts outcome in African Americans with heart failure: results from the A-HeFT Trial. J Am Coll Cardiol 2006, 48:1277–1282.PubMedCrossRefGoogle Scholar
  14. 14.
    McNamara DM, Holubkov R, Postava L, et al.: Effect of the Asp298 variant of endothelial nitric oxide synthase on survival for patients with congestive heart failure. Circulation 2003, 107:1598–1602.PubMedCrossRefGoogle Scholar
  15. 15.
    Neumeister A, Charney DS, Belfer I, et al.: Sympathoneural and adrenomedullary functional effects of alpha2C-adrenoreceptor gene polymorphism in healthy humans. Pharmacogenet Genomics 2005, 15:143–149.PubMedCrossRefGoogle Scholar
  16. 16.
    Small KM, Wagoner LE, Levin AM, et al.: Synergistic polymorphisms of beta1-and alpha2C-adrenergic receptors and the risk of congestive heart failure. N Engl J Med 2002, 347:1135–1142.PubMedCrossRefGoogle Scholar
  17. 17.
    Beta-Blocker Evaluation of Survival Trial Investigators: A trial of the beta-blocker bucindolol in patients with advanced chronic heart failure. N Engl J Med 2001, 344:1659–1667.CrossRefGoogle Scholar
  18. 18.
    Bristow MR, Krause-Steinrauf H, Nuzzo R, et al.: Effect of baseline or changes in adrenergic activity on clinical outcomes in the beta-blocker evaluation of survival trial. Circulation 2004, 110:1437–1442.PubMedCrossRefGoogle Scholar
  19. 19.
    Liggett SB, Mialet-Perez J, Thaneemit-Chen S, et al.: A polymorphism within a conserved beta(1)-adrenergic receptor motif alters cardiac function and beta-blocker response in human heart failure. Proc Natl Acad Sci U S A 2006, 103:11288–11293.PubMedCrossRefGoogle Scholar
  20. 20.
    Small KM, Forbes SL, Rahman FF, et al.: A four amino acid deletion polymorphism in the third intracellular loop of the human alpha 2C-adrenergic receptor confers impaired coupling to multiple effectors. J Biol Chem 2000, 275:23059–23064.PubMedCrossRefGoogle Scholar
  21. 21.
    Terra SG, Hamilton KK, Pauly DF, et al.: Beta1-adrenergic receptor polymorphisms and left ventricular remodeling changes in response to beta-blocker therapy. Pharmacogenet Genomics 2005, 15:227–234.PubMedGoogle Scholar
  22. 22.
    Kaye DM, Smirk B, Williams C, et al.: Beta-adrenoceptor genotype influences the response to carvedilol in patients with congestive heart failure. Pharmacogenetics 2003, 13:379–382.PubMedCrossRefGoogle Scholar
  23. 23.
    Shin J, Johnson JA: Pharmacogenetics of beta-blockers. Pharmacotherapy 2007, 27:874–887.PubMedCrossRefGoogle Scholar
  24. 24.
    Lanfear DE, Jones PG, Marsh S, et al.: Beta2-adrenergic receptor genotype and survival among patients receiving beta-blocker therapy after an acute coronary syndrome. JAMA 2005, 294:1526–1533.PubMedCrossRefGoogle Scholar
  25. 25.
    Bristow MR: beta-adrenergic receptor blockade in chronic heart failure. Circulation 2000, 101:558–569.PubMedGoogle Scholar
  26. 26.
    Feldman DS, Carnes CA, Abraham WT, Bristow MR: Mechanisms of disease: beta-adrenergic receptors—alterations in signal transduction and pharmacogenomics in heart failure. Nat Clin Pract Cardiovasc Med 2005, 2:475–483.PubMedCrossRefGoogle Scholar
  27. 27.
    Kubota T, McNamara DM, Wang JJ, et al.: Effects of tumor necrosis factor gene polymorphisms on patients with congestive heart failure. VEST Investigators for TNF Genotype Analysis. Vesnarinone Survival Trial. Circulation 1998, 97:2499–2501.PubMedGoogle Scholar
  28. 28.
    McNamara DM, Holubkov R, Postava L, et al.: Pharmacogenetic interactions between angiotensin-converting enzyme inhibitor therapy and the angiotensin-converting enzyme deletion polymorphism in patients with congestive heart failure. J Am Coll Cardiol 2004, 44:2019–2026.PubMedCrossRefGoogle Scholar
  29. 29.
    Raynolds MV, Bristow MR, Bush EW, et al.: Angiotensinconverting enzyme DD genotype in patients with ischaemic or idiopathic dilated cardiomyopathy. Lancet 1993, 342:1073–1075.PubMedCrossRefGoogle Scholar
  30. 30.
    Schut AF, Bleumink GS, Stricker BH, et al.: Angiotensin converting enzyme insertion/deletion polymorphism and the risk of heart failure in hypertensive subjects. Eur Heart J 2004, 25:2143–2148.PubMedCrossRefGoogle Scholar
  31. 31.
    Andersson B, Sylven C: The DD genotype of the angiotensin-converting enzyme gene is associated with increased mortality in idiopathic heart failure. J Am Coll Cardiol 1996, 28:162–167.PubMedCrossRefGoogle Scholar
  32. 32.
    Arnett DK, Davis BR, Ford CE, et al.: Pharmacogenetic association of the angiotensin-converting enzyme insertion/deletion polymorphism on blood pressure and cardiovascular risk in relation to antihypertensive treatment: the Genetics of Hypertension-Associated Treatment (GenHAT) study. Circulation 2005, 11:3374–3383.CrossRefGoogle Scholar
  33. 33.
    Rathore SS, Curtis JP, Wang Y, et al.: Association of serum digoxin concentration and outcomes in patients with heart failure. JAMA 2003, 289:871–878.PubMedCrossRefGoogle Scholar
  34. 34.
    The effect of digoxin on mortality and morbidity in patients with heart failure. The Digitalis Investigation Group [no authors listed]. N Engl J Med 1997, 336:525–533.Google Scholar
  35. 35.
    Comets E, Verstuyft C, Lavielle M, et al.: Modelling the influence of MDR1 polymorphism on digoxin pharmacokinetic parameters. Eur J Clin Pharmacol 2007, 63:437–449.PubMedCrossRefGoogle Scholar
  36. 36.
    Kjekshus J, Apetrei E, Barrios V, et al.: Rosuvastatin in older patients with systolic heart failure. N Engl J Med 2007, 357:2248–2261.PubMedCrossRefGoogle Scholar
  37. 37.
    Khush KK, Waters DD, Bittner V, et al.: Effect of high-dose atorvastatin on hospitalizations for heart failure: subgroup analysis of the Treating to New Targets (TNT) study. Circulation 2007, 115:576–583.PubMedCrossRefGoogle Scholar
  38. 38.
    Bellosta S, Paoletti R, Corsini A: Safety of statins: focus on clinical pharmacokinetics and drug interactions. Circulation 2004, 109(23 Suppl 1):III50–III57.PubMedGoogle Scholar
  39. 39.
    Niemi M, Schaeffeler E, Lang T, et al.: High plasma pravastatin concentrations are associated with single nucleotide polymorphisms and haplotypes of organic anion transporting polypeptide-C (OATP-C, SLCO1B1). Pharmacogenetics 2004, 14:429–440.PubMedCrossRefGoogle Scholar
  40. 40.
    Ordovas JM, Lopez-Miranda J, Perez-Jimenez F, et al.: Effect of apolipoprotein E and A-IV phenotypes on the low density lipoprotein response to HMG CoA reductase inhibitor therapy. Atherosclerosis 1995, 113:157–166.PubMedCrossRefGoogle Scholar
  41. 41.
    Mohrschladt MF, van der Sman-de Beer F, Hofman MK, et al.: TaqIB polymorphism in CETP gene: the influence on incidence of cardiovascular disease in statin-treated patients with familial hypercholesterolemia. Eur J Human Genet 2005, 13:877–882.CrossRefGoogle Scholar
  42. 42.
    Souza-Costa DC, Sandrim VC, Lopes LF, et al.: Anti-inflammatory effects of atorvastatin: modulation by the T-786C polymorphism in the endothelial nitric oxide synthase gene. Atherosclerosis 2007, 193:438–444.PubMedCrossRefGoogle Scholar
  43. 43.
    Sun Z, Milos PM, Thompson JF, et al.: Role of a KCNH2 polymorphism (R1047 L) in dofetilide-induced torsades de pointes. J Mol Cell Cardiol 2004, 37:1031–1039.PubMedCrossRefGoogle Scholar
  44. 44.
    Lehnart SE, Ackerman MJ, Benson DW, et al.: Inherited arrhythmias: a National Heart, Lung, and Blood Institute and Office of Rare Diseases workshop consensus report about the diagnosis, phenotyping, molecular mechanisms, and therapeutic approaches for primary cardiomyopathies of gene mutations affecting ion channel function. Circulation 2007, 116:2325–2345.PubMedCrossRefGoogle Scholar
  45. 45.
    Wojnowski L, Kulle B, Schirmer M, et al.: NAD(P)H oxidase and multidrug resistance protein genetic polymorphisms are associated with doxorubicin-induced cardiotoxicity. Circulation 2005, 112:3754–3762.PubMedCrossRefGoogle Scholar

Copyright information

© Current Medicine Group LLC 2008

Authors and Affiliations

  1. 1.Division of Cardiology, Campus Box B130University of Colorado Health Sciences CenterAuroraUSA

Personalised recommendations