Current Cardiology Reports

, Volume 7, Issue 1, pp 45–51

The future of real-time cardiac magnetic resonance imaging

  • Krishna S. Nayak
  • Bob S. Hu


Dynamic changes in cardiac structure and function are usually examined by real-time imaging techniques such as angiography or echocardiography. MRI has many advantages compared with these established cardiac imaging modalities. However, system hardware and software limitations have limited cardiac MRI to gated acquisitions that are lengthy and often result in failed acquisitions and examinations. Recently, MRI has evolved into a technique capable of imaging dynamic processes in real time. Improvements in hardware, pulse sequences, and image reconstruction algorithms have enabled real-time cardiac MRI with high spatial resolution, high temporal resolution, and various types of image contrast without requiring cardiac gating or breath-holding. This article provides an overview of current capability and highlights key technical and clinical advances. The future prospects of real-time cardiac MRI will depend on 1) the development of techniques that further improve signal to noise ratio, contrast, spatial resolution, and temporal resolution, without introducing artifacts; 2) the development of software infrastructure that facilitates rapid interactive examination; and 3) the development and validation of several new clinical assessments.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and Recommended Reading

  1. 1.
    Riederer SJ, Tasciyan T, Farzaneh F, et al.: MR fluoroscopy: technical feasibility. Magn Reson Med 1988, 8:1–15. The first demonstration of real-time MRI (MR fluoroscopy) using rapid 2DFT acquisitions and dedicated reconstruction hardware.PubMedCrossRefGoogle Scholar
  2. 2.
    Debbins JP, Riederer SJ, Rossman PJ, et al.: Cardiac magnetic resonance fluoroscopy. Magn Reson Med 1996, 36:588–595.PubMedCrossRefGoogle Scholar
  3. 3.
    Kerr AB, Pauly JM, Hu BS, et al.: Real-time interactive MRI on a conventional scanner. Magn Reson Med 1997, 38:355–367. First demonstration of real-time cardiac MRI that sufficiently resolved cardiac motion (at six frames per second).PubMedCrossRefGoogle Scholar
  4. 4.
    Holsinger AE, Wright RC, Riederer SJ, et al.: Real-time interactive magnetic resonance imaging. Magn Reson Med 1990, 14:547–553.PubMedCrossRefGoogle Scholar
  5. 5.
    Pohost GM: Is 31p-NMR spectroscopic imaging a viable approach to assess myocardial viability? Circulation 1995, 92:9–10.PubMedGoogle Scholar
  6. 6.
    Farzaneh F, Riederer SJ, Lee JN, et al.: MR fluoroscopy: initial clinical studies. Radiology 1989, 171:545–549.PubMedGoogle Scholar
  7. 7.
    Mansfield P: Multi-planar image formation using NMR spin echoes. J Phys C 1977, 10:580–594.CrossRefGoogle Scholar
  8. 8.
    Meyer CH, Hu BS, Nishimura DG, Macovski A: Fast spiral coronary artery imaging. Magn Reson Med 1992, 28:202–213.PubMedCrossRefGoogle Scholar
  9. 9.
    Nayak KS, Pauly JM, Yang PC, et al.: Real-time interactive coronary MRA. Magn Reson Med 2001, 46:430–435. Characterization of the tradeoffs between spatial and temporal resolution based on currently available hardware, and demonstration of high-resolution coronary artery localization.PubMedCrossRefGoogle Scholar
  10. 10.
    Tsai CM, Nishimura DG: Reduced aliasing artifacts using variable-density k-space sampling trajectories. Magn Reson Med 2000, 43:452–458.PubMedCrossRefGoogle Scholar
  11. 11.
    Pruessmann KP, Weiger M, Scheidegger MB, Boesiger P: SENSE: sensitivity encoding for fast MRI. Magn Reson Med 1999, 42:952–962.PubMedCrossRefGoogle Scholar
  12. 12.
    Sodickson DK, Manning WJ: Simultaneous acquisition of spatial harmonics (SMASH): fast imaging with radiofrequency coil arrays. Magn Reson Med 1997, 38:591–603.PubMedCrossRefGoogle Scholar
  13. 13.
    Weiger M, Pruessmann KP, Boesiger P: Cardiac real-time imaging using SENSE. Magn Reson Med 2000, 43:177–184. One of the first manuscripts to apply parallel imaging acceleration to cardiac imaging.PubMedCrossRefGoogle Scholar
  14. 14.
    Pruessmann KP, Weiger M, Bornert P, Boesiger P: Advances in sensitivity encoding with arbitrary k-space trajectories. Magn Reson Med 2001, 46:638–651.PubMedCrossRefGoogle Scholar
  15. 15.
    Carr HY: Steady-state free precession in nuclear magnetic resonance. Phys Rev 1958, 112:1693–1701.CrossRefGoogle Scholar
  16. 16.
    Peters DC, Ennis DB, McVeigh ER: High-resolution MRI of cardiac function with projection reconstruction and steadystate free precession. Magn Reson Med 2002, 48:82–88.PubMedCrossRefGoogle Scholar
  17. 17.
    Meyer CH, Pauly JM, Nayak KS, et al.: Real-time spiral SSFP cardiac imaging. Proceedings of the 9th annual ISMRM meeting. Glasgow; April 21–27, 2001:442.Google Scholar
  18. 18.
    Herzka DA, Kellman P, Aletras AH, et al.: Multishot epi-SSFP in the heart. Magn Reson Med 2002, 47:655–664.PubMedCrossRefGoogle Scholar
  19. 19.
    Hargreaves BA, Vasanawala SS, Nayak KS, et al.: Fat-suppressed steady-state free precession imaging using phase detection. Magn Reson Med 2003, 50:210–213.PubMedCrossRefGoogle Scholar
  20. 20.
    Scheffler K, Heid O, Hennig J: Magnetization preparation during the steady state: fat-saturated 3d trueFISP. Magn Reson Med 2001, 45:1075–1080.PubMedCrossRefGoogle Scholar
  21. 21.
    Derbyshire JA, Herzka DA, McVeigh ER: A short-train ssfp sequence with intrinsic fat suppression. Proceedings of the 12th annual ISMRM meeting. Kyoto; May 15–21, 2004:265.Google Scholar
  22. 22.
    Riederer SJ, Wright RC, Ehman RL, et al.: Real-time interactive color flow MR imaging. Radiology 1991, 181:33–39.PubMedGoogle Scholar
  23. 23.
    Nayak KS, Pauly JM, Kerr AB, et al.: Real-time color flow MRI. Magn Reson Med 2000, 43:251–258. The first demonstration of real-time flow MRI with sufficient temporal and spatial resolution to resolve cardiac flow and evaluate abnormal valvular flow.PubMedCrossRefGoogle Scholar
  24. 24.
    Rivas PA, Nayak KS, Kerr AB, et al.: Real-time interactive cardiac magnetic resonance imaging system with color flow mapping: assessment of regurgitation severity compared with ultrasound color doppler. Circulation 1999, 100(Suppl 18):I-458.Google Scholar
  25. 25.
    PenaAlmaguer E, Nayak KS, Terashima M, et al.: Assessment off extracardiac abnormalities in congenital heart disease with real-time color-flow MRI. J Cardiovasc Magn Reson 2002, 4:167.Google Scholar
  26. 26.
    Hu BS, Pauly JM, Macovski A: Localized real-time velocity spectra determination. Magn Reson Med 1993, 30:393–398.PubMedCrossRefGoogle Scholar
  27. 27.
    Irarrazabal P, Hu BS, Pauly JM, Nishimura DG: Spatially resolved and localized real-time velocity distribution. Magn Reson Med 1993, 30:207–212.PubMedCrossRefGoogle Scholar
  28. 28.
    Luk Pat GT, Pauly JM, Hu BS, Nishimura DG: One-shot spatially resolved velocity imaging. Magn Reson Med 1998, 40:603–613.CrossRefGoogle Scholar
  29. 29.
    DiCarlo J, LukPat GT, Hu BS, Nishimura DG: One-shot fourier velocity encoding using a variable density trajectory. Proceedings of the 9th annual ISMRM meeting. Glasgow; April 21–27, 2001:372.Google Scholar
  30. 30.
    Nayak KS, Cunningham CH, Santos JM, Pauly JM: Real-time cardiac MRI at 3 Tesla. Magn Reson Med 2004, 51:655–660. Demonstration of high-field real-time cardiac MRI, and comparison between 1.5T and 3T.PubMedCrossRefGoogle Scholar
  31. 31.
    Guttman MA, McVeigh ER: Techniques for fast stereoscopic MRI. Magn Reson Med 2001, 46:317–323.PubMedCrossRefGoogle Scholar
  32. 32.
    Santos JM, Wright GA, Pauly JM: Flexible real-time magnetic resonance imaging framework. Proceedings of the 26th annual IEEE EMBS meeting. San Francisco; September 1–4, 2004. A new software infrastructure for real-time interactive MRI that will enable real-time modification of imaging sequences, contrast, resolution, and other parameters, while providing an intuitive user interface.Google Scholar
  33. 33.
    Guttman MA, Lederman RJ, Sorger JM, McVeigh ER: Real-time volume rendered MRI for interventional guidance. J Cardiovasc Magn Reson 2002, 4:431–432.PubMedCrossRefGoogle Scholar
  34. 34.
    Stainsby JA, Hu N, Yi D, et al.: Integrated real-time MRI user-interface. Proceedings of the 12th annual ISMRM meeting. Kyoto; May 15–21, 2004:537.Google Scholar
  35. 35.
    Shankaranarayanan A, Carillo A, Yang PC, et al.: Rapid comprehensive cardiac examination in an integrated real time suite. Proceedings of the 12th annual ISMRM meeting. Kyoto; May 15–21, 2004:1956.Google Scholar
  36. 36.
    Nagel E, Lehmkuhl HB, Klein C, et al.: Influence of image quality on the diagnostic accuracy of dobutamine stress magnetic resonance imaging in comparison with dobutamine stress echocardiography for the noninvasive detection of myocardial ischemia. Z Kardiol 1999, 88:622–630.PubMedCrossRefGoogle Scholar
  37. 37.
    Hundley WG, Hamilton CA, Thomas MS, et al.: Utility of fast cine magnetic resonance imaging and display for the detection of myocardial ischemia in patients not well suited for second harmonicstress echocardiography. Circulation 1999, 100:1697–1702.PubMedGoogle Scholar
  38. 38.
    Wellnhofer E, Olariu A, Klein C, et al.: Magnetic resonance low-dose dobutamine test is superior to scar quantification for the prediction of functional recovery. Circulation 2004, 109:2172–2174.PubMedCrossRefGoogle Scholar
  39. 39.
    Yang PC, Kerr AB, Liu AC, et al.: New real-time interactive magnetic resonance imaging complements echocardiography. J Am Coll Cardiol 1998, 32:2049–2056. The first major clinical application of real-time MRI, demonstrating real-time MRIs superiority to echocardiography for the assessment of LV function and wall motionPubMedCrossRefGoogle Scholar
  40. 40.
    Nagel E, Schneider U, Schalla S, et al.: Magnetic resonance real-time imaging for the evaluation of left ventricular function. J Cardiovasc Magn Reson 2000, 2:7–14.PubMedGoogle Scholar
  41. 41.
    Kaji S, Yang PC, Kerr AB, et al.: Rapid evaluation of left ventricular volume and mass without breath-holding using real-time interactive cardiac magnetic resonance imaging system. J Am Coll Cardiol 2001, 38:527–533. Validation of real-time MR assessment of LV wall motion, function, mass, and volumes.PubMedCrossRefGoogle Scholar
  42. 42.
    Nayak KS, Hu BS: Triggered real-time MRI and cardiac applications. Magn Reson Med 2003, 49:188–192. Demonstration of triggered real-time acquisitions using physiologic signals.PubMedCrossRefGoogle Scholar
  43. 43.
    Carillo A, Shankaranarayanan A, Brittain JH, Wolff SD: Real-time triggered single R-R cine imaging for whole-heart coverage in a breath-hold. Proceedings of the 12th annual ISMRM meeting. Kyoto; May 15–21, 2004:1958.Google Scholar
  44. 44.
    Stainsby JA, Goldman T, Sussman MS, Wright GA: Realtime MR with physiological monitoring for improved scan localization. Proceedings of the 9th annual ISMRM meeting. Glasgow; April 21–27, 2001:176.Google Scholar
  45. 45.
    Narayan G, Nayak KS, Pauly JM, Hu BS: Rapid (< 10 second) single breath-hold four dimensional quantitative assessment of lv and rv function using triggered real-time steady-state free precession MRI in heart failure patients. J Magn Reson 2004, in press.Google Scholar
  46. 46.
    Guttman MA, Dick AJ, Raman VK, et al.: Imaging of myocardial infarction for diagnosis and intervention using real-time interactive MRI without ECG-gating or breath-holding. Magn Reson Med 2004, 52:354–361. Recent work on real-time imaging with periodic inversion recovery preparation, for the evaluation of patients with myocardial infarction.PubMedCrossRefGoogle Scholar
  47. 47.
    Nayak KS, Urayama SI, Meyer CH: Fast LV segmentation in single slices. Proceedings of the 9th annual ISMRM meeting. Glasgow; April 21–27, 2001:826.Google Scholar
  48. 48.
    Osman NF, Kerwin WS, McVeigh ER, Prince JL: Cardiac motion tracking using CINE harmonic phase (HARP) magnetic resonance imaging. Magn Reson Med 1999, 42:1048–1060.PubMedCrossRefGoogle Scholar
  49. 49.
    Osman NF, McVeigh ER, Prince JL: Imaging heart motion using harmonic phase MRI. IEEE Trans Med Imaging 2000, 19:186–202.PubMedCrossRefGoogle Scholar
  50. 50.
    Nayak KS, Pauly JM, Nishimura DG, Hu BS: Rapid ventricular assessment using real-time interactive multislice MRI. Magn Reson Med 2001, 45:371–375.PubMedCrossRefGoogle Scholar
  51. 51.
    Stuber M, Kissinger KV, Chen MH, et al.: Non-ECG triggered multi-slice real-time cardiac dobutamine stress imaging. Proceedings of the 8th annual ISMRM meeting. Denver; April 1–7, 2000:194.Google Scholar
  52. 52.
    Yang PC, Meyer C, Terashima M, et al.: Spiral high-resolution magnetic resonance coronary angiography with real-time coronary localization. J Am Coll Cardiol 2003, 41:56–62.Google Scholar
  53. 53.
    Thedens DR, Irarrazaval P, Sachs TS, et al.: Fast magnetic resonance coronary angiography with a three-dimensional stack of spirals trajectory. Magn Reson Med 1999, 41:1170–1179.PubMedCrossRefGoogle Scholar
  54. 54.
    Sachs TS, Meyer CH, Irarrazabal P, et al.: The diminishing variance algorithm for real-time reduction of motion artifacts in MRI. Magn Reson Med 1995, 34:412–422.PubMedCrossRefGoogle Scholar
  55. 55.
    Hardy CJ, Saranathan M, Zhu Y, Darrow RD: Coronary angiography by real-time MRI with adaptive averaging. Magn Reson Med 2000, 44:940–946. A method for SNR improvement in real-time coronary artery imaging by adaptive averaging.PubMedCrossRefGoogle Scholar
  56. 56.
    Park JB, Olcott EW, Nishimura DG: Rapid measurement of time-averaged blood flow using ungated spiral phasecontrast. Magn Reson Med 2003, 49:322–328.PubMedCrossRefGoogle Scholar
  57. 57.
    Nayak KS, Hu BS, Nishimura DG: Rapid quantitation of high-speed flow jets. Magn Reson Med 2003, 50:366–372.PubMedCrossRefGoogle Scholar
  58. 58.
    Kee ST, Rhee JS, Butts K, et al.: MR-guided transjugular portosystemic shunt placement in a swine model. J Vasc Interv Radiol 1999, 10:529–535.PubMedCrossRefGoogle Scholar
  59. 59.
    Omary R, Unal O, Koscielski D, et al.: Real-time MR imagingguided passive catheter tracking with use of gadoliniumfilled catheters. J Vasc Interv Radiol 2000, 11:1079–1085.PubMedCrossRefGoogle Scholar
  60. 60.
    Buecker A, Neuerburg J, Adam G, et al.: Real-time MR fluoroscopy for MR-guided iliac artery stent placement. J Magn Reson Imaging 2000, 12:616–622.PubMedCrossRefGoogle Scholar
  61. 61.
    Yang X, Atalar E: Intravascular MR imaging-guided balloon angioplasty with an MR imaging guide wire: feasibility study in rabbits. Radiology 2000, 217:501–506.PubMedGoogle Scholar
  62. 62.
    Manke C, Nitz W, Djavidani B, et al.: MR imaging-guided stent placement in iliac arterial stenoses: a feasibility study. Radiology 2001, 219:527–534.PubMedGoogle Scholar
  63. 63.
    Lewin JS, Nour SG, Duerk JL: Magnetic resonance image-guided biopsy and aspiration. Top Magn Reson Imaging 2000, 11:173–183.PubMedCrossRefGoogle Scholar
  64. 64.
    Serfaty JM, Yang X, Aksit P, et al.: Toward MRI-guided coronary catheterization: visualization of guiding catheters, guidewires, and anatomy in real time. J Magn Reson Imaging 2000, 12:590–594.PubMedCrossRefGoogle Scholar
  65. 65.
    Serfaty JM, Yang X, Foo TK, et al.: MRI-guided coronary catheterization and ptca: a feasibility study on a dog model. Magn Reson Med 2003, 49:258–263.PubMedCrossRefGoogle Scholar
  66. 66.
    Spuentrup E, Ruebben A, Schaeffter T, et al.: Magnetic resonance-guided coronary artery stent placement in a swine model. Circulation 2002, 105:874–879.PubMedCrossRefGoogle Scholar
  67. 67.
    Dick AJ, Guttman MA, Raman VK, et al.: Magnetic resonance fluoroscopy allows targeted delivery of mesenchymal stem cells to infarct borders in swine. Circulation 2003, 108:2899–2904. Demonstration of MR-guided stem cell injection into myocardium, including active catheter visualization.PubMedCrossRefGoogle Scholar
  68. 68.
    Lardo A, McVeigh E, Jumrussirikul P, et al.: Visualization and temporal/spatial characterization of cardiac radiofrequency ablation lesions using magnetic resonance imaging. Circulation 2000, 102:698–705.PubMedGoogle Scholar
  69. 69.
    Schmidt EJ, Reddy VY, Holmvang G, Melsky G: Mr-guided laser pulmonary-vein ablation in canine models. Proceedings of the 12th annual ISMRM meeting. Kyoto; May 15–21, 2004:471.Google Scholar

Copyright information

© Current Science Inc 2005

Authors and Affiliations

  • Krishna S. Nayak
    • 1
  • Bob S. Hu
  1. 1.Electrical Engineering-SystemsUniversity of Southern CaliforniaLos AngelesUSA

Personalised recommendations